
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 396509, 6 pages
http://dx.doi.org/10.1155/2013/396509

Research Article
Existence of Positive Periodic Solutions for
a Class of Higher-Dimension Functional Differential
Equations with Impulses

Zhang Suping1,2 and Jiang Wei1

1 School of Mathematical Science, Anhui University, Hefei, Anhui 230039, China
2Department of Mathematics and Physics, Anhui Jianzhu University, Hefei, Anhui 230601, China

Correspondence should be addressed to Zhang Suping; zsp606@163.com

Received 3 August 2013; Accepted 1 October 2013

Academic Editor: Youyu Wang

Copyright © 2013 Z. Suping and J. Wei.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By employing the Krasnoselskii fixed point theorem, we establish some criteria for the existence of positive periodic solutions of a
class of 𝑛-dimension periodic functional differential equations with impulses, which improve the results of the literature.

1. Introduction

Some evolution processes are distinguished by the circum-
stance that the evolutions change very rapidly at certain
instants. In mathematical simulations, impulsive delay differ-
ential equations may express several simulation processes in
real world which depend on their prehistory and are subject
to short time disturbances. Such processes occur in the theory
of optional control, population dynamics, biotechnologies,
economics, and so forth. In recent years, the existence theory
of positive periodic solutions of delay differential equations
with impulsive effects or without impulsive effects has been
an object of active research; we refer the reader to [1–4].
For other related works on studying for impulsive delay
differential equations, we refer the reader to [5–7].

In [8], Zeng et al. studied the following functional
differential equations without impulses:

�̇� (𝑡) = 𝐴 (𝑡, 𝑥 (𝑡)) 𝑥 (𝑡) + 𝜆𝑓 (𝑡, 𝑥
𝑡
) , (1)

and obtained sufficient conditions for the existence of positive
periodic solutions of (1).

Zhang et al. [9] investigated the following form:

�̇� (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓 (𝑡, 𝑥
𝑡
) , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ 𝑍

+
,

Δ𝑥|
𝑡=𝜏𝑘

= 𝐼
𝑘
(𝑥 (𝜏
𝑘
)) .

(2)

In this paper, we will consider the 𝑛-dimension differen-
tial equation with impulses as follows:

�̇� (𝑡) = 𝐴 (𝑡, 𝑥 (𝑡)) 𝑥 (𝑡) + 𝜆𝑓 (𝑡, 𝑥
𝑡
) , 𝑡 ̸= 𝜏

𝑘
, 𝑘 ∈ 𝑍

+
,

Δ𝑥|
𝑡=𝜏𝑘

= 𝐼
𝑘
(𝑥 (𝜏
𝑘
)) ,

(3)

where 𝜆 > 0 is a parameter, 𝐴(𝑡, 𝑥(𝑡)) = diag[𝑎
1
(𝑡, 𝑥(𝑡)), 𝑎

2
(𝑡,

𝑥(𝑡)), . . . , 𝑎
𝑛
(𝑡, 𝑥(𝑡))], 𝑎

𝑖
∈ 𝐶(𝑅 × 𝑅, 𝑅) is 𝜔-periodic, and

𝑓(𝑡, 𝑥
𝑡
) is an operator defined on 𝑅 × 𝐵𝐶(𝑅, 𝑅

𝑛
) (here

𝐵𝐶(𝑅, 𝑅
𝑛
) denotes the Banach space of bounded contin-

uous operator 𝜙 : 𝑅 → 𝑅
𝑛 with the norm ‖𝜙‖ =

∑
𝑖=1

sup
𝜃∈𝑅

|𝜙
𝑖
(𝜃)|, where 𝜙 = (𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
)
𝑇
). For 𝑥 ∈ 𝐵𝐶

and 𝑡 ∈ 𝑅, 𝑥
𝑡
∈ 𝐵𝐶 is defined by 𝑥

𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ∈ 𝑅

(see [10], Zheng). Consider that 𝑓(𝑡 + 𝜔, 𝑥
𝑡
) = 𝑓(𝑡, 𝑥

𝑡
) and

Δ𝑥|
𝑡=𝜏𝑘

= 𝑥(𝜏
+

𝑘
) − 𝑥(𝜏

𝑘
) (here 𝑥(𝜏+

𝑘
) represents the right limit

of 𝑥 at the point 𝜏
𝑘
), 𝐼
𝑘
= (𝐼
1

𝑘
, 𝐼
2

𝑘
, . . . , 𝐼

𝑛

𝑘
) ∈ 𝐶(𝑅

𝑛

+
, 𝑅
𝑛

−
), that is,

𝑥 changes decreasingly suddenly at 𝜏
𝑘
, 𝜔 > 0 is a constant,

𝑅
+
and 𝑅

−
are the sets of all nonnegative and nonpositive

real numbers, respectively. We assume that there exists an
integer 𝑝 > 0 such that 𝜏

𝑘+𝑝
= 𝜏
𝑘
+ 𝜔, 𝐼

𝑘+𝑝
= 𝐼
𝑘
, where

0 < 𝜏
1
< 𝜏
2
< ⋅ ⋅ ⋅ < 𝜏

𝑝
< 𝜔.

2. Some Preliminaries

𝑃𝐶(𝐽, 𝑅
𝑛
) = {𝜙 : 𝐽 → 𝑅

𝑛, 𝜙 is continuous everywhere except
at a finite number of points 𝜏

𝑘
at which 𝜙(𝜏+

𝑘
) and 𝜙(𝜏−

𝑘
) exist
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and 𝜙(𝜏−
𝑘
) = 𝜙(𝜏

𝑘
)}, 𝐽 ⊂ 𝑅. For each 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈

𝑅
𝑛, the norm of 𝑥 is defined as |𝑥| = ∑

𝑖=1
|𝑥
𝑖
|.

Throughout the paper, we make the following assump-
tions:

(𝐻
1
) 𝑓(𝑡, 𝜑

𝑡
) ≤ 0 for all (𝑡, 𝜑) ∈ 𝑅 × 𝐵𝐶(𝑅, 𝑅𝑛

+
);

(𝐻
2
) 𝑓
𝑖
(𝑡, 𝜑
𝑡
) is a continuous function of 𝑡 for each𝜑 ∈

𝐵𝐶(𝑅, 𝑅
𝑛

+
), 𝑖 = 1, 2, . . . , 𝑛;

(𝐻
3
) for any 𝐿 > 0 and 𝜖 > 0, there exists 𝛿 > 0 such

that for 𝜙, 𝜓 ∈ 𝐵𝐶(𝑅, 𝑅
𝑛

+
), ‖𝜙‖ ≤ 𝐿, ‖𝜓‖ ≤ 𝐿, and

‖𝜙 − 𝜓‖ ≤ 𝛿 imply that




𝑓
𝑖
(𝑡, 𝜙
𝑡
) − 𝑓
𝑖
(𝑡, 𝜓
𝑡
)




< 𝜖, ∀𝑡 ∈ [0, 𝜔] , 𝑖 = 1, 2, . . . , 𝑛. (4)

To conclude this section, we summarize in the following a
few concepts and results thatwill be needed in our arguments.

Definition 1. Let 𝑋 be a Banach space, and let 𝑃 be a closed,
nonempty subset of𝑋; 𝑃 is a cone if

(i) 𝛼𝑥 + 𝛽𝑥 ∈ 𝑃 for all 𝑥, 𝑦 ∈ 𝑃 and all 𝛼, 𝛽 ≥ 0;
(ii) 𝑥, −𝑥 ∈ 𝑃 imply 𝑥 = 0.

Let 𝑋 = {𝑥 = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑃𝐶(𝑅, 𝑅

𝑛
) |

𝑥(𝑡 +𝜔) = 𝑥(𝑡)}with the norm ‖𝑥‖ = ∑
𝑖=1

|𝑥
𝑖
|
0
, where |𝑥

𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑥
𝑖
(𝑡)|; then𝑋 is a Banach space.

If 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑋 is a solution of (3),

then

𝑥
𝑖
(𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑢) 𝑓

𝑖
(𝑢, 𝑥
𝑢
) 𝑑𝑢

+

𝑗=𝑝

∑

𝑗=1

𝐺
𝑖
(𝑡, 𝜏
𝑚𝑗
+ 𝑛𝜔) 𝐼

𝑖

𝑗
(𝑥 (𝜏
𝑚𝑗
)) ,

(5)

where

𝐺
𝑖
(𝑡, 𝑢) =

exp (− ∫𝑢
𝑡
𝑎
𝑖
(𝑠, 𝑥 (𝑠)) 𝑑𝑠)

exp (− ∫𝜔
0
𝑎
𝑖
(𝑠, 𝑥 (𝑠)) 𝑑𝑠) − 1

, 𝑖 = 1, 2, . . . , 𝑛.

(6)

See [9], Zhang et al.
It is clear that𝐺

𝑖
(𝑡+𝜔, 𝑢+𝜔) = 𝐺

𝑖
(𝑡, 𝑢), for all (𝑡, 𝑢) ∈ 𝑅2,

and by (𝐻
1
),

𝐺
𝑖
(𝑡, 𝑢) 𝑓

𝑖
(𝑢, 𝜑
𝑢
) ≥ 0 (7)

for (𝑡, 𝑢) ∈ 𝑅2 and (𝑢, 𝜑) ∈ 𝑅 × 𝐵𝐶(𝑅, 𝑅𝑛
+
).

Define for 𝑖 = 1, 2, . . . , 𝑛,

𝐴
𝑖
:= min
0≤𝑡≤𝑢≤𝜔





𝐺
𝑖
(𝑡, 𝑢)





=

exp (− ∫𝜔
0
𝑎
𝑖
(𝑠, 𝑥 (𝑠)) 𝑑𝑠)

1 − exp (− ∫𝜔
0
𝑎
𝑖
(𝑠, 𝑥 (𝑠)) 𝑑𝑠)

,

𝐵
𝑖
:= max
0≤𝑡≤𝑢≤𝜔





𝐺
𝑖
(𝑡, 𝑢)





=

1

1 − exp (− ∫𝜔
0
𝑎
𝑖
(𝑠, 𝑥 (𝑠)) 𝑑𝑠)

,

𝐴 := min
1≤𝑖≤𝑛

𝐴
𝑖
, 𝐵 := max

1≤𝑖≤𝑛

𝐵
𝑖
.

(8)

Let

𝐾 = {𝑥 (𝑡) = (𝑥
1
(𝑡) , 𝑥
2
(𝑡) , . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ 𝑋 : 𝑥
𝑖
(𝑡) ≥ 𝜎





𝑥
𝑖




0
,

𝑖 = 1, 2, . . . , 𝑛} ,

(9)

where 𝜎 = 𝐴/𝐵 ∈ (0, 1). It is not difficult to verify that 𝐾 is a
cone in𝑋. We define an operator Φ : 𝑋 → 𝑋 as follows:

(Φ𝑥) (𝑡) = ((Φ
1
𝑥) (𝑡) , (Φ

2
𝑥) (𝑡) , . . . , (Φ

𝑛
𝑥) (𝑡))

𝑇

, (10)

where

(Φ
𝑖
𝑥) (𝑡) = 𝜆∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝑢) 𝑓

𝑖
(𝑢, 𝑥
𝑢
) 𝑑𝑢

+

𝑗=𝑝

∑

𝑗=1

𝐺
𝑖
(𝑡, 𝜏
𝑚𝑗
+ 𝑛𝜔) 𝐼

𝑖

𝑗
(𝑥 (𝜏
𝑚𝑗
)) .

(11)

Then, it can be immediately obtained from the assumptions
(𝐻
2
) and (𝐻

3
) that the operator Φ is completely continuous.

On the other hand, it is not difficult to check that 𝑥∗(𝑡) =

(𝑥
∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇 is a positive 𝜔-periodic solution of

(3) if and only if 𝑥∗(𝑡) is a fixed point of the operatorΦ.

Before stating themain results, we shall give some impor-
tant lemmas.

Lemma 2. The mapping Φmaps 𝐾 into 𝐾, that is, Φ𝐾 ⊂ 𝐾.

Proof. For any 𝑥 ∈ 𝐾, it is easy to see thatΦ𝑥 ∈ 𝑋. From (11),
we have





(Φ
𝑖
𝑥)



0
≤ 𝜆𝐵
𝑖
∫

𝜔

0





𝑓
𝑖
(𝑢, 𝑥
𝑢
)




𝑑𝑢

+ 𝐵
𝑖

𝑗=𝑝

∑

𝑗=1








𝐼
𝑖

𝑗
(𝑥 (𝜏
𝑚𝑗
))








.

(12)

Noting that 𝐺
𝑖
(𝑡, 𝑢)𝑓

𝑖
(𝑢, 𝑥
𝑢
) ≥ 0, we can also obtain

(Φ
𝑖
𝑥) (𝑡) ≥ 𝜆𝐴

𝑖
∫

𝜔

0





𝑓
𝑖
(𝑢, 𝑥
𝑢
)




𝑑𝑢 + 𝐴

𝑖

𝑗=𝑝

∑

𝑗=1








𝐼
𝑖

𝑗
(𝑥 (𝜏
𝑚𝑗
))








≥

𝐴
𝑖

𝐵
𝑖





(Φ
𝑖
𝑥)



0

≥ 𝜎




(Φ
𝑖
𝑥)



0
.

(13)

Hence, Φ𝐾 ⊂ 𝐾. The proof is complete.

Lemma 3. Let 𝑋 be a Banach space, and let 𝐾 be a cone in
𝑋. Suppose that Ω

1
and Ω

2
are open subsets of 𝑋 such that

0 ∈ Ω
1
⊂ Ω
1
⊂ Ω
2
. Suppose that

Φ : 𝐾 ∩ (Ω
2
\ Ω
1
) → 𝐾 (14)

is a completely continuous operator and satisfies either
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(1)

‖Φ𝑢‖ ≤ ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω
1
;

‖Φ𝑢‖ ≥ ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω
2
;

(15)

or
(2)

‖Φ𝑢‖ ≤ ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω
2
;

‖Φ𝑢‖ ≥ ‖𝑢‖ , ∀𝑢 ∈ 𝐾 ∩ 𝜕Ω
1
.

(16)

Then, Φ has a fixed point in 𝐾 ∩ (Ω
2
\ Ω
1
).

The proof of Lemma 3 can be found in [11], Guo et al.

Lemma4. Assume that (𝐻
1
)–(𝐻
3
) hold and there exists 𝜂 > 0,

such that

∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 ≥ 𝜂





𝜙




, 𝑓𝑜𝑟 𝜙 ∈ 𝐾. (17)

Then,

‖Φ𝑥‖ ≥ 𝜆𝐴𝜂 ‖𝑥‖ . (18)

Proof. If 𝑥 ∈ 𝐾, then

(Φ
𝑖
𝑥) (𝑡) ≥ 𝜆𝐴

𝑖
∫

𝑡+𝜔

𝑡





𝑓
𝑖
(𝑢, 𝑥
𝑢
)




𝑑𝑢

+ 𝐴
𝑖

𝑗=𝑝

∑

𝑗=1








𝐼
𝑖

𝑗
(𝑥 (𝜏
𝑚𝑗
))








≥ 𝜆𝐴
𝑖
∫

𝑡+𝜔

𝑡





𝑓
𝑖
(𝑢, 𝑥
𝑢
)




𝑑𝑢.

(19)

Thus, we have

‖Φ𝑥‖ = sup
𝑡∈𝑅

∑

𝑖=1





(Φ
𝑖
𝑥) (𝑡)






≥ ∑

𝑖=1

𝜆𝐴
𝑖
∫

𝜔

0





𝑓
𝑖
(𝑢, 𝑥
𝑢
)




𝑑𝑢

≥ 𝜆𝐴∫

𝜔

0





𝑓 (𝑢, 𝑥

𝑢
)




𝑑𝑢 ≥ 𝜆𝐴𝜂 ‖𝑥‖ .

(20)

Lemma 5. Assume that (𝐻
1
)–(𝐻
3
) hold and let 𝑟 > 0, if there

exists a sufficiently small 𝜖 > 0 such

∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 ≤ 𝜖𝑟,

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝜙)






≤ 𝜖𝑟,

𝑓𝑜𝑟 𝜙 ∈ 𝐾 ∩ 𝜕Ω
𝑟
.

(21)

Then,

‖Φ𝑥‖ ≤ (𝜆 + 1) 𝐵𝜖 ‖𝑥‖ , 𝑓𝑜𝑟 𝑥 ∈ 𝐾 ∩ 𝜕Ω
𝑟
. (22)

Proof. For any 𝑥 ∈ 𝐾 ∩ 𝜕Ω
𝑟
,

‖Φ𝑥‖ = sup
𝑡∈𝑅

∑

𝑖=1





(Φ
𝑖
𝑥) (𝑡)






≤ ∑

𝑖=1

𝜆𝐵
𝑖
∫

𝜔

0





𝑓
𝑖
(𝑠, 𝑥
𝑠
)




𝑑𝑠

+∑

𝑖=1

𝐵
𝑖

𝑗=𝑝

∑

𝑗=1








𝐼
𝑖

𝑗
(𝑥 (𝜏
𝑚𝑗
))








≤ 𝜆𝐵∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

+ 𝐵

𝑗=𝑝

∑

𝑗=1








𝐼
𝑗
(𝑥 (𝜏
𝑚𝑗
))








≤ (𝜆 + 1) 𝐵𝜖 ‖𝑥‖ .

(23)

3. Main Results

For the sake of convenience, we introduce the following nota-
tions:

𝑓
𝛼
= lim
𝑥∈𝐾

sup
‖𝑥‖→𝛼

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

‖𝑥‖

,

𝑓
𝛼
= lim
𝑥∈𝐾

inf
‖𝑥‖→𝛼

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

‖𝑥‖

,

𝐼
𝛼
= lim
𝑥∈𝐾

sup
‖𝑥‖→𝛼

∑
𝑗=𝑝

𝑗=1






𝐼
𝑗
(𝑥)







‖𝑥‖

,

𝐼
𝛼
= lim
𝑥∈𝐾

inf
‖𝑥‖→𝛼

∑
𝑗=𝑝

𝑗=1






𝐼
𝑗
(𝑥)







‖𝑥‖

,

(24)

where 𝛼 denotes either 0 or∞.

Theorem 6. Assume that (𝐻
1
)–(𝐻
3
) hold and

(𝑃
1
) 𝑓
∞
= ∞,

(𝑃
2
) 𝑓
0
= 𝐼
0
= 0;

(25)

then (3) has at least one positive 𝜔-periodic solution.

Proof. By (𝑃
2
), for any 𝜖

1
, 𝜖
1
> 0 there exists 𝑟

2
> 0, such that

∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 ≤ 𝜖

1





𝜙




≤ 𝜖
1
𝑟
2
,

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝜙)






≤ 𝜖
2





𝜙




≤ 𝜖
2
𝑟
2
.

(26)

Choose 𝜖 = max{𝜖
1
, 𝜖
1
}, satisfying 0 < 𝜖 < (1/(𝜆 + 1)𝐵), by

Lemma 5, we have
‖Φ𝑥‖ ≤ (𝜆 + 1) 𝐵𝜖 ‖𝑥‖ ≤ ‖𝑥‖ ,

for 𝑥 ∈ 𝐾 ∩ 𝜕Ω
2
.

(27)
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Next, by (𝑃
2
), there exists 𝑟

3
> 𝑟
2
> 0, such that

∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 ≥ 𝜂





𝜙




,

for 𝜙 ∈ 𝐾, 

𝜙




≥ 𝑟
3
,

(28)

where 𝜂 > 0 is chosen, so that 𝜆𝐴𝜂 > 1. It follows from
Lemma 4 that

‖Φ𝑥‖ ≥ 𝜆𝐴𝜂 ‖𝑥‖ > ‖𝑥‖ ,

for 𝑥 ∈ 𝐾 ∩ 𝜕Ω
3
.

(29)

It follows from Lemma 3 that (3) has a positive 𝜔-periodic
solution satisfying 𝑟

2
≤ ‖𝑥‖ ≤ 𝑟

3
.

Theorem 7. Assume that (𝐻
1
)–(𝐻
3
) hold and

(𝑃
3
) 𝑓
0
= ∞,

(𝑃
4
) 𝑓
∞
= 𝐼
∞
= 0;

(30)

then (3) has at least one positive 𝜔-periodic solution.

Proof. Since 𝑓
0
= ∞, one can find an 𝑟

0
> 0, such that

∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 ≥ 𝜂





𝜙




,

for 𝜙 ∈ 𝐾, 0 < 

𝜙




≤ 𝑟
0
,

(31)

where 𝜂 > 0 is chosen so that 𝜆𝐴𝜂 > 1. It follows from
Lemma 4 that

‖Φ𝑥‖ ≥ 𝜆𝐴𝜂 ‖𝑥‖ > ‖𝑥‖ ,

for 𝑥 ∈ 𝐾 ∩ 𝜕Ω
𝑟0
.

(32)

By (𝑃
4
), we know that there exists𝑁

1
> 𝑟
0
and 𝜖
1
, 𝜖
2
> 0 such

that

∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 ≤ 𝜖

1





𝜙




,

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝜙)






≤ 𝜖
2





𝜙




,

for 𝜙 ∈ 𝐾, 

𝜙




≥ 𝑁
1
.

(33)

Choose 𝜖 = max{𝜖
1
, 𝜖
1
}, satisfying 0 < 𝜖 < 1/(2(𝜆+1)𝐵); then

∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 ≤ 𝜖





𝜙




,

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝜙)






≤ 𝜖





𝜙




. (34)

Take

𝑟
1
> 𝑁
1
+ 1

+ 2𝐵 sup
𝜙∈𝐾,‖𝜙‖<𝑁1

[

[

𝜆∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 +

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝜙)







]

]

,

(35)

‖Φ𝑥‖ ≤ 𝐵
[

[

𝜆∫

𝜔

0





𝑓 (𝑠, 𝜙

𝑠
)




𝑑𝑠 +

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝜙)







]

]

= 𝐵 [𝜌 (𝐼
1
) + 𝜌 (𝐼

2
)]

≤

𝑟
1

2

+

‖𝑥‖

2

= ‖𝑥‖ , for any 𝑥 ∈ 𝐾 ∩ 𝜕Ω
𝑟1
,

(36)

where 𝜌(𝐼
1
) = [𝜆 ∫

𝜔

0
|𝑓(𝑠, 𝜙

𝑠
)|𝑑𝑠 + ∑

𝑗=𝑝

𝑗=1
|𝐼
𝑗
(𝜙)|]|
𝑥∈𝐼𝑖

, 𝑖 = 1, 2,
and 𝐼
1
= {𝑥 ∈ 𝐾, ‖𝑥‖ < 𝑁

1
}, 𝐼
2
= {𝑥 ∈ 𝐾, ‖𝑥‖ ≥ 𝑁

1
}.

This implies that ‖Φ𝑥‖ ≤ ‖𝑥‖, for any 𝑥 ∈ 𝐾 ∩ 𝜕Ω
𝑟1
.

Therefore, (3) has at least one positive 𝜔-periodic solu-
tion.

Theorem 8. Suppose that

(𝑃
5
) there exists 𝑑

2
> 0, such that ∫𝜔

0
|𝑓(𝑠, 𝜙

𝑠
)|𝑑𝑠 <

𝑑
1
/𝜆𝐴, for 𝜎𝑑

1
≤ ‖𝜙‖ ≤ 𝑑

1
,

(𝑃
6
) there exists 𝑑

2
> 0, such that∫𝜔

0
|𝑓(𝑠, 𝜙

𝑠
)|𝑑𝑠 <

𝑑
2
/2𝜆𝐵, ∑𝑗=𝑝

𝑗=1
|𝐼
𝑗
(𝜙)| ≤ 𝑑

2
/2𝐵, for ‖𝜙‖ < 𝑑

2

hold; then (3) has at least one positive 𝜔-periodic solution.

Proof. Without loss of generality, we may assume that 𝑑
2
<

𝑑
1
. If 𝑥 ∈ 𝐾 ∩ 𝜕Ω

𝑑2
, then by (𝑃

6
), one can get

‖Φ𝑥‖ ≤ 𝜆𝐵

𝑑
2

2𝜆𝐵

+ 𝐵

𝑑
2

2𝐵

= 𝑑
2
= ‖𝑥‖ , (37)

in particular, ‖Φ𝑥‖ < ‖𝑥‖, for all 𝑥 ∈ 𝐾 ∩ 𝜕Ω
𝑑2
.

On the other hand, by (𝑃
5
), one has

‖Φ𝑥‖ ≥ 𝜆𝐴∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠 > 𝜆𝐴

𝑑
1

𝜆𝐴

= 𝑑
1
= ‖𝑥‖ ,

for 𝑥 ∈ 𝐾 ∩ 𝜕Ω
𝑑1
.

(38)

Therefore, (3) has at least one positive 𝜔-periodic solution.

Theorem 9. If

(𝑃
7
) 𝑓
0
= 𝛼
1
∈ [0, 1/2𝜆𝐵), 𝐼

0
= 𝛼
2
∈ [0, 1/2𝐵);

(𝑃
8
) 𝑓
∞
= 𝛽
1
∈ (1/𝜆𝐴𝜎,∞)

hold, then (3) has at least one positive 𝜔-periodic solution.
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Proof. By assumption (𝑃
7
), for 𝜖 = min{(1/2𝜆𝐵) − 𝛼

1
, 1/2𝐵 −

𝛼
2
} > 0, there exists a sufficiently small 𝑑

2
> 0 such that

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

‖𝑥‖

< 𝛼
1
+ 𝜖 <

1

2𝜆𝐵

,

∑
𝑗=𝑝

𝑗=1






𝐼
𝑗
(𝑥)







‖𝑥‖

< 𝛼
2
+ 𝜖 <

1

2𝐵

, for ‖𝑥‖ ≤ 𝑑
2
;

(39)

that is

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠 <

𝑑
2

2𝜆𝐵

,

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝑥)






<

𝑑
2

2𝐵

, for ‖𝑥‖ ≤ 𝑑
2
.

(40)

So, (𝑃
6
) is satisfied.

By assumption (𝑃
8
), for 𝜖 = 𝛽

1
− 1/𝜆𝐴𝜎, there exists a

sufficiently large 𝑑
1
> 0 such that

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

‖𝑥‖

> 𝛽
1
− 𝜖 =

1

𝜆𝐴𝜎

, for 𝜎𝑑
1
≤ ‖𝑥‖ ≤ 𝑑

1
,

(41)

that is

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠 >

1

𝜆𝐴𝜎

‖𝑥‖ ≥

1

𝜆𝐴𝜎

𝜎𝑑
1
=

𝑑
1

𝜆𝐴

, (42)

therefore, (𝑃
5
) holds. By Theorem 8, we complete the proof.

Theorem 10. If
(𝑃
9
) 𝑓
0
= 𝛼
3
∈ (1/𝜆𝐴𝜎,∞);

(𝑃
10
) 𝑓
∞
= 𝛽
2
∈ [0, 1/2𝜆𝐵), 𝐼

∞
= 𝛽
3
∈ [0, 1/2𝐵)

hold, then (3) has at least one positive 𝜔-periodic solution.

Proof. By (𝑃
9
), for 𝜖 = 𝛼

3
− (1/𝜆𝐴𝜎) > 0, there exists a suffi-

ciently small 𝑑
1
> 0, such that

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

‖𝑥‖

> 𝛼
3
− 𝜖 =

1

𝜆𝐴𝜎

, for 0 < ‖𝑥‖ ≤ 𝑑
1
, (43)

that is

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠 >

𝜎𝑑
1

𝜆𝐴

=

𝑑
1

𝜆𝐴

, for 𝜎𝑑
1
≤ ‖𝑥‖ ≤ 𝑑

1
. (44)

Again, By (𝑃
10
), for 𝜖 = min{(1/2𝜆𝐵) − 𝛽

2
, (1/2𝐵) − 𝛽

3
} > 0,

there exists a sufficiently small 𝑑 > 0 such that

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

‖𝑥‖

< 𝛽
2
+ 𝜖,

∑
𝑗=𝑝

𝑗=1






𝐼
𝑗
(𝑥)







‖𝑥‖

< 𝛽
3
+ 𝜖,

(45)

that is

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠

‖𝑥‖

<

1

2𝜆𝐵

,

∑
𝑗=𝑝

𝑗=1






𝐼
𝑗
(𝑥)







‖𝑥‖

<

1

2𝐵

,

for ‖𝑥‖ > 𝑑.

(46)

In the following, we consider two cases to prove (𝑃
6
) to be

satisfied:

(i) ∫𝜔
0
|𝑓(𝑠, 𝑥

𝑠
)|𝑑𝑠 + ∑

𝑗=𝑝

𝑗=1
|𝐼
𝑗
(𝑥)| < ∞;

(ii) ∫𝜔
0
|𝑓(𝑠, 𝑥

𝑠
)|𝑑𝑠 = ∞, ∑𝑗=𝑝

𝑗=1
|𝐼
𝑗
(𝑥)| = ∞.

The bounded case is clear. If case (ii) is valid, then there exists
𝑦 ∈ 𝐵𝐶(𝑅, 𝑅

𝑛

+
), ‖𝑦‖ = 𝑑

2
> 𝑑 such that

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠 ≤ ∫

𝜔

0





𝑓 (𝑠, 𝑦

𝑠
)




𝑑𝑠,

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝑥)






<

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝑦)






,

for 0 < ‖𝑥‖ ≤ 

𝑦




= 𝑑
2
.

(47)

Since ‖𝑦‖ = 𝑑
2
> 𝑑, then we have

∫

𝜔

0





𝑓 (𝑠, 𝑥

𝑠
)




𝑑𝑠 <





𝑦





2𝜆𝐵

=

𝑑
2

2𝜆𝐵

,

𝑗=𝑝

∑

𝑗=1






𝐼
𝑗
(𝑥)






<





𝑦





2𝐵

=

𝑑
2

2𝐵

,

for 0 < ‖𝑥‖ ≤ 𝑑
2
,

(48)

which implies that condition (𝑃
6
) holds. By Theorem 8, we

complete the proof.

Corollary 11. If one of the following pairs

(𝑃
1
) and (𝑃

2
); (𝑃
3
) and (𝑃

4
); (𝑃
5
) and (𝑃

6
); (𝑃
7
) and

(𝑃
8
); (𝑃
9
) and (𝑃

10
);

(𝑃
1
) and (𝑃

7
); (𝑃
2
) and (𝑃

8
); (𝑃
3
) and (𝑃

10
); (𝑃
4
) and

(𝑃
9
)

is valid, then system (3) has at least one positive 𝜔-periodic
solution.
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