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This paper deals with a constraint multiobjective programming problem and its dual problem in the lexicographic order.
We establish some duality theorems and present several existence results of a Lagrange multiplier and a lexicographic saddle
point theorem. Meanwhile, we study the relations between the lexicographic saddle point and the lexicographic solution to a
multiobjective programming problem.

1. Introduction

Duality assertions are very important in optimization
researches from the theoretical as well as from the numerical
point of view. Duality theorems in mathematical program-
ming establish typical connections between a constrained
minimization problem and a constrained maximization
problem. The relationship is such that the existence of a
solution to one of these problems ensures the existence of
a solution to other, both having the same optimal value. In
the past centuries, many authors have studied the duality
problems of vector optimization problems; see, for example,
[1–11] and reference therein.

On the other hand, it is well known that partial order plays
an important role in multiobjective optimization theory. But
partial efficient points are usually large, so that one needs
certain additional rules to reduce them. One of the possible
approaches is to utilize the lexicographic order, which is
introduced by the lexicographic cone.Themain reason is that
the lexicographic order is a total ordering and it can overcome
the shortcoming that not all points can be compared in
partial order.The lexicographic order has been investigated in
connection with its applications in optimization and decision
making theory; see, for example, [12–19] and references
therein. However, the lexicographic cone is neither open
nor closed. Note that a lot of results for vector optimization

problems are gotten under the assumption that the ordering
cone is open or closed. Therefore, it is valuable to investigate
multiobjective optimization problems in the lexicographic
order. Konnov [12] first discussed the vector equilibrium
problems in lexicographic order. Recently, Li et al. [13] studied
the minimax inequality problem and have obtained minmax
theorems in the lexicographic order.

The rest of the paper is organized as follows. In Section 2,
we first recall some definitions and their properties. In
Section 3, with respect to the lexicographic order, we first
establish weak duality theorem and the Lagrangianmultiplier
rules for a multiobjective programming. In Section 4, we
investigate a lexicographic saddle point of a vector-valued
Lagrangian function and discuss the connection between the
lexicographic saddle point and the lexicographic solution to
a multiobjective programming problem.

2. Preliminaries and Notations

Throughout this paper, unless otherwise specified, let𝑋 be an
arbitrarily nonempty subset of a topology space 𝑌 and Rℓ𝑛-
dimensional Euclidean space. LetRℓ

+
:= {𝑥 ∈ Rℓ : 𝑥

𝑖
≥ 0, ∀𝑖}.

Let L(R𝑚,R𝑛) be the space of continuous linear operator
from R𝑚 to R𝑛 and L+(R𝑚,R𝑛) := {Λ ∈ L(R𝑚,R𝑛) :

Λ(R𝑚
+
) ⊂ R𝑛
+
}. By 0

ℓ
denote the zero vector of Rℓ.
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For convenience, we set 𝐼
𝑛
= {1, 2, . . . , 𝑛}. As usual, for

any V ∈ R𝑛 and 𝑖 ∈ 𝐼
𝑛
, V
𝑖
will denote the 𝑖th coordinate

of V with respect to the canonical basis {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
}. The

lexicographic cone of R𝑛 is defined as the set of all vectors
whose first nonzero coordinate (if any) is positive:

𝐶lex = {0} ∪ {V ∈ 𝑅𝑛 : ∃𝑖 ∈ 𝐼𝑛 such that V
𝑖
> 0;

∄𝑗 ∈ 𝐼
𝑛
, 𝑗 < 𝑖 such that V

𝑗
̸= 0} .

(1)

Note that the lexicographic cone𝐶lex is neither closed nor
open. However, it is convex, pointed and 𝐶lex ∪ (−𝐶lex) = R𝑛.
Thus the binary relation defined for any 𝑢, V ∈ R𝑛 by

𝑢 ≤lex V ⇐⇒ 𝑢 ∈ V − 𝐶lex (2)

is a total order on R𝑛 (i.e., it is reflexive, transitive, anti-
symmetric and any two vectors are comparable). The binary
relation induced by 𝐶lex is called a lexicographic order.

Now we recall the definitions of efficient points of a
nonempty subset in the lexicographic order.

Definition 1 (see [13, 14]). Let 𝑍 ⊂ R𝑛 be a nonempty subset.

(i) Apoint 𝑧
0
∈ 𝑍 is called a lexicographicmaximal point

of 𝑍 if 𝑍 ⊂ 𝑧
0
− 𝐶lex; that is, for any 𝑧 ∈ 𝑍, 𝑧 ≤lex 𝑧0;

by maxlex𝑍, we denote the set of all lexicographic
maximal points of 𝑍.

(ii) A point 𝑧
0
∈ 𝑍 is called a lexicographicminimal point

of 𝑍 if 𝑍 ⊂ 𝑧
0
+ 𝐶lex; that is, for any 𝑧 ∈ 𝑍, 𝑧0 ≤lex 𝑧;

by minlex𝑍, we denote the set of all lexicographic
minimal points of 𝑍.

Obviously, ifmaxlex𝑍 ̸= 0, maxlex𝑍 is a single point set and
so is minlex𝑍.

Lemma 2 (see [13]). If 𝑍 ⊂ R𝑛 is a nonempty compact set,
thenmin

𝑙𝑒𝑥
𝑍 ̸= 0 andmax

𝑙𝑒𝑥
𝑍 ̸= 0.

Proposition 3. If 𝐶,𝐷 ⊂ R𝑛 are two nonempty compact
subsets, then

(i) min
𝑙𝑒𝑥
(𝐶 + 𝐷) = min

𝑙𝑒𝑥
(𝐶) +min

𝑙𝑒𝑥
(𝐷),

(ii) max
𝑙𝑒𝑥
(𝐶 + 𝐷) = max

𝑙𝑒𝑥
(𝐶) +max

𝑙𝑒𝑥
(𝐷).

Proof. It suffices to verify (i) since (ii) is evident by
maxlex(𝐶) = −minlex(−𝐶). Indeed, let 𝑥 = minlex(𝐶) and
𝑦 = minlex(𝐷). Then 𝑥 ∈ 𝐶 and 𝑥 ≤lex 𝑥, for all 𝑥 ∈ 𝐶;
𝑦 ∈ 𝐷 and 𝑦 ≤lex 𝑦, for all 𝑦 ∈ 𝐷. Hence, 𝑥 + 𝑦 ∈ 𝐶 + 𝐷

and 𝑥 + 𝑦 ≤lex 𝑥 + 𝑦 for all 𝑥 ∈ 𝐶, and 𝑦 ∈ 𝐷. Namely,
{𝑥 + 𝑦} = minlex(𝐶 + 𝐷) and the proof is complete.

Definition 4. A vector-valued mapping 𝑔 : 𝑋 → Rℓ is called
lower semicontinuous if, for any 𝑧 ∈ Rℓ, the set {𝑥 ∈ 𝑋 :

𝑔(𝑥) ∈ 𝑧 −Rℓ
+
} is closed in X.

Definition 5. A vector-valued mapping 𝑔 : 𝑋 → Rℓ is called
convex on 𝑌 if and only if, for any 𝑥

1
, 𝑥
2
∈ 𝑋, 𝑡 ∈ [0, 1], and

𝑖 = 1, 2, . . . , ℓ, 𝑔
𝑖
(𝑡𝑥
1
+ (1 − 𝑡)𝑥

2
) ≤ 𝑡𝑔

𝑖
(𝑥
1
) + (1 − 𝑡)𝑔

𝑖
(𝑥
2
).

Consider the following multiobjective programming
problem:

(MP) min
lex

𝑓 (𝑥) = (𝑓
1 (𝑥) , 𝑓2 (𝑥) , . . . , 𝑓𝑛 (𝑥))

𝑇

s.t. 𝑔 (𝑥) ∈ −𝑅
𝑚

+
,

𝑥 ∈ 𝑋,

(3)

where 𝑓
𝑖

: 𝑋 → R (𝑖 = 1, 2, . . . , 𝑛) and 𝑔(𝑥) =

(𝑔
1
(𝑥), 𝑔
2
(𝑥), . . . , 𝑔

𝑚
(𝑥))
𝑇, and 𝑔

𝑗
: 𝑋 → R (𝑗 = 1, 2, . . . , 𝑚).

Let 𝐸 denote the set of all feasible points for the multiob-
jective optimization problem (MP); that is,

𝐸 = {𝑥 ∈ 𝑋 : 𝑔 (𝑥) ∈ −𝑅
𝑚

+
} . (4)

And let 𝐸
𝑖
denote the set of all minimal points for 𝑓

𝑖
on 𝐸;

that is,

𝐸
𝑖
= {𝑥 ∈ 𝐸 : 𝑓

𝑖 (𝑥) = min
𝑦∈𝐸

𝑓
𝑖
(𝑦)} , for 𝑖 = 1, 2, . . . , 𝑛.

(5)

Then, we write 𝑓(𝐸) = ⋃
𝑥∈𝐸

𝑓(𝑥). Throughout this paper, we
always assume that 𝐸 ̸= 0 and 𝐸

𝑖
̸= 0 (𝑖 = 1, 2, . . . , 𝑛).

A vector-valued Lagrangian function for (MP) is defined
from 𝐸 × 𝑅

𝑛×𝑚
→ 𝑅
𝑛 by

𝐿 (𝑥, Λ) = 𝑓 (𝑥) + Λ𝑔 (𝑥) , (6)

where Λ ∈ L+(𝑅𝑚, 𝑅𝑛); that is, Λ
𝑛×𝑚

= (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
)
𝑇;

𝜆
𝑖
= (𝜆
𝑖1
, 𝜆
𝑖2
, . . . , 𝜆

𝑖𝑚
) ∈ 𝑅
𝑚

+
, 𝑖 = 1, 2, . . . , 𝑛.

Then the Lagrangian dual problem is defined as the
following multiobjective programming problem:

(DMP) max
lex

𝜙 (Λ)

s.t. Λ ∈ L
+
(𝑅
𝑚
, 𝑅
𝑛
) ,

(7)

where 𝜙(Λ) = min lex {𝐿(𝑥, Λ) : 𝑥 ∈ 𝑋}.

Definition 6. (i) A point 𝑥 ∈ 𝐸 is said to be a lex-
icographic minimal solution to (MP) if 𝑥 ∈ 𝐸 and
𝑓(𝑥) ≤lex 𝑓(𝑥), for all 𝑥 ∈ 𝐸. By minlex𝐸 and minlex𝑓(𝐸)
denote the set of all lexicographic minimal solutions and the
lexicographic minimal value to (MP), respectively.

(ii) A point 𝑥 ∈ 𝐸 is said to be a strong minimal solution
to (MP) if 𝑥 ∈ 𝐸 and 𝑓(𝑥) ∈ 𝑓(𝑥) − 𝑅𝑛

+
, for all 𝑥 ∈ 𝐸; that is,

𝑓
𝑖
(𝑥) ≤ 𝑓

𝑖
(𝑥), and 𝑥 ∈ 𝐸, and 𝑖 = 1, 2, . . . , 𝑛. The set of all

strong minimal solutions to (MP) is denoted by min
𝑅
𝑛

+

𝑓(𝐸).

Remark 7. (1) From [14], it is easy to verify that (i) of
Definition 6 is equivalent and refers to the following concept:
a point 𝑥 ∈ 𝐸 is said to be a lexicographic minimal solution
to (MP) if 𝑥 ∈ 𝐸 and {𝑓(𝑥) − 𝐶lex \ {0}} ∩ 𝑓(𝐸) = 0.

(2) If 𝑥 ∈ 𝐸 is a strong solution to (MP), then 𝑥 is
a lexicographic solution to (MP). However, the converse
generally is not valid.
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3. Duality Results

The following result shows that, with respect to lexicographic
order, the objective value of any feasible point to the dual
problem (DMP) is less than or equal to the objective value
of any feasible point to the primal problem (MP).

Theorem 8 (weak duality theorem). Consider the primal
problem (MP) given by (3) and its Lagrangian dual problem
(DMP) given by (7). Let 𝑥 be a feasible point of (MP); that
is, 𝑥 ∈ 𝑋 and 𝑔(𝑥) ∈ −𝑅

𝑚

+
. Also, let Λ be a feasible point of

(𝐷𝑀𝑃); that is, Λ ∈ L+(𝑅𝑚, 𝑅𝑛). Then

𝑓 (𝑥) ≥𝑙𝑒𝑥 𝜙 (Λ) . (8)

Proof. Since 𝑥 ∈ 𝑋, 𝑔(𝑥) ∈ −𝑅
𝑚

+
, and Λ ∈ L+(𝑅𝑚, 𝑅𝑛), we

obtain that Λ𝑔(𝑥) ∈ −𝑅
𝑛

+
⊂ −𝐶lex; that is, Λ𝑔(𝑥) ≤lex 0𝑛.

Then, it follows from the definition of 𝜙(Λ) that

𝜙 (Λ)= min
lex

{𝑓 (𝑥) + Λ𝑔 (𝑥) : 𝑥 ∈ 𝑋}

≤lex 𝑓 (𝑥) + Λ𝑔 (𝑥) ≤lex 𝑓 (𝑥) ,

(9)

and the proof is complete.

As a corollary of the previous theorem, we have the
following result.

Corollary 9. Assume thatmax
𝑙𝑒𝑥
{𝜙(Λ) : Λ ∈ 𝐿

+
(𝑅
𝑛
, 𝑅
𝑚
) ̸= 0.

Then,

min
𝑙𝑒𝑥

{𝑓 (𝑥) : 𝑔 (𝑥) ∈ −𝑅
𝑚

+
, 𝑥 ∈ 𝑋}

≥
𝑙𝑒𝑥

max
𝑙𝑒𝑥

{𝜙 (Λ) : Λ ∈ 𝐿
+
(𝑅
𝑛
, 𝑅
𝑚
)} .

(10)

Before stating the Lagrangian multiplier rule to (MP) in
lexicographic sense, we need the following result.

Lemma 10. Assume that ⋂𝑛
𝑖=1

𝐸
𝑖
̸= 0. A point 𝑥 ∈ 𝐸 is a

lexicographic solution for (MP) if and only if 𝑥 ∈ 𝐸 is a strong
solution for (MP).

Proof. If 𝑥 is a lexicographic solution for (MP), then 𝑓(𝑥) ∈
minlex𝑓(𝐸). Assume that ⋂𝑛

𝑖=1
𝐸
𝑖
̸= 0. Then each 𝑥 ∈ ⋂

𝑛

𝑖=1
𝐸
𝑖

is a strong solution for (MP), which implies that 𝑓(𝑥) ∈

minlex𝑓(𝐸). Since ∈ minlex𝑓(𝐸) is singleton, we have 𝑓(𝑥) =
𝑓(𝑥). That is, 𝑥 is a strong solution for (MP).

Conversely, suppose that 𝑥 is a lexicographic solution
for (MP). Since ⋂𝑛

𝑖=1
𝐸
𝑖
̸= 0, there exists 𝑥 ∈ 𝐸 which is a

strong solution for (MP). By induction, we can show that
𝑓(𝑥) = 𝑓(𝑥) which means that 𝑥 is a strong solution for
(MP). Let 𝐷

𝑘
= {𝑥 ∈ 𝐷

𝑘−1
: 𝑓
𝑘
(𝑥) ≤ 𝑓

𝑘
(𝑦), ∀𝑦 ∈ 𝐷

𝑘−1
} for

𝑘 = 1, 2, . . . , 𝑛 and𝐷
0
= 𝐸. Obviously,𝐷

𝑛
⊂ 𝐷
𝑛−1

⊂ ⋅ ⋅ ⋅ ⊂ 𝐷
0
.

Noting that 𝑥 is a lexicographic solution for (MP), we have
𝑥 ∈ 𝐷

𝑛
. Then, 𝑥 ∈ 𝐷

1
; that is,

𝑓
1 (𝑥) ≥ 𝑓

1 (𝑥) , ∀𝑥 ∈ 𝐷
0
. (11)

Taking 𝑥 = 𝑥 in the above inequality, we get

𝑓
1 (𝑥) ≥ 𝑓

1 (𝑥) . (12)

On the other hand, 𝑓
1
(𝑥) ≥ 𝑓

1
(𝑥) since 𝑥 ∈ 𝐷

0
is a strong

solution and 𝑥 ∈ 𝑋
𝑛
⊂ 𝐷
0
. Therefore, 𝑓

1
(𝑥) = 𝑓

1
(𝑥) and

𝑥 ∈ 𝐷
1
. Suppose that 𝑓

𝑖
(𝑥) = 𝑓

𝑖
(𝑥) for 𝑖 = 1, 2, . . . , 𝑛 − 1.

Obviously, 𝑥 ∈ 𝐷
𝑛−1

. Similarly, we can verify that 𝑓
𝑛
(𝑥) =

𝑓
𝑛
(𝑥) and 𝑥 ∈ 𝐷

𝑛
. The proof is complete.

Theorem 11 (Lagrangian multiplier rule). Suppose that the
following conditions are satisfied:

(i) 𝑋 is a nonempty convex subset of 𝑅ℓ;
(ii) 𝑓 : 𝑋 → 𝑅

𝑛 is a 𝑅𝑛
+
-convex vector function; that is,

𝑓
𝑖
: 𝑋 → 𝑅, 𝑖 = 1, 2, . . . , 𝑛, are convex functions;

(iii) 𝑔 : 𝑋 → 𝑅
𝑚 is a 𝑅𝑚

+
-convex vector function; that is,

𝑔
𝑗
: 𝑋 → 𝑅, 𝑗 = 1, 2, . . . , 𝑚, are convex functions;

(iv) the Slater constraint qualification is satisfied; that is,
there exists 𝑥

0
∈ 𝑋 such that 𝑔(𝑥

0
) ∈ − int 𝑅𝑚

+
, where

int 𝑅𝑚
+
is the topology interior of 𝑅𝑚

+
;

(v) ⋂𝑛
𝑖=1

𝐸
𝑖
̸= 0.

If 𝑥 is a lexicographic solution to (MP), then there exists Λ ∈

L+(𝑅𝑚, 𝑅𝑛) such that

𝑓 (𝑥) = min
𝑙𝑒𝑥

{𝑓 (𝑥) + Λ𝑔 (𝑥) : 𝑥 ∈ 𝐸} ,

Λ𝑔 (𝑥) = 0
𝑛
.

(13)

Proof. Let 𝑥 be a lexicographic solution of the problem (MP).
By Lemma 10, 𝑥 is a strong solution for (MP). Then, for any
𝑥 ∈ 𝐸 := {𝑥 ∈ 𝑋 : 𝑔(𝑥) ∈ −𝑅

𝑚

+
},

𝑓
1 (𝑥) ≥ 𝑓

1 (𝑥) ,

𝑓
2 (𝑥) ≥ 𝑓

2 (𝑥) ,

...

𝑓
𝑛 (𝑥) ≥ 𝑓

𝑛 (𝑥) .

(14)

Then, the inequality system 𝑓
1
(𝑥) < 𝑓

1
(𝑥), 𝑔(𝑥) ∈ −𝑅

𝑚

+

for some 𝑥 ∈ 𝑋 has no solution. Define the following set:

𝑆
1
:= {(𝑝, 𝑞) ∈ 𝑅 × 𝑅

𝑚
: 𝑓
1 (𝑥) − 𝑓1 (𝑥)

< 𝑝, 𝑔 (𝑥) ∈ 𝑞 − 𝑅
𝑚

+
, for some 𝑥 ∈ 𝑋} .

(15)

The set 𝑆
1
is convex subset since𝑋,𝑓

1
, and𝑔 are convex. Since

the above inequality systemhas no solution, we have (0, 0
𝑚
) ∉

𝑆
1
. By the standard separation theorem, there exists a nonzero

vector (𝜇
1
, �̂�
1
) such that

𝜇
1
(𝑓
1 (𝑥) − 𝑓1 (𝑥)) + �̂�

𝑇

1
𝑔 (𝑥) ≥ 0, ∀𝑥 ∈ 𝑋. (16)

That is,

𝜇
1
𝑓
1 (𝑥) + �̂�

𝑇

1
𝑔 (𝑥) ≥ 𝜇

1
𝑓
1 (𝑥) , ∀𝑥 ∈ 𝑋. (17)

Now, fix an 𝑥 ∈ 𝑋. From the definition of 𝑆
1
, we have that

𝑝 and 𝑞 can be arbitrarily large. In order to satisfy (17), we
must have (𝜇

1
, �̂�
1
) ∈ 𝑅
+
× 𝑅
𝑚

+
. We will next show that 𝜇

1
> 0.
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On the contrary, suppose that 𝜇
1
= 0. By the Slater constraint

qualification, there exists 𝑥
0
∈ 𝑋 such that 𝑔(𝑥

0
) ∈ − int 𝑅𝑚

+
.

Then, letting 𝑥 = 𝑥
0
in (17), we have �̂�

1
𝑔(𝑥
0
) ≥ 0. But, since

𝑔(𝑥
0
) ∈ − int 𝑅𝑚

+
and �̂�

1
∈ 𝑅
𝑚

+
, �̂�
1
𝑔(𝑥
0
) ≥ 0 is only possible

if �̂�
1
= 0
𝑚
. Thus, it has been shown that (𝜇

1
, �̂�
1
) = (0, 0

𝑚
),

which is a contradiction.
After dividing (17) by 𝜇

1
and denoting 𝜆

1
= �̂�
1
/𝜇
1
, we

obtain

𝑓
1 (𝑥) + 𝜆

𝑇

1
𝑔 (𝑥) ≥ 𝑓

1 (𝑥) , ∀𝑥 ∈ 𝑋. (18)

From (18), letting𝑥 = 𝑥, we get𝜆
𝑇

1
𝑔(𝑥) ≥ 0. Since𝑔(𝑥) ∈ −𝑅𝑚

+

and 𝜆
1
∈ 𝑅
𝑚

+
, we obtain 𝜆

𝑇

1
𝑔(𝑥) = 0.

Similarly, we can show that there exist 𝜆
2
, 𝜆
3
, . . . , 𝜆

𝑛
∈ 𝑅
𝑚

+

such that, for any 𝑥 ∈ 𝑋,

𝑓
2 (𝑥) + 𝜆

𝑇

2
𝑔 (𝑥) ≥ 𝑓

2 (𝑥) , 𝜆
𝑇

2
𝑔 (𝑥) = 0,

𝑓
3 (𝑥) + 𝜆

𝑇

3
𝑔 (𝑥) ≥ 𝑓

3 (𝑥) , 𝜆
𝑇

3
𝑔 (𝑥) = 0,

...

𝑓
𝑛 (𝑥) + 𝜆

𝑇

𝑛
𝑔 (𝑥) ≥ 𝑓

𝑛 (𝑥) , 𝜆
𝑇

𝑛
𝑔 (𝑥) = 0.

(19)

Set Λ = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
)
𝑇. Then, it follows from 𝑅

𝑛

+
⊂ 𝐶lex,

(18), and (19) that

𝑓 (𝑥) + Λ𝑔 (𝑥) ∈ 𝑓 (𝑥) + 𝑅
𝑛

+
∈ 𝑓 (𝑥) + 𝐶lex, ∀𝑥 ∈ 𝑋,

Λ𝑔 (𝑥) = 0
𝑛
.

(20)

Namely,

𝑓 (𝑥) + Λ𝑔 (𝑥) ≥lex 𝑓 (𝑥) , ∀𝑥 ∈ 𝑋, (21)

Λ𝑔 (𝑥) = 0
𝑛
. (22)

Thus, (21) and weak duality theorem (Theorem 8)
together yield that

𝑓 (𝑥) = min
lex

{𝑓 (𝑥) + Λ𝑔 (𝑥) : 𝑥 ∈ 𝐸} . (23)

And the proof is complete.

Now, we give an example to illustrate that Theorem 11 is
applicable.

Example 12. Let 𝑋 = [−2, 2] ⊂ 𝑅; 𝑔 : 𝑋 → 𝑅 is defined by
𝑔(𝑥) = 𝑥

2
− 1 and 𝑓 = (𝑓

1
, 𝑓
2
)
𝑇
: 𝑋 → 𝑅

2 is defined by

𝑓
1 (𝑥) =

{{

{{

{

−2𝑥 + 1, if − 2 ≤ 𝑥 < −1,

3, if − 1 ≤ 𝑥 ≤ 1,

2𝑥 + 1, if 1 < 𝑥 ≤ 2,

𝑓
2 (𝑥) = (𝑥 − 2)

2
+ 1.

(24)

Consider the following convex multiobjective program-
ming problem: minlex {𝑓(𝑥) : 𝑔(𝑥) ≤ 0, 𝑥 ∈ 𝑋}. Direct
computation shows that 𝐸 = {𝑥 ∈ 𝑥 : 𝑔(𝑥) ≤ 0} =

[−1, 1], 𝐸
1
= [−1, 1], and 𝐸

2
= {1}. Obviously, 𝑥 = 1 ∈

𝐸
1
∩ 𝐸
2
is a lexicographic solution of the multiobjective

programming problem. Therefore, Theorem 11 is applicable.
Indeed, by directly computing, there exists Λ = (0, 1)

𝑇 such
that

minlex {𝑓 (𝑥) + Λ𝑔 (𝑥) : 𝑥 ∈ 𝑋} = 𝑓 (𝑥) = (3, −1)
𝑇
,

Λ𝑔 (𝑥) = 0
2
.

(25)

From Theorem 11, we get a sufficient condition for the
existence of Lagrangianmultiplier rule for the problem (MP).
But this is not a necessary condition, as the following example
shows.

Example 13. Let 𝑋 ⊂ 𝑅, and 𝑔(𝑥) is given as in Example 12.
Let 𝑓 = (𝑓

1
, 𝑓
2
) : 𝑋 → 𝑅

2 be defined by

𝑓
1 (𝑥) = (𝑥 − 2)

2
+ 1,

𝑓
2 (𝑥) = 𝑥.

(26)

Clearly, the following problem:

min
lex

{𝑓 (𝑥) : 𝑔 (𝑥) ≤ 0, 𝑥 ∈ 𝑋} , (27)

is a convex multiobjective programming. It follows from
direct computation that 𝐸 = [−1, 1]𝐸

1
= {1}, and 𝐸

2
= {−1},

and 𝑥 = 1 is a unique lexicographic solution for (MP). Thus,
the assumption (v) of Theorem 11 is not satisfied. However,
we can verify that there exists Λ = (1, 0)

𝑇 such that, for any
𝑥 ∈ 𝐸,

min
lex

{𝑓 (𝑥) + Λ𝑔 (𝑥) : 𝑥 ∈ 𝑋} = 𝑓 (𝑥) = (2, 1)
𝑇
,

Λ𝑔 (𝑥) = 0
2
.

(28)

In order to obtain another sufficient condition for the
existence of Lagrangian multiplier rule, we consider the
following assumptions.

Theorem 14 (Lagrangian multiplier rule). Assume that all
conditions of Theorem 11 are satisfied except for the hypothesis
(v) ofTheorem 11 which is replaced by the following hypothesis:

(v


) 𝑓
1
: 𝑋 → 𝑅 is a strict convex function; that is, for

any 𝑥
1
, 𝑥
2
∈ 𝑋 with 𝑥

1
̸= 𝑥
2
and 𝜃 ∈ (0, 1), 𝑓

1
(𝜃𝑥
1
+

(1 − 𝜃)𝑥
2
) < 𝜃𝑓

1
(𝑥
1
) + (1 − 𝜃)𝑓

1
(𝑥
2
).

If 𝑥 is a lexicographic solution to (MP), then there exists
Λ ∈ 𝐿

+
(𝑅
𝑚
, 𝑅
𝑛
) such that

𝑓 (𝑥) = min
𝑙𝑒𝑥

{𝑓 (𝑥) + Λ𝑔 (𝑥) : 𝑥 ∈ 𝐸} ,

Λ𝑔 (𝑥) = 0
𝑛
.

(29)
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Proof. Since 𝑋 is convex and 𝑔(𝑥) is 𝑅𝑚
+
-convex, the set 𝐸 =

{𝑥 ∈ 𝑋 : 𝑔(𝑥) ∈ −𝑅
𝑚

+
} is convex. Noting that 𝑓

1
(𝑥) is strict

convex, we obtain 𝐸
1
= {𝑥 ∈ 𝐸 : 𝑓

1
(𝑥) = min𝑓

1
(𝐸)} is

singleton. Obviously, 𝑥 ∈ 𝐸
1
= {𝑥} is a lexicographic solution

to (MP). Following the same arguments as in Theorem 11,
there exists 𝜆 ∈ 𝑅

𝑚

+
such that 𝑓

1
(𝑥) = min{𝑓

1
(𝑥) + 𝜆

𝑇

𝑔(𝑥) :

𝑥 ∈ 𝑋}, 𝜆
𝑇

𝑔(𝑥) = 0. Since 𝑔(𝑥) is 𝑅𝑚
+
-convex and 𝜆 ∈

𝑅
𝑚

+
, we obtain that 𝜆

𝑇

𝑔(𝑥) is a convex function (𝑅+-convex
function). By hypothesis (v),𝑓

1
(𝑥)+𝜆

𝑇

𝑔(𝑥) is a strict convex
function. Thus, the solution to min{𝑓

1
(𝑥) + 𝜆

𝑇

𝑔(𝑥) : 𝑥 ∈ 𝑋}

is also singleton. Let 𝜆
1
= 𝜆, 𝜆

2
= ⋅ ⋅ ⋅ = 𝜆

𝑛
= 0
𝑚

in
Theorem 11. Therefore, 𝑥 is also a lexicographic solution to
minlex{𝑓(𝑥) + Λ

𝑇

𝑔(𝑥) : 𝑥 ∈ 𝑋} and Λ𝑔(𝑥) = 0
𝑛
. It completes

the proof.

Remark 15. The hypothesis (v) in Theorem 14 is redundant
if 𝑓 is a real-valued function. Under this case, the hypothesis
(v) in Theorem 11 always holds.

From Theorems 8 and 11, we have the following strong
duality theorem. The following result shows that, under
suitable assumptions, there is no duality gap between the
primal and dual lexicographic optimal objective function
values.

Theorem 16 (strong duality theorem). Assume that
max
𝑙𝑒𝑥
{𝜙(Λ) : Λ ∈ 𝐿

+
(𝑅
𝑛
, 𝑅
𝑚
) ̸= 0. If all conditions of

Theorem 11 or Theorem 14 are satisfied, then

min
𝑙𝑒𝑥

{𝑓 (𝑥) : 𝑔 (𝑥) ∈ −𝑅
𝑚

+
, 𝑥 ∈ 𝑋}

= max
𝑙𝑒𝑥

{𝜙 (Λ) : Λ ∈ 𝐿
+
(𝑅
𝑛
, 𝑅
𝑚
)} .

(30)

And there exists Λ such that Λ𝑔(𝑥) = 0
𝑛
, where 𝑥 ∈ {𝑥 ∈ 𝑋 :

𝑓(𝑥) = min
𝑙𝑒𝑥
𝑓(𝐸)}.

The following example is to illustrate that there is no
duality gap if all conditions of Theorem 16 are satisfied.

Example 17. Let 𝑋 ⊂ 𝑅, 𝑔(𝑥) is given as in Example 12. Let
𝑓(𝑥) be defined by

𝑓
1 (𝑥) = (𝑥 − 2)

2
+ 1,

𝑓
2 (𝑥) = −𝑥.

(31)

Direct computation shows that

min
lex

{𝑓 (𝑥) : 𝑔 (𝑥) ∈ −𝑅
𝑚

+
, 𝑥 ∈ 𝑋}

= max
lex

{𝜙 (Λ) : Λ ∈ 𝐿
+
(𝑅
𝑛
, 𝑅
𝑚
)}

= (2, −1)
𝑇

= 𝑓 (1) .

(32)

And there exists Λ = (1, 1/2)
𝑇 or (1, 0)𝑇 such that Λ𝑔(1) =

0
2
.

4. Lexicographic Saddle Point

Now, we introduce the notion of lexicographic saddle point
for the vector-valued Lagrangian map 𝐿(⋅, ⋅) in terms of
lexicographic order and give some optimality conditions.

Definition 18. A pair (𝑥, Λ) ∈ 𝐸 × L(𝑅
𝑛
, 𝑅
𝑚
) is said to be a

lexicographic saddle point for the vector-valued Lagrangian
function 𝐿(𝑥, Λ) if, for all 𝑥 ∈ 𝐸 and Λ ∈ L+(𝑅𝑚, 𝑅𝑛),

𝐿 (𝑥, Λ) ≤lex 𝐿 (𝑥, Λ) ≤lex 𝐿 (𝑥, Λ) . (33)

ByTheorem 11 orTheorem 14, we directly have the follow-
ing result.

Theorem 19. Suppose that all conditions of Theorem 11 or
Theorem 14 are satisfied. If 𝑥 is a lexicographic solution to
(MP), then there exists Λ ∈ L+(𝑅𝑚, 𝑅𝑛) such that (𝑥, Λ) is
a lexicographic saddle point of the vector Lagrangian function
𝐿(𝑥, Λ).

Thus, we have verified the existence of a lexicographic
saddle point for the vector-valued Lagrangian function
𝐿(𝑥, Λ) under the appropriate conditions. We conclude this
result by showing that the saddle point condition is sufficient
for optimality for problem (MP).

Theorem 20. If (𝑥, Λ) ∈ 𝐸 × L(𝑅
𝑚
, 𝑅
𝑛
) is a lexico-

graphic saddle point for the vector-valued Lagrangian function
𝐿(𝑥, Λ), then 𝑥 is a lexicographic solution for (MP), and
Λ𝑔(𝑥) = 0

𝑛
.

Proof. Assume that (𝑥, Λ) is a lexicographic saddle point of
𝐿(𝑥, Λ). Then, from the first inequality of (33), we get

𝑓 (𝑥) + Λ𝑔 (𝑥) ≥lex𝑓 (𝑥) + Λ𝑔 (𝑥) , ∀Λ ∈ L
+
(𝑅
𝑚
, 𝑅
𝑛
) .

(34)

This implies that

Λ𝑔 (𝑥) ≥lexΛ𝑔 (𝑥) , ∀Λ ∈ L
+
(𝑅
𝑚
, 𝑅
𝑛
) . (35)

We claim that 𝑔(𝑥) ∈ −𝑅
𝑚

+
. Otherwise, we suppose that

𝑔(𝑥) ∉ −𝑅
𝑚

+
. Since Λ ∈ L+(𝑅𝑚, 𝑅𝑛) can be taken arbitrarily

to be large, Λ𝑔(𝑥) can be large enough, which contradicts
(35).

Therefore, we also get

Λ𝑔 (𝑥) ∈ −𝑅
𝑛

+
⊂ −𝐶lex (36)

since 𝑔(𝑥) ∈ −𝑅𝑚
+
and Λ ∈ L+(𝑅𝑚, 𝑅𝑛). This implies that

Λ𝑔 (𝑥) ≤lex 0𝑛. (37)

On the other hand, by taking Λ = 0 in (35), we can get

Λ𝑔 (𝑥) ≥lex 0𝑛. (38)

Noting the reflexivity of the lexicographic order ≤lex, (37) and
(38) together yields

Λ𝑔 (𝑥) = 0
𝑛
. (39)
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Since 𝑔(𝑥) ∈ −𝑅
𝑚

+
, 𝑥 is a feasible point of (MP). Let 𝑥

be any feasible point of (MP); that is, 𝑔(𝑥) ∈ −𝑅
𝑚

+
. Then, it

follows from the second inequality of (33) and (39) that

𝑓 (𝑥) = 𝑓 (𝑥) + Λ𝑔 (𝑥)

≤lex 𝑓 (𝑥) + Λ𝑔 (𝑥) ≤lex 𝑓 (𝑥) ,
(40)

which implies that 𝑥 is a lexicographic solution to (MP).
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