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A class of ninth degree system is studied and the conditions ensuring that its five singular points can be centers and isochronous
centers (or linearizable centers) at the same time by exact calculation and strict proof are obtained. What is more, the expressions
of Lyapunov constants and periodic constants are simplified, and 21 limit circles could be bifurcated at least.

1. Introduction

Aswe all know, it is difficult for planar polynomial differential
systems to characterize their centers and isochronous centers.
Hence, up to now the sufficient and necessary condition
determining an isochronous center can only be found by
making some appropriate analytic changes of coordinates
which let the original system be reduced to a linear system.
This kind of appropriate analytic change is very difficult to
obtain, so only a handful of isochronous systems have been
investigated. Several classes of known isochronous systems
studied are as follows: quadratic isochronous centers (see [1]);
isochronous centers of a linear center perturbed by third,
fourth and fifth degree homogeneous polynomials (see [2–
4]); complex polynomial systems (see [5]); reversible systems
(see [6, 7]); and isochronous centers of cubic systems with
degenerate infinity (see [8]).

In [9], a class of ninth degree system with four isoch-
ronous centers was investigated. In this paper, we consider
the following ninth degree system:
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The paper is organized as follows. In Section 2, the pre-
liminary methods to calculate the focal values (or Lyapunov
constants) and period constants which are necessary in
Sections 3 and 5 are presented. In Section 3, two appropri-
ate transformations, changing system (1) to a class of Z4-
equivariant fifth degree system in which the focal values are
calculated, are provided. Based on it, the condition and proof
that the infinity and four elementary singular points of (1)
can be centers are gained. The bifurcations of 21 limit circles
are the subject of Section 4. At last, in Section 5, the period
constants with simpler expressions are given; moreover, the
sufficient and necessary condition and proof are given to
illustrate that the infinity and four elementary singular points
of (1) become isochronous centers.

2. Some Preliminary Results

In [10, 11], the complex system of complex center is
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and the authors gave two recursive algorithms to determine
necessary conditions for a center. We now restate the defini-
tions and algorithms.

Theorem 1 (see [11]). For system (3), we can derive successively
the terms of the following formal series:
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Theorem 2 (see [12]). For system (3), we can derive uniquely
the following formal series:
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In the above expression, we have let 𝑐󸀠
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3. Singular Point Quantities and
Center Conditions

It can be easily checked that system (1) have four elementary
critical points (±1, 0), (0, ±1) and the infinity. After intro-
ducing the method to calculate the focal values and period
constants of system (1), we try to make some appropriate
transformations so as to carry out our investigation.
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Bymeans of the Bendixson homeomorphous transforma-
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Then, the infinity and four elementary focuses (±1, 0), (0, ±1)
of (1) become the origin and (±1, 0), (0, ±1) of system (14),
respectively. Thus, we have the following theorems.

Theorem3. System (14) is a class of Z4-equivariant differential
polynomial system of fifth degree about point (−1, 0).

Proof. The system is invariant by the transformation of
rotation
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Then system (14) is a Z4-equivariant polynomial system
about point (−1, 0).
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System (14) can be transformed into the following complex
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Theorem4. Thefirst two singular point quantities at the origin
of system (17) are as follows:
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Theorem 5. For system (17), the first two singular point
quantities are zero if and only if the following condition holds:
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Theorem 6. For system (14), all the singular point quantities
at the origin are zero if and only if the first two singular
point quantities are zero; that is, the condition in Theorem 5
holds. Correspondingly, the condition inTheorem 5 is the center
condition of the origin.
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Remark (21) is symmetric with V axis.

System (14) is a class of Z4-equivariant differential poly-
nomial system, so that the four symmetric elementary focus
points of system (14) have the same topological structure;
then they have the same center conditions and isochronous
center conditions and so on. Without loss of generality, we
only need to consider the case of (1, 0).
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Let
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By noting that

𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑥 − 𝑖𝑦, 𝑇 = 𝑖𝑡 (24)

system (23) can be transformed into its complex system:
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+ 𝑎
32
𝑤
2
𝑧
3
+ 5𝑎
50
𝑧
4
+ 𝑎
50
𝑧
5
,

𝑑𝑤

𝑑𝑇
= − 𝛽𝑤 − (3𝜆 − 2𝑏

32
+
3

4
𝛽) 𝑧
2

− (3𝜆 − 3𝑏
32
− 2𝑏
50
+
5

4
𝛽) 𝑧
3

− (𝜆 − 𝑏
32
− 𝑏
50
+
1

2
𝛽) 𝑧
4

− (2𝜆 − 8𝑏
50
+
5

2
𝛽)𝑤𝑧

− (6𝜆 − 3𝑏
32
− 6𝑏
50
+ 3𝛽) 𝑧

2
𝑤

− (4𝜆 − 4𝑏
32
− 4𝑏
50
+ 2𝛽) 𝑧

3
𝑤

− (𝜆 − 𝑏
32
− 𝑏
50
+
1

2
𝛽) 𝑧
4
𝑤

− (2𝑏
32
− 𝜆 + 8𝑏

50
+
1

4
𝛽)𝑤
2

− (5𝑏
32
− 𝜆 − 2𝑏

50
+
1

4
𝛽) 𝑧𝑤

2

− 3𝑏
32
𝑤
2
𝑧
2
− (𝑏
32
+ 10𝑏
50
) 𝑤
3
− 2𝑏
32
𝑧𝑤
3

− 𝑏
32
𝑧
2
𝑤
3
− 5𝑏
50
𝑤
4
− 𝑏
50
𝑤
5
.

(25)
Through computing, we have the following theorem.

Theorem7. Thefirst five singular point quantities at the origin
of system (25) are

𝑢
1
= −

4𝑖𝐵
50
(4𝜆 − 2𝐴

32
− 12𝐴

50
+ 5𝛽)

𝛽2
,

𝑢
2
=
8𝑖𝐵
50
(𝛽 − 4𝐴

50
) (2𝐴
32
− 28𝐴

50
+ 5𝛽)

𝛽3
,

𝑢
3
= 8𝑖𝐵

50
(𝛽 − 4𝐴

50
)
2

(−4480𝐴
2

50
+ 560𝐵

2

50

+1992𝐴
50
𝛽 − 215𝛽

2
) (𝛽
5
)
−1

𝑢
4
= −

64𝑖𝐵
50
(𝛽 − 4𝐴

50
)
2

𝑓

175𝛽7
,

𝑢
5
= −

16384𝑖𝐴
3

50
𝐵
50
(𝛽 − 4𝐴

50
)
2

𝑔

1827307548828125𝛽9
,

(26)
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where
𝑓 = 67737600𝐴

4

50
− 63598080𝐴

3

50
𝛽 + 22017616𝐴

2

50
𝛽
2

− 3335040𝐴
50
𝛽
3
+ 186875𝛽

4
,

𝑔 = 16146722095087449600𝐴
3

50

− 9886197819204477680𝐴
2

50
𝛽

+ 2031858784197168536𝐴
50
𝛽
2

− 142685023001803215𝛽
3
.

(27)

Theorem 8. For system (25), the first five singular point
quantities are zero if and only if one of the following conditions
holds:

𝜆 =
1

2
(𝐴
32
− 4𝐴
50
) , 𝛽 = 4𝐴

50
; (28)

𝐵
50

= 0. (29)

Then we can get the following theorem.

Theorem 9. For system (25), all the singular point quantities
at the origin are zero if and only if the first five singular point
quantities are zero; that is, one of the conditions in Theorem 8
holds. Correspondingly, the conditions in Theorem 8 are the
center conditions of the origin.

Proof. Under condition (28), the system (25) becomes
𝑑𝑥

𝑑𝑡
= − 4𝐴

50
𝑦 − 20𝐴

50
𝑥𝑦 − (2𝐴

32
+ 26𝐴

50
) 𝑥
2
𝑦

− (2𝐴
32
+ 16𝐴

50
) 𝑥
3
𝑦 − (

1

2
𝐴
32
+ 4𝐴
50
)𝑥
4
𝑦

+ 8𝐵
50
𝑦
2
+ 24𝐵

50
𝑥𝑦
2
+ 24𝐵

50
𝑥
2
𝑦
2

+ 8𝐵
50
𝑥
3
𝑦
2
+ 2𝐴
50
𝑦
3
+ (8𝐴

50
− 2𝐴
32
) 𝑥𝑦
3

+ (4𝐴
50
− 𝐴
32
) 𝑥
2
𝑦
3
−
1

2
𝐴
32
𝑦
5
,

𝑑𝑦

𝑑𝑡
= 4𝐴
50
𝑥 + 2 (𝐴

32
+ 3𝐴
50
) 𝑥
2
+ 2 (2𝐴

32
+ 𝐴
50
) 𝑥
3

+
5

2
𝐴
32
𝑥
4
+
1

2
𝐴
32
𝑥
5
− 2𝐴
50
𝑦
2
+ 2 (𝐴

32
− 5𝐴
50
) 𝑥𝑦
2

+ 3 (𝐴
32
− 4𝐴
50
) 𝑥
2
𝑦
2
+ (𝐴
32
− 4𝐴
50
) 𝑥
3
𝑦
2

+ 8𝐵
50
𝑦
3
+ 16𝐵

50
𝑥𝑦
3
+ 8𝐵
50
𝑥
2
𝑦
3

+ (
1

2
𝐴
32
+ 4𝐴
50
)𝑦
4
+ (

1

2
𝐴
32
+ 4𝐴
50
)𝑥𝑦
4
.

(30)

System (30) has an integrating factor

𝑢 (𝑥, 𝑦) =
1

(1 + 2𝑥 + 𝑥2 + 𝑦2)
3
. (31)

Under condition (29), system (25) becomes

𝑑𝑥

𝑑𝑡
= − 𝛽𝑦 + (8𝜆 − 4𝐴

32
− 8𝐴
50
+ 𝛽) 𝑥𝑦

+ (16𝜆 − 10𝐴
32
− 20𝐴

50
+
13

2
𝛽) 𝑥
2
𝑦

+ (12𝜆 − 8𝐴
32
− 16𝐴

50
+ 6𝛽) 𝑥

3
𝑦

+ (3𝜆 − 2𝐴
32
− 4𝐴
50
+
3

2
𝛽) 𝑥
4
𝑦

+ (4𝜆 − 2𝐴
32
+ 4𝐴
50
+
3

2
𝛽)𝑦
3

+ (4𝜆 − 4𝐴
32
+ 8𝐴
50
+ 2𝛽) 𝑥𝑦

3

+ (2𝜆 − 2𝐴
32
+ 4𝐴
50
+ 𝛽) 𝑥

2
𝑦
3
− (𝜆 +

1

2
𝛽)𝑦
5
,

𝑑𝑦

𝑑𝑡
= 𝛽𝑥 + (4𝜆 +

7

2
𝛽) 𝑥
2
+ (8𝜆 +

9

2
) 𝛽𝑥
3

+ (5𝜆 +
5

2
𝛽) 𝑥
4
+ (𝜆 +

1

2
𝛽) 𝑥
5
+ (−8𝐴

50
+
3

2
𝛽)𝑦
2

+ (−4𝜆 + 4𝐴
32
− 16𝐴

50
−
1

2
𝛽) 𝑥𝑦

2

+ (−6𝜆 + 6𝐴
32
− 12𝐴

50
− 3𝛽) 𝑥

2
𝑦
2

+ (−2𝜆 + 2𝐴
32
− 4𝐴
50
− 𝛽) 𝑥

3
𝑦
2

+ (−3𝜆 + 2𝐴
32
+ 4𝐴
50
−
3

2
𝛽)𝑦
4

+ (−3𝜆 + 2𝐴
32
+ 4𝐴
50
−
3

2
𝛽) 𝑥𝑦

4
,

(32)

where (32) is symmetric with 𝑥 axis.

So we get the following theorem.

Theorem 10. The system (14) has five centers (0, 0), (±1, 0),
(0, ±1) when 𝐵

50
= 0. Namely, the system (1) has five centers

the infinity and (±1, 0), (0, ±1) when 𝐵
50

= 0.
The system (14) has four centers (±1, 0), (0, ±1) when 𝜆 =

(1/2)(𝐴
32
− 4𝐴
50
), 𝛽 = 4𝐴

50
, 𝐵
50

̸= 0. Namely, the system (1)
has four centers (±1, 0), (0, ±1) when 𝜆 = (1/2)(𝐴

32
− 4𝐴
50
),

𝛽 = 4𝐴
50
, and 𝐵

50
̸= 0.
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4. Bifurcation of Limit Circles

Theorem 11. For system (14), the (1, 0) is a fifth order weak
focus if and only if

𝜆 =
1

2
(20𝐴
50
− 5𝛽) ,

𝐴
32

=
1

2
(28𝐴
50
− 5𝛽) ,

𝐵
2

50
=
4480𝐴

2

50
− 1992𝐴

50
𝛽 + 215𝛽

2

560
,

𝑓 = 0, 𝑔 ̸= 0.

(33)

Proof. When 𝑢
1
= 𝑢
2
= 𝑢
3
= 𝑢
4
= 0, we could find suitable 𝛽

and 𝐴
50
to satisfy

𝐵
2

50
> 0, 𝑢

4
= 0, (34)

Resultant [𝑓, 𝑔, 𝐴
50
]

= 16309978866916163079012825599795663295988359261138540000000000000000000000000000000000𝛽
12
.

(35)

So the (1, 0) is a fifth order weak focus.

Theorem 12. Assume that the conditions in Theorem 11 hold.
Then the 5 limit cycles can bifurcate from the (1, 0) of System
(14), which lie in the neighborhood of the origin.

Proof. If the conditions in Theorem 11 hold, we can obtain
that the Jacobian of the 𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4

with respect to
𝜆, 𝐴
32
, 𝐵
50
, 𝐴
50

𝐽 =
𝐷 (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
)

𝐷 (𝜆, 𝐴
32
, 𝐵
50
, 𝐴
50
)

= −
2097152𝐵

5

50
(−4𝐴
50
+ 𝛽)
4

175𝛽17

× (203212800𝐴
4

50
− 192864000𝐴

3

50
𝛽

+ 67884512𝐴
50
𝛽
2
− 10506964𝐴

50
𝛽
3

+603755𝛽
4
) ;

Resultant [𝑓, 𝐽, 𝐴
50
]

= −661345270173473293422286219719475200000000𝛽
16
.

(36)

So 𝐽 ̸= 0. Applying the theory in [13], the result is completed.

Theorem 13. Assume that the conditions in Theorem 11 hold.
Then 1 limit cycle can bifurcate from the (0, 0) of System (14),
which lie in the neighborhood of the origin.

Since System (14) is Z4-equivariant, taking into account
Theorems 12 and 13, we conclude the following.

Theorem 14. Assume that the conditions in Theorem 11 hold.
Then 5 limit cycles can bifurcate from each of the four fine focus
points (±1, 0), (0, ±1) of System (14), and one limit circle could
be created from the origin at the same time; namely, 21 limit
cycles can bifurcate from the System (14) in all, five of which are
located in the neighborhood of each of the four fine focus points

(±1, 0), (0, ±1) and one of which is located in the neighborhood
of origin.

In fact, there are 21 limit cycles for system (1); 5 limit cycles
can bifurcate from each of the four fine focus points (±1, 0),
(0, ±1) of System (1), and one limit circle could be created
from the infinity at the same time; namely, 21 limit cycles can
bifurcate from the system (1) in all. It is a very interesting
result.

5. Period Constants and Isochronous
Center Conditions

In this section,we focus on the calculation of period constants
and isochronous center conditions of the origin and (1, 0)

for system (17) and (25). According to Theorems 2, we begin
by computing period constants through recursive formulae.
Under the center conditions given in Section 3, we discuss
three different relevant cases: (a) about the origin, case
condition (20) holds.

Theorem 15. Under condition (20), the origin of system (17)
is a complex isochronous center if and only if the following
conditions holds

𝐴
32

= 𝐵
50

= 0, 𝐴
50

= −2𝜆, 𝛽 = −4𝜆. (37)

Proof. If condition (20) holds,substituting 𝐵
50

= 0 into the
recursive formulae in Theorem 2, we can easily get the first
four period constants

𝜏
1
= −

4𝜆 + 2𝐴
32
+ 4𝐴
50
− 𝛽

2𝜆
,

𝜏
2
= −

64𝜆
2
+ 16𝜆𝐴

50
+ 20𝜆𝛽 + 3𝛽

2

8𝜆2
,

𝜏
3
= −

(4𝜆 + 𝛽) (80𝜆
2
+ 46𝜆𝛽 + 9𝛽

2
)

32𝜆3
,

𝜏
4
=
3𝛽 (4𝜆 + 𝛽) (104𝜆

2
+ 40𝜆𝛽 + 9𝛽

2
)

512𝜆4
.

(38)
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Clearly, 𝜏
1
= 𝜏
2
= 𝜏
3
= 𝜏
4
= 0 implies that condition (37)

holds.
On the other hand, case condition (37) holds, and system

(17) is changed into

𝑑𝑧

𝑑𝑇
= −𝑧 (𝑧 + 1) (𝑧 − 1) (𝑧

2
+ 1) ,

𝑑𝑤

𝑑𝑇
= (−1 + 𝑤)𝑤 (1 + 𝑤) (1 + 𝑤

2
) .

(39)

By means of transformation

𝜉 = 𝑧(𝑧
4
− 1)
−1/4

, 𝜂 = 𝑤(𝑤
4
− 1)
−1/4

, (40)

system (39) is reduced to a linear system.
Thus, the origin of system (17) is a complex isochronous

center.

(b) about (1, 0) of system (25).
When condition (28) holds, substituting 𝜆 = (1/2)(𝐴

32
−

4𝐴
50
), 𝛽 = 4𝐴

50
, into the recursive formulae in Theorem 2,

we easily obtain the first two period constants

𝜏
1
= −

𝐴
32
− 2𝐴
50

𝐴
32
− 4𝐴
50

, 𝜏
2
= −2. (41)

Thus (1, 0) could not be an isochronous center when condi-
tion (28) holds.

Theorem 16. (1, 0) of system (25) is a complex isochronous
center if and only if condition (37) holds.

Proof. When condition (29) holds, substituting 𝐵
50

into the
recursive formulae in Theorem 2, we easily obtain the first
four period constants:

𝜏
1
=
−4𝜆 + 10𝐴

32
− 4𝐴
50
+ 𝛽

2
,

𝜏
2
= (80𝜆 − 13392𝜆

2
+ 80𝐴

50
+ 17856𝜆𝐴

50

− 5952𝐴
2

50
− 20𝛽 − 15624𝜆𝛽

+10416𝐴
50
𝛽 − 4557𝛽

2
) (200)

−1
,

𝜏
3
=

1

8000
(−237312𝜆

2
+ 2939328𝜆

3

+ 208896𝜆𝐴
50
− 5878656𝜆

2
𝐴
50

− 46592𝐴
2

50
− 870912𝐴

3

50

− 299104𝜆𝛽 + 5143824𝜆
2
𝛽

+ 162816𝐴
50
𝛽 − 6858432𝐴

50
𝜆𝛽

+ 2286144𝐴
2

50
𝛽 − 103592𝛽

2

+ 3000564𝜆𝛽
2
− 2000376𝐴

50
𝛽
2

+583443𝛽
3
+ 3919104𝜆𝐴

2

50
) ,

𝜏
4
=

1

40000
(−51200𝜆

2
+ 28097664𝜆

3
+ 17356032𝜆

4

+ 57600𝜆𝐴
50
− 29498368𝜆

2
𝐴
50

− 46282752𝜆
3
𝐴
50
+ 6545472𝜆𝐴

2

50

+ 46282752𝜆
2
𝐴
2

50
+ 421504𝐴

3

50

− 20570112𝜆𝐴
3

50
+ 3428352𝐴

4

50

− 70400𝜆𝛽 + 40046432𝜆
2
𝛽

+ 40497408𝜆
3
𝛽 + 39600𝐴

50
𝛽

− 11200𝐴
2

50
− 80994816𝜆

2
𝐴50𝛽

+ 996112𝐴
2

50
𝛽 + 53996544𝜆𝐴

2

50
𝛽

− 11999232𝐴
3

50
𝛽 − 24200𝛽

2

+ 17793272𝜆𝛽
2
+ 35435232𝜆

2
𝛽
2

− 3856888𝐴
50
𝛽
2
− 47246976𝜆𝐴

50
𝛽
2

− 24098656𝜆𝐴50𝛽 + 15748992𝐴
2

50
𝛽
2

+ 2329754𝛽
3
+ 13780368𝜆𝛽

3

−9186912𝐴
50
𝛽
3
+ 2009637𝛽

4
) .

(42)

Denoting by

𝑔
1
= 𝑅 (𝜏

2
, 𝜏
3
, 𝜆) , 𝑔

2
= 𝑅 (𝜏

2
, 𝜏
4
, 𝜆) , (43)

where 𝑅(𝜏
𝑖
, 𝜏
𝑗
, 𝐴) is the resultant of 𝜏

𝑖
, 𝜏
𝑗
with respect to

𝐴, we have 𝑅(𝑔
1
, 𝑔
2
, 𝛽) = 0. From polynomioalremain-

der[𝑔
2
, 𝑔
1
, 𝐴
50
] = 0, we could get that 𝛽 = 2𝐴

50
. When

𝛽 = 2𝐴
50
, 𝜏
2
= 𝜏
3
= 𝜏
4
= 0 deduce 𝐴

32
= 𝐵
50

= 0,
𝐴
50

= −2𝜆, 𝛽 = −4𝜆.
Besides, when condition (37) holds, system (25) is

changed into

𝑑𝑧

𝑑𝑇
=
1

4
𝑧 (𝑧 + 1) (𝑧 + 2) (𝑧

2
+ 2𝑧 + 2) ,

𝑑𝑤

𝑑𝑇
= −

1

4
(1 + 𝑤)𝑤 (2 + 𝑤) (2 + 2𝑤 + 𝑤

2
) .

(44)

Letting that

𝜉 =
𝑧 (2 + 𝑧) (2 + 2𝑧 + 𝑧

2
)

(𝑧 + 1)
4

,

𝜂 =
𝑤 (2 + 𝑤) (2 + 2𝑤 + 𝑤

2
)

(𝑤 + 1)
4

,

(45)

system (44) is reduced to a linear system.
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FromTheorems 15 and 16, we can conclude the following
theorem.

Theorem 17. The infinity and four elementary singular points
(±1, 0), (0, ±1) are five isochronous centers of (1) if and only
if condition (37) holds; namely 𝐴

32
= 𝐵
50

= 0, 𝐴
50

= −2𝜆,
𝛽 = −4𝜆.
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