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The authors consider the generalized commutator of fractional Hardy operator with a rough kernel as follows: 77, , s f(x) =
1/(|x|"7/3)_|"y|<|x‘(Q(x - /lx - ylmfl)Rm(A; x, ¥) f(y)dy, where Q ¢ L'(S"), 0 < B < mn and R, (4A;x,y) = A(x) —
Ziyem(L/YDDYA(y)(x — »)" with m € Z". The authors prove that 5 is bounded on Herz type space and A-Central Morrey

space with m > 1, which is an open problem for m > 2.

1. Introduction

It is well known that the C-Z singular integrals and their com-
mutators have been studied a lot by many mathematicians;
please see [1] or [2] for more details. For the generalizations
of the commutators of singular integrals, Cohen [3] studied
the following generalized commutator T which is defined by

ij(x)=j Q(x—_l,ﬁ?(A(x)—A(y)
-y

n

~VA(y)(x-y)) f(y)dy,
¢))

where QO € L'(S"!) is homogeneous of degree zero and
satisfies the moment condition

J Q(x)x'do(x) =0 (2)
Srl*l

with |y| = 1. Cohen [3] proved that if Q € Lip,(S*") and
VA € BMO, then Ti is bounded on LP(R") with 1 < p <
00. Later, Cohen and Gosselin [4] considered another type of
generalized commutator as follows:

0= [ ORS00

n

X —

where R,,(A;x,y)(m € Z%) is defined by R,,(A;x,y) =
A(x) - Z|y|<m(1/y!)D”A(y)(x - )Y, the mth remainder of
Taylor series of the function A at y about x, and Q satisfies
the following moment condition:

J Q(x)x'do (x) = 0, (4)
Sn—l

with |[y| = m — 1. Obviously, if we choose m = 1, T}
becomes [A, T], the commutator of T' generalized by A and
T. Furthermore, T’ becomes T% if we choose m = 2.

Cohen and Gosselin proved thatifm > 2,Q € Lip,(S"™),
and the function A has derivatives of order m—1in BMO(R"),
then the operator T}' is bounded on L¥(R") for 1 < p < oo.
Later, T',' was studied by many mathematicians; please see
[5, 6] or [7] for more details. Recently, Wang and Zhang
[8] gave a new proof of Wu’s theorem in [9] by using the
WP estimate for the elliptic equation of divergence form
with partially BMO coefficients and the L boundedness of
the Cohen-Gosselin type generalized commutators proved
by Yan in [6]. Furthermore, the method used in [8] is much
simpler than that in [9]. Recently, Yu and Tao [7] proved that
T’ is bounded on A-Central Morrey space.



Let f be a nonnegative integral on R*: then the Hardy
operator is defined by

HF (x) = i L F@dt, x40, 5)

In 1920, Hardy [10] proved the following inequality:

P
1Ef Ny < F”f"m([&*)’ (6)

where 1 < p < oo and the constant p/(p — 1) is the best
possible.

In 2007, Fu et al. [11] introduced the n-dimensional
fractional type Hardy operator 7z as follows:

1 :
ol 0= g |, S@d x<®RN©L )

where —n < 8 < nand f is a locally integrable function on
R".

Obviously, when 8 = 0, #, is just the n-dimensional
Hardy operator # which was proposed by Christ and
Grafakos in [12].

In [11], the authors gave the characterization of the
CBMO?(R") by the boundedness of the commutator of the
fractional type Hardy operator [# g, b] on Herz type spaces.

Here the CBMOY(R") space is defined by the following.

Definition 1 (see [13]). Let 1 < q < oo. A function f €
L1 (R")is said to belong to the homogeneous Central BMO

loc

space CBMO?(R") if

”b"CBMOq(IR”)

1 qd 1/q (8)
. S“P< B0, r)| L«),) 1) = fal ") <o

r>0

where fg = (1/IB(0,7)]) [, ) f(x)dx.

From [14], we know that BMO(R") ¢ CBMO%(R") for
1<g<oo.

The CBMO?(R") space can be regarded as the space of
bounded mean oscillation, a local version of BMO(R") at the
origin. But the famous John-Nirenberg inequality no longer
holds in CBMO%(R").

Now we are interested in the following generalized com-
mutator of Hardy operator:

1 1
" - - R, (A;x, v)dy,
" f (%) P JWM |x—y|m_1f(y) m (Asx, y)dy
9

where R,,,(A; x, y) = A(x) = X, ., (1/Y) DY A(y)(x — y)" and
meZ".

In 2010, Lu and Zhao [15] proved that when m = 2, % 124 is
bounded on Herz type space and Morrey-Herz type space.
Later, Gao and Yu [16] proved that %i is bounded on A-
Central Morrey spaces. However, we would like to point out
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that the method used in [15, 16] cannot apply to the case when
m > 2. An interesting question is whether the boundedness of
', on Herz type space or A-Central Morrey space still holds
with m > 2. In this paper, we will use a different method
to answer this question. Furthermore, we will consider the
generalized commutator of fractional Hardy operator with a
rough kernel as follows:

s g,A,ﬁf (x)

1 Q (x - y) (10)
- = | SR DR (i) d,
| x| lyl<lxl |x — |

wherem € Z*,0 < f<n,and Q € L'(S").

In [17], we prove that 7} Ap 1S bounded from L? to L7
with 1/p — 1/q = [8/n. Furthermore, we study the endpoint
estimates of %g,A,ﬁ on H! spaces with Q € Lip, (S" Y in [17].
In this paper, we will prove that 77} Ap 1S bounded on Herz
type space and A-Central Morrey space when Q € L'(S"™).

2. Boundedness of 7, , 5 on Herz Type Spaces

In this section, we will give the boundedness of 7' Ap oD

Herz type spaces. First we introduce some notations that will
be used throughout this paper.

Let B, = {x € R" : x| <2*},C; = B\ B;_,and y; = Xc,
for k € Z: here x, is the characteristic function of the set Cy.

Definition 2 (see [18]). Leta € R,0 < p,q < oo. Then the
homogeneous Herz type space K;"P (R™) is defined by

K (R") = {f € L, (R \{0}) « | flgeoy < 00}, (1)

where || f] RSP (Rr) is defined as

s = { § z"“P||ka||;(w)} )
k=—c0

with the usual modifications made when p = co or g = oo.
Now we show our main results in this section.

Theorem 3. Suppose m > 2, Q) € L'(S" ") with1 < r < oo,
and A has derivatives of order m — 1 in CBMOP? with n <
p, <0o.Let0 <s<p<oo,l<qgp <00,1/qg=1/p, +
1/p, - BInwith0 < B <n If 1/r' =1/q - B/n > 0,r > pl,

«, = oy + n/p, and o, satisfies the following condition:
&, +n/q-nlr' =1/r—n/p, + f <0, (13)

then there exists a constant C, such that

H%g,A,ﬁf“K;"l’s <C Z ”DYA“CBMOPZ ”fllkgf"" (14)
lyl=m-1

Form = 1, % }2 ap is just the commutator of Hardy

operator; that is, '%;),A,ﬁ = %’é)ﬁf(x) = A(x)%g,ﬁf(x) -

H Q,ﬁ(Af )(x). We have the following theorem of %g)ﬁ on
Herz type space.



Abstract and Applied Analysis

Theorem 4. Suppose QO € L'(S*") with1 < r < co and
A€ CBMO™. Let0 < s < p < 00,1 < g, py, py < 00,1/ =

1/p,+1/p,—B/nwith0 < B < n.If1/r'=1/g-B/n > 0,r > p},
®, = oy +1/ p,, and e, satisfies (13), then there exists a constant
C, such that

|76 e < ClANcgpicre 1 sz (15)

Remark 5. Comparing Theorems 3 and 4, we find that the
restrictions on «; and «, are more rigid in Theorem 4 than
in Theorem 3, which indicates that Z7 , s with m > 2 has
better properties than the commutators.

In order to prove Theorems 3 and 4, we need the following
lemmas.

Lemma 6 (see [19]). Let 1 < p;,p, < 00,0 < 8 < n, and
B/n=1/p, —1/p,. IfQ € L'(S*") with r > p, then there
exists a constant C independent of f, such that

1% apfl,0 < CUf o> (16)

where I , g is defined by

1

x = — Q(x - dy.
0t W= [ 0k Od

By checking [19] carefully, one can draw the conclusion that if
one replaces %’Q)ﬁf(x) by %|Q|)ﬁ|f|(x), then (16) still holds.

Lemma7. Letm > 1,1 < p; < p, <ocoand0 < f<nIfA
has derivatives of order m — 1 in L'(R") with 1/p, = 1/p; +
1/r - B/nandr > p;, then one has

|76l <€ X P74

lyl=m-1

Sl (18)

)5

where the constant C is independent of f and A.

Proof. From [20, p. 241], we have the following estimates:

R, (Axy) R, (4xy)
|x _ y|m71 < |x1_ y|mfl +C Z |DYA (y)l

|y[=m-1

<C Y ((D'4) ) +(D'A) (1),

[y|=m-1

(19)

where m > 1 and (f)" is the Hardy-Littlewood maximal
function of f.

Thus we obtain

|%S,A,ﬁf (x)|

1 j Q@x-y) )
" diyic |-y

R, (Asx,y)dy

1
sCo | L rOlet-)

x Y ((D'A)" (x) +(D'A)" (y))dy

[y|=m-1

<C Y [(D'A)" (x) # 5| f] ()

|y[=m-1

(20)

+ 1015 (DVA)" | f]) ()] -

By the above estimates, we can get

1/q

<JRn |%g,A,ﬁf (x)'qu>

<C )

[yl=m-1

((JW '(DVA)* (x) %ml,ﬁ lfl (x)|qu>1/q

+<jw [Z104 (P"4)" 1) <x>|q)1/q)

<C Y (I+1I).
|y|:m—1
(21)

Fortheterm I,let1/q =1/r+1/l =1/r+1/p— f3/n; then
by the Holder inequality, Lemma 6, and the boundedness of
Hardy-Littlewood maximal function on L spaces, we obtain

1< (] (DVA)*(x)rdx)l/r(jRn sl )

Jig f"Lp
e

< C|(D"A)

<C|D"A

I
(22)

For the term I, let 1/q = 1/t — B/n = 1/r + 1/p — B/n;

then by the Hélder inequality and Lemma 6, we have

II < C<JW |(DVA)* (x)f(x)rdx)l/t

< c|(oray *)

s

< C|DA| N f -

r

Combining the estimates of I and II, we finish the proof of
Lemma 7. O



Lemma 8 (see [4]). Let b be a function on R" with mth order
derivatives in L1 (R") for some q > n. Then

|Rm (b’ X, y)' < Cm,nlx - y|m

| 1/q9
_ ’b 14 ,
" Z(|€z‘(x,y>| Ja @ )

[yl=m
(24)

where Q(x, y) is the cube centered at x having diameter

5+/nlx - yl.

Lemma 9 (see [5]). Suppose that f € CBMOI(R"), 1 < g <
00, and ry,t, > 0; then
1/q
qu)

( |B (01, )| JB(o,m 76~ For
g ()] 17t

Proof of Theorem 3. To prove Theorem 3, first we split each f
as

(25)
< C(l +

fO=Y f@Oxm= 3 fix; (26)

then we have

v

_ J (J FONRG=DN, 4y dy>q
Cr \ B(0,|x])

m—1
x =y

X |x|(ﬁ_")qu

S Lk< ioo L,. 0(x-y) f )]

q
TR, (Asx, y) dy)
|x ~ y|

X |x|(ﬁ_")qu

cof (31 B )

i=—00 i |

X |x|("3_")qu

e Lk (i—;z Jci |Q(x_—y|)"£1(y)|Rm (4;x, ) d)’)

x-y
x |x| P9
=C(I,+1L).
(27)
For the term I;, we denote A;(x) = A(x) -

Z|y|:m—1(1/Y!)m3k(DyA)xy§ then it is easy to check
R, (A;x,y) = R, (Arx,y). By the fact that x e Ci,
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y € C; withi < k — 3, we have |x — y| ~ |x| ~ 2. As p, > n,
then by Lemmas 8 and 9, we obtain

lRm (Ak; X5 y)'

1 m—
<Ry (A y)[ + Y DA )] [x - y™
|y=m-1""

<Clx—y["" Y {<;

Q(x.7)|

1/p,
X L |DYA, (2)|P*dz
Qlx,y)

DAL ()] }

<Cle=y"" Y (1D Alson: + D" Ak (D))
[yl=m-1

(28)

Aslx—y| ~|x| ~25and1-1/p, - 1/p, ~1/r = 1/r' —=1/q -
B/n > 0, then by the Holder inequality, we have

i=—00 *“i

I, sch< kf L |2 (x=») f (7)]

X Z (ID" A cgpor + DT A (J’)Dd)’)

[y[=m-1

x x| x
k-3

s (3] olae-y

i

i=—

x Y (ID"Allcsyion
[y|=m-1

q
+|DyAk(y)|)dy> dx
k(n-B) S
< Coko- qj
)

. i—-ooqci |f (y)|1’1dy>‘”f’1
X (JC,- |Q(x - y)lrdy>

alp,
’ < Z Jc (“DyA"cBMoPZ + |DVAk (J’)l)mdy>

|y|=m-1 "

/r

% |Ci|‘7(1’1/P1*1/P2*1/r)dx.
(29)
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As

1/p,
(J, 12" Alcsnon 1074, ()" a )

< (L ("DYA”CBMOPZ

i

1/p>
D74, (3) =y, (D7 4) )]ty
(30)
= C“DyA“cBl\/[oP2 |Ci| Ik~

Li |0 (x - y)['dy

< JIxHZ J 'Q (y:)rdo_ (y/) Pl dr < CoFRH
Sn—l

|x|—2¢
we obtain the following estimates:

L<C Y DAL, omlk - il727

|y[=m-1

% Zin(l—l/p1 -1/p, =1/r)q

x 2((k(ﬂ—1)+i)/r)q+(in/Pz) q

k-3
<Jo 2 Uk

Py (31)

k-3
<C Z < |k _ ll 2m(l—l/pl =1/p,=1/r)

1=—00

% 2—kn+k/3+(k(n—I)Jri)/rJrin/p2 +kn/q

q
Nl X "DVA”CEMOFZ>'

|yl=m-1

For the term I,, we choose ¢ € C;°(R") satisfying
supp¢ C B(0,4) as well as ¢ = 1 in B(0,2) and we set
L = max{|D"$|;w,lyl < m — 1}. Let y, € By, and

Ai(x) =R, (A x, y0)¢(2_kx). Then it is easy to see that

R,(A;x,y) = Rm(At;x,y) = R, (A;;x, y) for x € B, and
y € B; with k — 2 <i < k. Thus we get

H ooapfi (%) = ';Z,Aﬁ,,;fi () =Foapfi¥. (32

5
Thus by Lemma 7, we have
k 1 Q X — i
hecy | ( ] [06=2) £ 0)
izee2 1\ X" i< -y
q
xR, (Ai; X, y) dy) dx
(33)
k , q
: Ci:kzlz %Q’At’ﬁfi L
k oyl
<C Y Ifllin 2 P45
i=k-2 lyl=m-1

From [5, p.80], we have the following estimates:

|D7 AL, < €277 3 ID Ao (3
yl=m-1

where C is dependent on L. Thus we get

k
L<CY il 2" Y D" Alon-  ©35)
i=k—2 |yl=m-1

As 0 < s < p < 00, we obtain the following estimates:

+00 B 1s
{ Y 2k %S,A,,;kauiq}
k_

=—00

+00 p 1/p
| &}
k=—0c0

<C Z D" All e

|y|=m-1
+00
x Z zko‘ll’
k=—0c0

k-3
N (S B T

i=—00

1/p
><2—kn-%—k,8+(k(n—1)+i)/r+in/pz)+kn/q )P }

+C Z ID" Al e
[y[=m-1

+00 k p
{ Y I z“m/fw’}

k=—00 i=k—2

=C(A+B).
(36)



For the term A, we have

A

= Z ”DYA"cBMon
ly[=m-1

+00
X Z 2keup
k=—0c0
k-3

% Z (lk — 1l in(1=1/py=1/ py=1/r) 5 —kn+kp

1=—00

1/p
% 2(k(n—1)+i)/r+in/p2+kn/q " f,HLpl )P}

<C Z D" All cnior

|y[=m-1

+00 k=3 . ,
% Z Z (|k _ l| 2(k—1)(n/q—n/r +B-1/r-n/p,)

k=—00 i=—00

% 2(k—i)(rx1+n/p2)
1/p
xzi(acﬁ-n/pz)"fi"LPl )P} ]
(37)

When 0 < p < 1, by condition (13), we get

AP <C Z |D7A||CBM0P2
Iyl—m 1

+00
(k=i)(n/q—n/r'=1/r-n/p,+p)
X Z ( Z 2

i=—00

o 2 lk=Dey+n/py)

p
k=il 2 )

<C ) |pra|
|y|—m 1

+00 k-3
) z'“ﬂ’( > kil
k=—00 i=—00

% z(k—i)(n/q—n/r'—l/r—n/pz +B+ay)

P
Al )

<C Y ID AL gyiom I f e
h’l m—1 P

CBMO#2 (38)
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When p > 1, by the Hélder inequality and condition (13), we
have

AP
<C Z ||DVA"CBMOP2
|y|—m 1
+00 k-3
X Z 2’“"“0( Z |k -1
k=—00 i=—00
><2(k (n/q-n/r'=1/r-n] p,+P)
p
21l )
<C Z ||DYA"CBMOP2
|y|—m 1
Jio ( Z Ik - |2’“"1z(k—i)(ﬂ/q—”//—1/7—”/P2+ﬁ)
k=—0c0

P
| )

<C 2 IP"AlCnon
Iyl—m 1

+00
X Z (z Ik — l|21a22(k (n/q-n/r' =1/r-n/ p,+p+a,)

k=—0c0
P
Al )

1=—00

<C Y IP"Alsor
|y|—m 1
+oo k-3

< 55 gy, arte ot -snmepen

k=—00 i=—00

plp
< Y Jk — il 2D anlr e pr ) )

<C ) |p'a|
|y|—m 1

+00 (e8]
x Y Y ey

i=—00 k=i+3

CBMO?2

i)(n/q-n/r'=1/r-n/p,+p+a;) I£lL
1 1

k-3 plp
% < Z Ik — i p'z(k—i)(n/q—n/r'—1/r—n/p2+[3+(x2))

i=—00
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+00
<C Y D" AR 0n 2 21 illEn
[y|=m-1 i=—co

<C 3 DAL ol 1
lyl=m-1 1

(39)
For the term B, we have the following estimates:

+00 k p
B<C Z ”DYA“CBMOPZ{ Z 2koclp Z 2knP/P2“fi||€Pl}

|y|=m71 k=—0c0 i=k-2

IN

+00 1/p
<rZ|wmmwm(wamm)
i=—00

|y|:m—1

=C Z "DyA”CBMOPZ "f“KglzP
lyl=m-1

(40)

Combining the estimates of A and B, we finish the proof of
Theorem 3. O

Proof of Theorem 4. The proof of Theorem 4 is quite similar
and much easier than Theorem 3 and we omit the details here.
O

3. Boundedness of 7', , ; on A-Central Morrey
Spaces

In [21], Wiener gave a way to describe the behavior of a
function at the infinity. Later, Beurling [22] extended Weiner’s

idea and introduced a pair of dual Banach spaces, A% and BY,
with 1/q + 1/q' = 1. In [23], Feichtinger proved that B? can
be described as

Il =s0p () <0 qan

where ¥, is the characterization of the unit ball {x € R" :
|x| < 1} and y; is defined as in Section 2.

Now by duality, the space A7, which is called the Beurling
algebra, can be described by

£ = 22" fitelza < 0. (42)
k=0

Later, Chen and Lau [24] as well as Garcia-Cuerva
[25] introduced atomic spaces HA?(R") associated with the
Buerling algebra A? and the dual space of HA?(R") can be
described by

1 leanos

= sup

1 q 1/q
[ _ d :
R>1 < |B (0, R)| JB(O,R) |f (x) fB(O,R)| X) <00

(43)

here the CBMO? can be regarded as the inhomogeneous
central BMO spaces.

In 2000, Alvarez et al. [26] introduced the A-Central
bounded mean oscillation space and A-Central Morrey space,
respectively.

Definition 10 (see [26]). Given A < 1/n,1 < g < 00, then
a function f € L1 (R") is said to belong to the A-Central

loc

bounded mean oscillation space CBMOTM(R") if

"f "cBMo‘M

1/q9
J |f (x) - fB(O,R)lqu) < 00.
B(0,R)
(44)

1
=sup| ———
R>‘3< 1B (0, R)|"

Definition 11 (see [26]). Let A € Rand 1 < g < co. Then the
A-Central Morrey space E**(R") is defined by

1/q
j |f (x)|qu) < 0o.
B(O,R)
(45)

1
[/l = sp(

R0\ |B (0, R)|'*A

From [27], we know that if 1 < g; < g, < 00, we obtain
E%* ¢ E9} for A € Rand CBMO%* ¢ CBMO? for A <
1/n. Furthermore, when A < -1/g, E% reduces to {0} and
CBMO?* reduces to the space of constant functions. When
A=-1/q, CBMO%" coincides with L1(R") modulo constant
and F#* = 19,

In 2011, Fu et al. [19] proved the boundedness of the
commutator of fractional Hardy operator with a rough kernel
on A-Central Morrey space. Later, Fu et al. [28] proved
the boundness of the weighted Hardy operator and its
commutator on A-Central Morrey space. In this paper, we will
give the boundedness of #7 , s on A-Central Morrey space
withm > 1.

Our results can be stated as follows.

Theorem 12. Suppose m > 2, n < p, < 00,1 < p; < 00,
1/g=1/p,+1/p,—B/nwith0 < B <nand A = A, +A,+f/n.
Let Q € L'(S" ) with 1/r' > B/n+1/q, and A has derivatives
of order m — 1 in CBMOP*™ If r > pi, A, > —1/p,, and
gL +1 >0, then one has

"%g,A,ﬁf"Ew <C Z "DVA"CBMOPZ’AZ “f"EPl-"l’ (46)

|yl=m-1
where the constant C is independent of f and A.
For the case m = 1, we have the following theorem.

Theorem 13. Suppose 1 < p,,p, <00, 1/q =1/p, +1/p, -
Binwith0 < f<nand A=A+ A, + fB/n Let Q € L'(S"™h
with 1/r' > B/n+1/qand A € CBMOP*" If A, > —1/p,,r >
pl, and gA + 1 > 0, then one has

|76.5f |0 < ClAIcpriora | Flgmn:  (47)

where the constant C is independent of f and A.



In order to prove Theorems 12 and 13, by a standard
argument, we have the following lemma.

Lemma 14 (see [16]). Suppose f € CBMOP, 1 < p < oo,
A< 1/n, andr,r, € RY; then
>1/p

1 P
e RS
> Iy 1

,
108 %)) lepmon

(48)

SC<1+

Proof of Theorem 12. For any R > 0, we denote B(0, R) by B
and B(0, kR) by kB for any k € Z". Thus we have the following
estimates:

5 | |70t f'ax

1Bl
<LJ 1 J 0 (=) f )
= Bl JB||x|" P JBoxl |x—y|m_1

q

xR, (Asx, y)|dy| dx

0

:éh;;j

2kB\2k-1B

1 ij |2 (x-y) f ()

x| P, 2iB\2i"1B m-1

i=—

[ =yl
q
X |R,, (A;5x,y)|dy| dx

0

s%kZJ

2kB\2k-1B

2 (x-y) F W)
o=y

q

X |R,, (A;x, y)|dy| dx

k-3
|x| ﬁ OOL"B\zfls

j |2 (x-y) f ()]
2iB\2i"1B |x _ y|m_1

q
x Ry (Asx, )| dy| dx

o J2kB\2k1B |x|”_ﬁi=k,2

=1+1I.
(49)
For the term I, let A(x) = Alx) -
Zlylzm_l(1/y!)m2kB(DyA)xV. Then it is easy to see
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R,(A;x,y) = R,(A;x,y). As p, > n, then by Lemmas
8 and 9, we have

IR (&5, y)] < | Ry Aqun
+ Z 'DVA )'|x—y|m71
|y|—m 1
scley™" ¥ R ID Alcsyion
|y|:m71

" (D) )]

(50)

where Q(x, y) is the cube centered at x and having diameter
5+nlx — yl.

Asx € 2B\ 2¥'Band ye 2'B\ 2" 'Bwithi < k - 3, we
have |x — y| ~ |x| ~ [2°B|"/" and |x - y| = C,|2'B|"/".

Thus by the Holder inequality and the condition 1-1/p, -
1/p,—1/r= 1/ - pB/n—1/g > 0, we have

1<C|B™!

0 1

X
|x|" P

koo J.ZkB\Zk‘lB

y Z J |Q(x-y) f(y)]

2iB\2""'B |x — y|m_1
m—1
x |x =yl

(

—~1A
’ “D yA||CBM0P2>"2

[yl=m-1

+ |Dyx(y)| ) dyrdx

<C|B|™"
0
1
8 k;oo LkB\zk-lB |x|" P
<3 [0l 50
A,
< ¥ (9
lyl=m-1

x [| DY A cgpore

q
+ |D”Z(y)| )dy‘ dx
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<C|B™"
0

1
X ———
P J‘2k3\2k—13 |x| (n=P)q

k-3

1/r
Y (J § IQ(x—y)Irdy>
i~ oo \J2B\2"1B
X
<sz3\2f-13 |y|_zn:11

X

(=™

X ”DVA“CBMOPZ’AZ

1/p,
~ 2
+|D”A(y)|> dy>
B 1/p,
X(J Ol ldy>
2B\2-1B
11/ pytyr|
x|2iB|_/P1_ 2
(51)

Note the following fact:

A
<J2iB\2ilB | |Z <|X - y| n“DYIAHCBMOPZ’)Lz

y|=m-1

1/p,
+ 'DYK(y)' )pzdy)

<C Z 1D All cpppoea |2kB'AZ |2iB.1/p2
[yl=m-1

(LB DA (y) - mg (D A)|"

ZB'I/PZ(

)"
)

(52)

<C Z ”DYAHCBI\/IOPM2

|y|m1

where the last inequality follows from Lemma 14 and the fact
[x — y| > CIIZIBII/". Thus by the condition 1 + gA > 0 and
Ay+1>A, +1/p, >0, wehave

I1<C|B™

y i 'ZkB|(ﬁ/n—1)q

k=—00

1/pr+Ayy i1/
LkB\zk 1B< Z ”f"EP‘ A1 |2 B| 1 l|21B
i 5|1/
< 2 1" Alkaon 28"
y|=m-1
x (25" + [2B[")
1-1 1 1 1
X|2iB| —1/p1—1/p,— /‘f> dx
= C”f"EPl Al Z "DYA"CBMon /\2|B|_1
|y|:m 1
0
y Z |2kB|(ﬁ/n—1)q |2kB' '2kB|/\zq
=-00
k-3
x 2iB 1/p+A
(i—zoo' '
q
y |2,~B|1/p2 ziB|l/r'ziB'l—l/pl—l/pz—l/r>
S C”f"EPl Al Z "DYA"CBMO}’z A2
|y|:m 1
x |B|—1+[3q/n—q+/\2q+1+7t1q+q
x i 2nk/3q/n—knq+kn+k)tznq+kAlnq+knq
k=—0c0
< C| |Z 1||DVA||CBM0P2A2 "f"EPl Allqu/\'
yl=m—
(53)

To estimate the term II, we adopt some basic ideas from
the estimates of the term I, in Theorem 3. First, we denote
R,(A;x,y) = Rm(A(i;x, y) = R, (A;;x,9) for x € 2°B
and y € 2Bwith k -2 < i < k where A%(x) =
R, (A, %, y)¢(lx — yo| " x) with y, € 2'B\ 2""'B. Here
Ap(x) = Alx) - Zmzm_l(l/y!)msz(D”A)xV and ¢ is defined
as in Section 2.

AsQ e L'(S"") withr > p|, by Lemma 7, we get

0 k q
w2 2|,

2
(54)

IN

0 k
% 3 YUl 3 Al

2’
|yl=m-1

where f; is defined by f;(x) = f(x)x,pp-1(%).
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For D”A‘i, as |x — yy| < Cly,l, then by Lemmas 8 and 14,
we have the following estimates:

[ A% )
< Z C;w |Rm—1—|,u| (D#Ak;x’ y0)|

|[4|+|1/|:m—1

|D¢|x J’o ||x )/olll
<C Z Ix _ yolm—l—lﬂl—lvl
lul+[v]=m-1
x Z <~; L 'DY' (D"A,) (z)'Pzdz>l/172
ly'|=m-1-u| |Q(x,yo)| Qx.y0)

X Xixlsla-yol (%)

<C Z ||DYA"CBMOP2”‘2 |x - y0|A2nXIXI5CIyo| (x).

[y[=m-1
(55)
Thus we have
[yl=m-1
R / (56)
i |9 alp:.
<C Y 1P Al 2B B[
[yl=m-1
By the above estimates, we obtain
c 2 1 » a/p
? :Z Z <|2’B|1+p1’\1 J! |f(x)| 1dX>
% |2iB|q/P1+q/h
i |92 t4/P
x Z ||DVA"CBM0P2A2 l | ’ ’
|y|—m 1
ok ) (57)
S C 2111 + q
k:zooizg—z
X Z ”DYA"CBMOm A2 "f“EPl A |B|q/\
|y|=m 1
<C Z lDyA“CBMO}Jz A2 “f”EP1 A1 |B|qA'
[yl=m-1

Combining the estimates of I and II and by the definition of
E?*, we finish the proof of Theorem 12. O

Proof of Theorem 13. The proof of Theorem 13 is quite similar
but much simpler than Theorem 12 and we omit the details
here. O
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