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Several notions of convergence for subsets of metric space appear in the literature. In this paper, we defineWijsman 𝐼-convergence
andWijsman 𝐼∗-convergence for sequences of sets and establish some basic theorems. Furthermore, we introduce the concepts of
Wijsman I-Cauchy sequence andWijsman 𝐼∗-Cauchy sequence and then study their certain properties.

1. Introduction and Background

The concept of convergence of sequences of points has been
extended by several authors (see [1–9]) to the concept of
convergence of sequences of sets. The one of these such
extensions that we will consider in this paper is Wijsman
convergence. We will define 𝐼-convergence for sequences of
sets and establish some basic results regarding these notions.

Let us start with fundamental definitions from the liter-
ature. The natural density of a set 𝐾 of positive integers is
defined by

𝛿 (𝐾) := lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| , (1)

where |𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾| denotes the number of elements of 𝐾
not exceeding 𝑛 ([10]).

Statistical convergence of sequences of points was intro-
duced by Fast [11]. In [12], Schoenberg established some basic
properties of statistical convergence and also studied the
concept as a summability method.

A number sequence 𝑥 = (𝑥
𝑘
) is said to be statistically

convergent to the number 𝜉 if, for every 𝜀 > 0,

lim
𝑛→∞

1

𝑛

{𝑘 ≤ 𝑛 :
𝑥𝑘 − 𝜉

 ≥ 𝜀}
 = 0.

(2)

In this case, we write 𝑠𝑡− lim𝑥
𝑘
= 𝜉. Statistical convergence is

a natural generalization of ordinary convergence. If lim𝑥
𝑘
=

𝜉, then 𝑠𝑡− lim𝑥
𝑘
= 𝜉. The converse does not hold in general.

Definition 1 (see [13]). A family of sets 𝐼 ⊆ 2N is called an
ideal on N if and only if

(i) 0 ∈ 𝐼;
(ii) for each 𝐴, 𝐵 ∈ 𝐼 one has 𝐴 ∪ 𝐵 ∈ 𝐼;
(iii) for each 𝐴 ∈ 𝐼 and each 𝐵 ⊆ 𝐴 one has 𝐵 ∈ 𝐼.
An ideal is called nontrivial if N ∉ 𝐼, and nontrivial ideal

is called admissible if {𝑛} ∈ 𝐼 for each 𝑛 ∈ N.

Definition 2 (see [14]). A family of sets 𝐹 ⊆ 2N is a filter in N

if and only if
(i) 0 ∉ 𝐹;
(ii) for each 𝐴, 𝐵 ∈ 𝐹 one has 𝐴 ∩ 𝐵 ∈ 𝐹;
(iii) for each 𝐴 ∈ 𝐹 and each 𝐵 ⊇ 𝐴 one has 𝐵 ∈ 𝐹.

Proposition 3 (see [14]). 𝐼 is a nontrivial ideal inN if and only
if

𝐹 = 𝐹 (𝐼) = {𝑀 = N \ 𝐴 : 𝐴 ∈ 𝐼} (3)

is a filter in N.

Definition 4 (see [14]). Let 𝐼 be a nontrivial ideal of subsets of
N. A number sequence (𝑥

𝑛
)
𝑛∈N is said to be 𝐼-convergent to 𝜉

(𝜉 = 𝐼 − lim
𝑛→∞

𝑥
𝑛
) if and only if for each 𝜀 > 0 the set

{𝑘 ∈ N :
𝑥𝑘 − 𝜉

 ≥ 𝜀} (4)

belongs to 𝐼. The element 𝜉 is called the 𝐼 limit of the number
sequence 𝑥 = (𝑥

𝑛
)
𝑛∈N.
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The concept of 𝐼-convergence of real sequences is a
generalization of statistical convergence which is based on
the structure of the ideal 𝐼 of subsets of the set of natural
numbers. Kostyrko et al. [14] introduced the concept of 𝐼-
convergence of sequences in a metric space and studied
some properties of this convergence. 𝐼-convergence of real
sequences coincides with the ordinary convergence if 𝐼 is the
ideal of all finite subsets of N and with the statistical conver-
gence if 𝐼 is the ideal of subsets of N of natural density zero.

Definition 5 (see [14]). An admissible ideal 𝐼 ⊆ 2N is said to
have the property (AP) if for any sequence {𝐴

1
, 𝐴
2
, . . .} of

mutually disjoint sets of 𝐼, there is sequence {𝐵
1
, 𝐵
2
, . . .} of

sets such that each symmetric difference 𝐴
𝑖
Δ𝐵
𝑖
(𝑖 = 1, 2, . . .)

is finite and⋃∞
𝑖=1
𝐵
𝑖
∈ 𝐼.

Definition 5 is similar to the condition (APO) used in [15].
In [14], the concept of 𝐼∗-convergence which is closely

related to 𝐼-convergence has been introduced.

Definition 6 (see [14]). A sequence 𝑥 = (𝑥
𝑛
) of elements of𝑋

is said to be 𝐼∗-convergence to 𝜉 if and only if there exists a
set𝑀 ∈ 𝐹(𝐼),

𝑀 = {𝑚 = (𝑚
𝑖
) : 𝑚
𝑖
< 𝑚
𝑖+1
, 𝑖 ∈ N} ⊂ N (5)

such that lim
𝑘→∞

𝑥
𝑚𝑘
= 𝜉.

In [14], it is proved that 𝐼-convergence and 𝐼∗-con-
vergence are equivalent for admissible ideals with property
(AP).

Also, in order to prove that 𝐼-convergent sequence coin-
cides with 𝐼∗-convergent sequence for admissible ideals with
property (AP), we need the following lemma.

Lemma 7 (see [13]). Let {𝑃
𝑖
}
∞

𝑖=1
be a countable collection of

subsets ofN such that 𝑃
𝑖
∈ 𝐹(𝐼) is a filter which associates with

an admissible ideal 𝐼 with property (AP). Then there exists a
set 𝑃 ⊂ N such that 𝑃 ∈ 𝐹(𝐼) and the set 𝑃 \ 𝑃

𝑖
is finite for all 𝑖.

Theorem 8 (see [13]). Let 𝐼 ⊆ 2N be an admissible ideals with
property (AP) and 𝑥 = (𝑥

𝑛
) be a number sequence. Then 𝐼 −

lim
𝑛→∞

𝑥
𝑛
= 𝜉 if and only if there exists a set 𝑃 ∈ 𝐹(𝐼), 𝑃 =

{𝑝 = (𝑝
𝑖
) : 𝑝
𝑖
< 𝑝
𝑖+1
, 𝑖 ∈ N} such that lim

𝑘→∞
𝑥
𝑝𝑘
= 𝜉.

Definition 9 (see [9]). Let (𝑋, 𝑑) be a metric space. For any
nonempty closed subsets 𝐴,𝐴

𝑘
⊆ 𝑋, one says that the

sequence {𝐴
𝑘
} is Wijsman convergent to 𝐴:

lim
𝑘→∞

𝑑 (𝑥, 𝐴
𝑘
) = 𝑑 (𝑥, 𝐴) (6)

for each 𝑥 ∈ 𝑋. In this case one writes𝑊− lim
𝑘→∞

𝐴
𝑘
= 𝐴.

As an example, consider the following sequence of circles
in the (𝑥, 𝑦)-plane: 𝐴

𝑘
= {(𝑥, 𝑦) : 𝑥

2

+ 𝑦
2

+ 2𝑘𝑥 = 0}. As
𝑘 → ∞ the sequence is Wijsman convergent to the 𝑦-axis
𝐴 = {(𝑥, 𝑦) : 𝑥 = 0}.

Definition 10 (see [16]). Let (𝑋, 𝑑) be a metric space. For
any nonempty closed subsets 𝐴,𝐴

𝑘
⊆ 𝑋, one says that the

sequence {𝐴
𝑘
} is Wijsman statistical convergent to 𝐴 if for

𝜀 > 0 and for each 𝑥 ∈ 𝑋,

lim
𝑛→∞

1

𝑛

{𝑘 ≤ 𝑛 :
𝑑 (𝑥, 𝐴𝑘) − 𝑑 (𝑥, 𝐴)

 ≥ 𝜀}
 = 0.

(7)

In this case one writes 𝑠𝑡 − lim
𝑊
𝐴
𝑘
= 𝐴 or 𝐴

𝑘
→ 𝐴(WS).

Consider

WS := {{𝐴
𝑘
} : 𝑠𝑡 − lim

𝑊

𝐴
𝑘
= 𝐴} , (8)

where WS denotes the set of Wijsman statistical convergence
sequences.

Also the concept of bounded sequence for sequences of
sets was given by Nuray and Rhoades [16] as follows.

Let (𝑋, 𝜌) be a metric space. For any nonempty closed
subsets 𝐴

𝑘
of 𝑋, one says that the sequence {𝐴

𝑘
} is bounded

if sup
𝑘
𝑑(𝑥, 𝐴

𝑘
) < ∞ for each 𝑥 ∈ 𝑋.

2. Wijsman 𝐼-Convergence

In this section, we will define Wijsman 𝐼-convergence and
Wijsman 𝐼∗-convergence of sequences of sets, give the rela-
tionship between them, and establish some basic theorems.

Definition 11. Let (𝑋, 𝑑) be a metric space and 𝐼 ⊆ 2N be a
proper ideal in N. For any nonempty closed subsets 𝐴,𝐴

𝑘
⊂

𝑋, one says that the sequence {𝐴
𝑘
} is Wijsman 𝐼-convergent

to 𝐴, if, for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋, the set

𝐴 (𝑥, 𝜀) = {𝑘 ∈ N :
𝑑 (𝑥, 𝐴𝑘) − 𝑑 (𝑥, 𝐴)

 ≥ 𝜀} (9)

belongs to 𝐼. In this case, onewrites 𝐼
𝑊
−lim𝐴

𝑘
= 𝐴 or𝐴

𝑘
→

𝐴(𝐼
𝑊
), and the set ofWijsman 𝐼-convergent sequences of sets

will be denoted by

𝐼
𝑊
= {{𝐴

𝑘
} : {𝑘 ∈ N :

𝑑 (𝑥, 𝐴𝑘) − 𝑑 (𝑥, 𝐴)
 ≥ 𝜀} ∈ 𝐼} . (10)

Example 12. 𝐼 ⊆ 2N be a proper ideal in N, (𝑋, 𝑑) a metric
space, and 𝐴,𝐴

𝑘
⊂ 𝑋 nonempty closed subsets. Let 𝑋 = R2,

{𝐴
𝑘
} be following sequence:

𝐴
𝑘
= {
{(𝑥, 𝑦) ∈ R2 : 𝑥2 + 𝑦2 − 2𝑘𝑦 = 0} if, 𝑘 ̸= 𝑛

2

{(𝑥, 𝑦) ∈ R2 : 𝑦 = −1} if, 𝑘 = 𝑛2,

𝐴 = {(𝑥, 𝑦) ∈ R
2

: 𝑦 = 0} .

(11)

For 𝑘 = 𝑛2,𝑑((𝑥, 𝑦), 𝐴
𝑛
2) = |𝑦+1| ̸= 𝑑((𝑥, 𝑦); 𝐴) = |𝑦|. Let

us take a point (𝑥∗, 𝑦∗) outside 𝑥2 + 𝑦2 − 2𝑘𝑦 = 0. For 𝑘 ̸= 𝑛
2,

we write 𝑑((𝑥∗, 𝑦∗), 𝐴
𝑘
) → 𝑑((𝑥

∗

, 𝑦
∗

), 𝐴) = |𝑦
∗

|. Since the
line equation is

𝑥 − 0

𝑥∗
=
𝑦 − 𝑘

𝑦∗ − 𝑘
, (12)

where the line is passing from (0, 𝑘) the center point of the
circle and (𝑥∗, 𝑦∗) the outside of the circle, we write 𝑦 = 𝑘 +
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((𝑦
∗

− 𝑘)/𝑥
∗

) ⋅ 𝑥. If we write this 𝑦 = 𝑘 + ((𝑦∗ − 𝑘)/𝑥∗) ⋅ 𝑥
value on the circle equation 𝑥2 + 𝑦2 − 2𝑘𝑦 = 0, we can get

𝑥 =
|𝑘| ⋅ 𝑥

∗

√(𝑥
∗
)
2

+ (𝑦∗ − 𝑘)
2

. (13)

For 𝑘 → ∞, if we take limit, it will be 𝑥 → 𝑥
∗. If we write

𝑥 = (|𝑘|⋅𝑥
∗

)/√(𝑥∗)
2

+ (𝑦∗ − 𝑘)
2 on the 𝑦 = 𝑘+((𝑦∗−𝑘)/𝑥∗)⋅

𝑥, we get 𝑦 → 0 (𝑘 → ∞). Thus, for 𝑘 ̸= 𝑛
2

𝑑 ((𝑥
∗

, 𝑦
∗

) , 𝐴
𝑘
) = √(𝑥 − 𝑥

∗
)
2

+ (𝑦 − 𝑦∗)
2

→
𝑦
∗ .

(14)

Sowe get𝑑((𝑥∗, 𝑦∗), 𝐴
𝑘
) → 𝑑((𝑥

∗

, 𝑦
∗

), 𝐴) = |𝑦
∗

|, for 𝑘 ̸= 𝑛
2.

For 𝑘 = 𝑛
2 and 𝑘 ̸= 𝑛

2, the set sequence {𝐴
𝑘
} has two

different limits. Thus {𝐴
𝑘
} is not Wijsman convergent to set

𝐴, but

{𝑘 ∈ N :
𝑑 ((𝑥, 𝑦) , 𝐴𝑘) − 𝑑 ((𝑥, 𝑦) , 𝐴)

 ≥ 𝜀}

= {𝑘 ∈ N : 𝑘 = 𝑛
2

} ⊂ 𝐼
𝑑
.

(15)

Thus, suppose that

𝐴 (𝑥, 𝑦, 𝜀) = {𝑘 ∈ N :
𝑑 ((𝑥, 𝑦) , 𝐴𝑘) − 𝑑 ((𝑥, 𝑦) , 𝐴)

 ≥ 𝜀}

(16)

for 𝜀 > 0 and for each (𝑥, 𝑦) ∈ R2.
Since lim

𝑘→∞
[|𝑑((𝑥, 𝑦), 𝐴

𝑘
) − 𝑑((𝑥, 𝑦), 𝐴)|] = 0, for

𝑘 ̸= 𝑛
2, for each 𝜀 > 0,

∃𝑘
𝜀
∈ N : ∀𝑘 > 𝑘

𝜀
:
𝑑 ((𝑥, 𝑦) , 𝐴𝑘) − 𝑑 ((𝑥, 𝑦) , 𝐴)

 < 𝜀.

(17)

Define the set 𝐴
𝑘𝜀
(𝑥, 𝑦) as

𝐴
𝑘𝜀
(𝑥, 𝑦) := {𝑘 ∈ N :

𝑑 ((𝑥, 𝑦) , 𝐴𝑘) − 𝑑 ((𝑥, 𝑦) , 𝐴)
 > 𝜀} .

(18)

Thus, since 𝐴(𝑥, 𝑦, 𝜀) = 𝐴
𝑘𝜀
(𝑥, 𝑦) ∪ {𝑘 ∈ N : 𝑘 = 𝑛2} and

𝐴
𝑘𝜀
(𝑥, 𝑦) ∈ 𝐼

𝑑
and {𝑘 ∈ N : 𝑘 = 𝑛2} ∈ 𝐼

𝑑
, we can write

𝐴 (𝑥, 𝑦, 𝜀)

:= {𝑘 ∈ N :
𝑑 ((𝑥, 𝑦) , 𝐴𝑘) − 𝑑 ((𝑥, 𝑦) , 𝐴)

 > 𝜀} ∈ 𝐼𝑑,

(19)

where 𝐼
𝑑
= {𝐴 : 𝛿(𝐴) = 0}. So the set sequence {𝐴

𝑛
} is

Wijsman 𝐼-convergent to set 𝐴.

Example 13. Let 𝐼 ⊆ 2N be a proper ideal inN, (𝑋, 𝑑) a metric
space, and 𝐴,𝐴

𝑛
⊂ 𝑋 nonempty closed subsets. Let 𝑋 = R2,

{𝐴
𝑛
} be following sequence:

𝐴
𝑛

=

{

{

{

{(𝑥, 𝑦) ∈ R2 : 0 ≤ 𝑥 ≤ 𝑛, 0 ≤ 𝑦 ≤
1

𝑛
⋅ 𝑥} , if, 𝑛 ̸= 𝑘

2

{(𝑥, 𝑦) ∈ R2 : 𝑥 ≥ 0, 𝑦 = 1} , if, 𝑛 = 𝑘2,

𝐴 = {(𝑥, 𝑦) ∈ R
2

: 𝑥 ≥ 0, 𝑦 = 0} .

(20)

Since

lim
𝑛→∞

1

𝑛

{𝑘 ≤ 𝑛 :
𝑑 ((𝑥, 𝑦) , 𝐴𝑛) − 𝑑 ((𝑥, 𝑦) , 𝐴)

 ≥ 𝜀}
 = 0,

(21)

the set sequence {𝐴
𝑛
} is Wijsman statistical convergent to

set 𝐴. Thus we can write 𝑠𝑡 − lim
𝑊
𝐴
𝑛
= 𝐴, but this

sequence is not Wijsman convergent to set 𝐴. Because for
𝑛 ̸= 𝑘
2, lim

𝑛→∞
𝑑((𝑥, 𝑦), 𝐴

𝑛
) = 𝑑((𝑥, 𝑦), 𝐴), but for 𝑛 = 𝑘2,

lim
𝑛→∞

𝑑((𝑥, 𝑦), 𝐴
𝑛
) ̸= 𝑑((𝑥, 𝑦), 𝐴). Let 𝐼

𝑑
⊂ 2

N be proper
ideal. Define set 𝐾 as

𝐾 = 𝐾 (𝜀) = {𝑛 ∈ N :
𝑑 ((𝑥, 𝑦) , 𝐴𝑛) − 𝑑 ((𝑥, 𝑦) , 𝐴)

 ≥ 𝜀} .

(22)

If we take 𝐼
𝑑
for 𝐼, Wijsman ideal convergent coincides

with Wijsman statistical convergent. Really, one has

{𝑛 ∈ N :
𝑑 ((𝑥, 𝑦) , 𝐴𝑛) − 𝑑 ((𝑥, 𝑦) , 𝐴)

 ≥ 𝜀}

= {𝑛 ∈ N : 𝑛 = 𝑘
2

} ⊂ 𝐼
𝑑
.

(23)

Since the Wijsman topology is not first countable in
general, if {𝐴

𝑘
} is convergent to the set 𝐴 Wijsman sense,

every subsequence of {𝐴
𝑘
} may not be convergent to 𝐴. But

if 𝑋 is separable, then every subsequence of a convergent set
sequence is convergent to the same limit.

Definition 14. Let 𝐼 ⊆ 2N be a proper ideal in N and (𝑋, 𝑑) be
a separable metric space. For any nonempty closed subsets
𝐴,𝐴
𝑘
⊂ 𝑋, one says that the sequence {𝐴

𝑘
} is Wijsman

𝐼
∗-convergent to 𝐴, if and only if there exists a set 𝑀 ∈

𝐹(𝐼), 𝑀 = {𝑚 = (𝑚
𝑖
) : 𝑚
𝑖
< 𝑚
𝑖+1
, 𝑖 ∈ N} ⊂ N such that

for each 𝑥 ∈ 𝑋

lim
𝑘→∞

𝑑 (𝑥, 𝐴
𝑚𝑘
) = 𝑑 (𝑥, 𝐴) . (24)

In this case, one writes 𝐼∗
𝑊
− lim𝐴

𝑘
= 𝐴.

Definition 15. Let 𝐼 ⊆ 2N be an admissible ideal in N and
(𝑋, 𝑑) be a separable metric space. For any nonempty closed
subset 𝐴

𝑛
in 𝑋, one says that the sequence {𝐴

𝑛
} is Wijsman

𝐼-Cauchy sequence if for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋, there
exists a number𝑁 = 𝑁(𝜀) such that

{𝑛 ∈ N :
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴𝑁)

 ≥ 𝜀} (25)

belongs to 𝐼.

Definition 16. Let 𝐼 ⊆ 2N be an admissible ideal in N and
(𝑋, 𝑑) be a separable metric space. For any nonempty closed
subsets 𝐴

𝑘
⊂ 𝑋, one says that the sequence {𝐴

𝑘
} is Wijsman

𝐼
∗-Cauchy sequences if there exists a set𝑀 = {𝑚 = (𝑚

𝑖
) :

𝑚
𝑖
< 𝑚
𝑖+1
, 𝑖 ∈ N} ⊂ N,𝑀 ∈ 𝐹(𝐼) such that the subsequence

𝐴
𝑀
= {𝐴
𝑚𝑘
} is Wijsman Cauchy in𝑋; that is,

lim
𝑘,𝑝→∞


𝑑 (𝑥, 𝐴

𝑚𝑘
) − 𝑑 (𝑥, 𝐴

𝑚𝑝
)

= 0. (26)

Now we will prove that Wijsman 𝐼-convergence implies
the Wijsman 𝐼-Cauchy condition.
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Theorem 17. Let 𝐼 be an arbitrary admissible ideal and let 𝑋
be a separable metric space.Then 𝐼

𝑊
− lim𝐴

𝑛
= 𝐴 implies that

{𝐴
𝑛
} is Wijsman 𝐼-Cauchy sequence.

Proof. Let 𝐼 be an arbitrary admissible ideal and 𝐼
𝑊
−lim𝐴

𝑛
=

𝐴. Then for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋, we have

𝐴 (𝑥, 𝜀) = {𝑛 ∈ N :
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)

 ≥ 𝜀} (27)

that belongs to 𝐼. Since 𝐼 is an admissible ideal, there exists an
𝑛
0
∈ N such that 𝑛

0
∉ 𝐴(𝑥, 𝜀).

Let 𝐵(𝑥, 𝜀) = {𝑛 ∈ N : |𝑑(𝑥, 𝐴
𝑛
)−𝑑(𝑥, 𝐴

𝑛0
)| ≥ 2𝜀}. Taking

into account the inequality

𝑑 (𝑥, 𝐴

𝑛
) − 𝑑 (𝑥, 𝐴

𝑛0
)


≤
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)

 +

𝑑 (𝑥, 𝐴

𝑛0
) − 𝑑 (𝑥, 𝐴)


,

(28)

we observe that if 𝑛 ∈ 𝐵(𝑥, 𝜀), then
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)

 +

𝑑 (𝑥, 𝐴

𝑛0
) − 𝑑 (𝑥, 𝐴)


≥ 2𝜀. (29)

On the other hand, since 𝑛
0
∉ 𝐴(𝑥, 𝜀), we have |𝑑(𝑥, 𝐴

𝑛0
) −

𝑑(𝑥, 𝐴)| < 𝜀. Here we conclude that |𝑑(𝑥, 𝐴
𝑛
) − 𝑑(𝑥, 𝐴)| ≥ 𝜀;

hence 𝑛 ∈ 𝐴(𝑥, 𝜀). Observe that 𝐵(𝑥, 𝜀) ⊂ 𝐴(𝑥, 𝜀) ∈ 𝐼 for each
𝜀 > 0 and for each 𝑥 ∈ 𝑋. This gives that 𝐵(𝑥, 𝜀) ∈ 𝐼; that is
{𝐴
𝑛
} is Wijsman 𝐼-Cauchy sequence.

Theorem 18. Let 𝐼 be an admissible ideal and let 𝑋 be
a separable metric space. If {𝐴

𝑛
} is Wijsman 𝐼∗-Cauchy

sequence, then it is Wijsman 𝐼-Cauchy sequence.

Proof. Let {𝐴
𝑛
} beWijsman 𝐼∗-Cauchy sequence; then by the

definition, there exists a set𝑀 = {𝑚 = (𝑚
𝑖
) : 𝑚
𝑖
< 𝑚
𝑖+1
, 𝑖 ∈

N} ⊂ N,𝑀 ∈ 𝐹(𝐼) such that

𝑑 (𝑥, 𝐴

𝑚𝑘
) − 𝑑 (𝑥, 𝐴

𝑚𝑝
)

< 𝜀 (30)

for each 𝜀 > 0, for each 𝑥 ∈ 𝑋, and for all 𝑘, 𝑝 > 𝑘
0
= 𝑘
0
(𝜀).

Let𝑁 = 𝑁(𝜀) = 𝑚
𝑘0+1

. Then for every 𝜀 > 0, we have

𝑑 (𝑥, 𝐴

𝑚𝑘
) − 𝑑 (𝑥, 𝐴

𝑁
)

< 𝜀, 𝑘 > 𝑘

0
. (31)

Now let𝐻 = N \ 𝑀. It is clear that𝐻 ∈ 𝐼 and that

𝐴 (𝑥, 𝜀) = {𝑛 ∈ N :
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴𝑁)

 ≥ 𝜀}

⊂ 𝐻 ∪ {𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑘0
}

(32)

belongs to 𝐼. Therefore, for every 𝜀 > 0, we can find a 𝑁 =

𝑁(𝜀) such that𝐴(𝑥, 𝜀) ∈ 𝐼; that is, {𝐴
𝑛
} is Wijsman 𝐼-Cauchy

sequence. Hence the proof is complete.

In order to prove that Wijsman 𝐼-convergent sequence
coincides withWijsman 𝐼∗-convergent sequence for admissi-
ble ideals with property (AP), we need the following lemma.

Lemma 19. Let 𝐼 ⊆ 2
N be an admissible ideal with pro-

perty (AP) and (𝑋, 𝑑) a separable metric space. If 𝐼
𝑊
−

lim
𝑛→∞

𝑑(𝑥, 𝐴
𝑛
) = 𝑑(𝑥, 𝐴), then there exists a set 𝑃 ∈

𝐹(𝐼) 𝑃 = {𝑝 = (𝑝
𝑖
) : 𝑝

𝑖
< 𝑝
𝑖+1
, 𝑖 ∈ N} such that 𝐼

𝑊
−

lim
𝑘→∞

𝑑(𝑥, 𝐴
𝑝𝑘
) = 𝑑(𝑥, 𝐴).

Theorem 20. Let 𝐼 ⊆ 2N be an admissible ideal with property
(AP), let (𝑋, 𝑑) be an arbitrary separable metric space and 𝑥 =
(𝑥
𝑛
) ∈ 𝑋. Then, 𝐼

𝑊
− lim
𝑛→∞

𝑑(𝑥, 𝐴
𝑛
) = 𝑑(𝑥, 𝐴), if and only

if there exists a set 𝑃 ∈ 𝐹(𝐼), 𝑃 = {𝑝 = (𝑝
𝑖
) : 𝑝
𝑖
< 𝑝
𝑖+1
, 𝑖 ∈ N}

such that 𝐼
𝑊
− lim
𝑘→∞

𝑑(𝑥, 𝐴
𝑝𝑘
) = 𝑑(𝑥, 𝐴).

Now we prove that, a Wijsman 𝐼-Cauchy sequence
coincides with aWijsman 𝐼∗-Cauchy sequence for admissible
ideals with property (AP).

Theorem 21. If 𝐼 ⊆ 2N is an admissible ideal with property
(AP) and if (𝑋, 𝑑) is a separable metric space, then the
conceptsWijsman 𝐼-Cauchy sequence andWijsman 𝐼∗-Cauchy
sequence coincide.

Proof. If a sequence isWijsman 𝐼∗-Cauchy, then it isWijsman
𝐼-Cauchy by Theorem 18 where 𝐼 does not need to have
the (AP) property. Now it is sufficient to prove that {𝐴

𝑛
} is

Wijsman 𝐼∗-Cauchy sequence in 𝑋 under assumption that
{𝐴
𝑛
} is aWijsman 𝐼-Cauchy sequence. Let {𝐴

𝑛
} be aWijsman

𝐼-Cauchy sequence. Then by definition, there exists a 𝑁 =

𝑁(𝜀) such that

𝐴 (𝑥, 𝜀) = {𝑛 ∈ N :
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴𝑁)

 ≥ 𝜀} ∈ 𝐼 (33)

for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋.
Let 𝑃
𝑖
= {𝑛 ∈ N : |𝑑(𝑥, 𝐴

𝑛
)−𝑑(𝑥, 𝐴

𝑚𝑖
)| < 1/𝑖}, 𝑖 = 1, 2, . . .

where 𝑚
𝑖
= 𝑁(1/𝑖). It is clear that 𝑃

𝑖
∈ 𝐹(𝐼) for 𝑖 = 1, 2, . . ..

Since 𝐼 has (AP) property, then by Lemma 7 there exists a set
𝑃 ⊂ N such that 𝑃 ∈ 𝐹(𝐼) and 𝑃 \ 𝑃

𝑖
is finite for all 𝑖. Now we

show that

lim
𝑛,𝑚→∞

𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴𝑚)
 = 0. (34)

To prove this, let 𝜀 > 0, 𝑥 ∈ 𝑋, and 𝑗 ∈ N such that 𝑗 > 2/𝜀. If
𝑚, 𝑛 ∈ 𝑃 then 𝑃\𝑃

𝑖
is finite set, therefore there exists 𝑘 = 𝑘(𝑗)

such that

𝑑 (𝑥, 𝐴

𝑛
) − 𝑑 (𝑥, 𝐴

𝑚𝑗
)

<
1

𝑗
,


𝑑 (𝑥, 𝐴

𝑚
) − 𝑑 (𝑥, 𝐴

𝑚𝑗
)

<
1

𝑗

(35)

for all𝑚, 𝑛 > 𝑘(𝑗). Hence it follows that

𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴𝑚)
 <


𝑑 (𝑥, 𝐴

𝑛
) − 𝑑 (𝑥, 𝐴

𝑚𝑗
)


+

𝑑 (𝑥, 𝐴

𝑚
) − 𝑑 (𝑥, 𝐴

𝑚𝑗
)

< 𝜀

(36)

for𝑚, 𝑛 > 𝑘(𝑗).
Thus, for any 𝜀 > 0, there exists 𝑘 = 𝑘(𝜀) and 𝑛,𝑚 ∈ 𝑃 ∈

𝐹(𝐼):
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴𝑚)

 < 𝜀. (37)

This shows that the sequences {𝐴
𝑛
} is a Wijsman 𝐼∗-Cauchy

sequence.
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Theorem 22. Let 𝐼 be an admissible ideal and (𝑋, 𝑑) a
separable metric space. Then 𝐼∗

𝑊
− lim𝐴

𝑘
= 𝐴 implies that

{𝐴
𝑛
} is a Wijsman 𝐼-Cauchy sequence.

Proof. Let 𝐼∗
𝑊
− lim𝐴

𝑘
= 𝐴. Then by definition there exists a

set𝑀 ∈ 𝐹(𝐼), 𝑀 = {𝑚 = (𝑚
𝑖
) : 𝑚
𝑖
< 𝑚
𝑖+1
, 𝑖 ∈ N} ⊂ N such

that

lim
𝑘→∞

𝑑 (𝑥, 𝐴
𝑚𝑘
) = 𝑑 (𝑥, 𝐴) (38)

for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋, and 𝑘, 𝑝 > 𝑘
0
,


𝑑 (𝑥, 𝐴

𝑚𝑘
) − 𝑑 (𝑥, 𝐴

𝑚𝑝
)


<

𝑑 (𝑥, 𝐴

𝑚𝑘
) − 𝑑 (𝑥, 𝐴)


+

𝑑 (𝑥, 𝐴

𝑚𝑝
) − 𝑑 (𝑥, 𝐴)



<
𝜀

2
+
𝜀

2
= 𝜀.

(39)

Therefore,

lim
𝑘,𝑝→∞


𝑑 (𝑥, 𝐴

𝑚𝑘
) − 𝑑 (𝑥, 𝐴

𝑚𝑝
)

= 0. (40)

Hence, {𝐴
𝑛
} is a Wijsman 𝐼-Cauchy sequence.

Theorem 23. Let 𝐼 be an admissible ideal and (𝑋, 𝑑) a
separable metric space. If the ideal 𝐼 has property (AP) and if
(𝑋, 𝑑) is an arbitrary metric space, then for arbitrary sequence
{𝐴
𝑛
}
𝑛∈N of elements of 𝑋 𝐼

𝑊
− lim𝐴

𝑛
= 𝐴 implies 𝐼∗

𝑊
−

lim𝐴
𝑛
= 𝐴.

Proof. Suppose that 𝐼 satisfies condition (AP). Let 𝐼
𝑊
−

lim𝐴
𝑛
= 𝐴. Then

𝑇 (𝜀, 𝑥) = {𝑛 ∈ N :
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)

 ≥ 𝜀} ∈ 𝐼 (41)

for each 𝜀 > 0 and for each 𝑥 ∈ 𝑋. Put

𝑇
1
= {𝑛 ∈ N :

𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)
 ≥ 1} ,

𝑇
𝑛
= {𝑛 ∈ N :

1

𝑛
≤
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)

 <
1

𝑛 − 1
}

(42)

for 𝑛 ≥ 2, and 𝑛 ∈ N. Obviously 𝑇
𝑖
∩ 𝑇
𝑗
= 0 for 𝑖 ̸= 𝑗. By

condition (AP) there exists a sequence of sets {𝑉
𝑛
}
𝑛∈N such

that 𝑇
𝑗
Δ𝑉
𝑗
are finite sets for 𝑗 ∈ N and 𝑉 = ⋃∞

𝑗=1
𝑉
𝑗
∈ 𝐼. It is

sufficient to prove that for𝑀 = N \ 𝑉,𝑀 = {𝑚 = (𝑚
𝑖
) : 𝑚
𝑖
<

𝑚
𝑖+1
, 𝑖 ∈ N} ∈ 𝐹(𝐼), we have lim

𝑘→∞
𝑑(𝑥, 𝐴

𝑚𝑘
) = 𝑑(𝑥, 𝐴).

Let 𝛾 > 0. Choose 𝑘 ∈ N such that 1/(𝑘 + 1) < 𝛾. Then

{𝑛 ∈ N :
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)

 ≥ 𝛾} ⊂

𝑘+1

⋃

𝑗=1

𝑇
𝑗
. (43)

Since 𝑇
𝑗
Δ𝑉
𝑗
, 𝑗 = 1, 2, . . . are finite sets, there exists 𝑛

0
∈ N

such that

(

𝑘+1

⋃

𝑗=1

𝑉
𝑗
) ∩ {𝑛 ∈ N : 𝑛 > 𝑛

0
}

= (

𝑘+1

⋃

𝑗=1

𝑇
𝑗
) ∩ {𝑛 ∈ N : 𝑛 > 𝑛

0
} .

(44)

If 𝑛 > 𝑛
0
and 𝑛 ∉ 𝑉, so 𝑛 ∉ ⋃𝑘+1

𝑗=1
𝑉
𝑗
and by (44) 𝑛 ∉ ⋃𝑘+1

𝑗=1
𝑇
𝑗
.

But then |𝑑(𝑥, 𝐴
𝑛
) − 𝑑(𝑥, 𝐴)| < 1/(𝑛 + 1) < 𝛾 for each 𝑥 ∈ 𝑋,

so we have lim
𝑘→∞

𝑑(𝑥, 𝐴
𝑚𝑘
) = 𝑑(𝑥, 𝐴).

3. Wijsman 𝐼-Limit Points and Wijsman
𝐼-Cluster Points Sequences of Sets

In this section, we introduce Wijsman 𝐼-limit points of
sequences of sets and Wijsman 𝐼-cluster points of sequences
of sets, prove some basic properties of these concepts, and
establish some basic theorems.

Definition 24. Let 𝐼 ⊆ 2N a proper ideal in N and (𝑋, 𝑑) a
separable metric space. For any nonempty closed subsets𝐴

𝑛
,

𝐵
𝑛
⊂ 𝑋, one says that the sequences {𝐴

𝑛
} and {𝐵

𝑛
} are almost

equal with respect to 𝐼 if

{𝑛 ∈ N : 𝐴
𝑛
̸= 𝐵
𝑛
} ∈ 𝐼, (45)

and we write 𝐼-a.a.n 𝐴
𝑛
= 𝐵
𝑛
.

Definition 25. Let 𝐼 ⊆ 2N be a proper ideal inN and let (𝑋, 𝑑)
be a separable metric space; 𝐴

𝑛
is nonempty closed subset

of 𝑋. If {𝐴
𝑛
}
𝐾
is subsequence of {𝐴

𝑛
} and 𝐾 := {𝑛(𝑗) : 𝑗 ∈

N}, then we abbreviate {𝐴
𝑛𝑗
} by {𝐴

𝑛
}
𝐾
. If 𝐾 ∈ 𝐼, then {𝐴

𝑛
}
𝐾

subsequence is called thin subsequence of {𝐴
𝑛
}. If𝐾 ∉ 𝐼, then

{𝐴
𝑛
}
𝐾
subsequence is called nonthin subsequence of {𝐴

𝑛
}.

Definition 26. Let 𝐼 ⊆ 2N be a proper ideal inN and let (𝑋, 𝑑)
be a separable metric space, for any nonempty closed subsets
𝐴
𝑘
⊂ 𝑋. One has the following.

(i) 𝐴 ∈ 𝑋 is said to be a Wijsman 𝐼-limit point of {𝐴
𝑛
}

provided that there is a set𝑀 = {𝑚 = (𝑚
𝑖
) : 𝑚

𝑖
<

𝑚
𝑖+1
, 𝑖 ∈ N} ⊂ N such that𝑀 ∉ 𝐼 and for each 𝑥 ∈

𝑋 lim
𝑘→∞

𝑑(𝑥, 𝐴
𝑚𝑘
) = 𝑑(𝑥, 𝐴).

(ii) 𝐴 ∈ 𝑋 is said to be a Wijsman 𝐼-cluster point of {𝐴
𝑛
}

if and only if for each 𝜀 > 0, for each 𝑥 ∈ 𝑋, we have

{𝑛 ∈ N :
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)

 < 𝜀} ∉ 𝐼. (46)

Denote by 𝐼
𝑊
(Λ
{𝐴𝑛}
), 𝐼
𝑊
(Γ
{𝐴𝑛}
), and 𝐿

{𝐴𝑛}
the set of

all Wijsman 𝐼-limit, Wijsman 𝐼-cluster, and Wijsman limit
points of {𝐴

𝑛
}, respectively.

For the sequences {𝐴
𝑛
}, 𝐼
𝑊
(Γ
{𝐴𝑛}
) ⊆ 𝐼
𝑊
(𝐿
{𝐴𝑛}
). Let 𝐴 ∈

𝐼
𝑊
(Γ
{𝐴𝑛}
). Then for each sequence {𝐴

𝑛
} ⊂ 𝑋, we have

lim
𝑘→∞

𝑑(𝑥, 𝐴
𝑚𝑘
) = 𝑑(𝑥, 𝐴) which means that 𝐴 ∈ 𝐿

{𝐴𝑛}
.

Theorem 27. Let 𝐼 ⊆ 2N be a proper ideal in N and let (𝑋, 𝑑)
be a separable metric space. Then for each sequence {𝐴

𝑛
} ⊂ 𝑋

one has 𝐼
𝑊
(Λ
{𝐴𝑛}
) ⊂ 𝐼
𝑊
(Γ
{𝐴𝑛}
).

Proof. Let 𝐴 ∈ 𝐼
𝑊
(Λ
{𝐴𝑛}
). Then, there exists 𝑀 = {𝑚

1
<

𝑚
2
< ⋅ ⋅ ⋅ } ⊂ N such that𝑀 = {𝑚 = (𝑚

𝑖
) : 𝑚
𝑖
< 𝑚
𝑖+1
, 𝑖 ∈

N} ∉ 𝐼 and

lim
𝑘→∞

𝑑 (𝑥, 𝐴
𝑚𝑘
) = 𝑑 (𝑥, 𝐴) . (47)
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According to (47), there exists 𝑘
0
∈ N such that for each 𝜀 > 0,

for each 𝑥 ∈ 𝑋 and 𝑘 > 𝑘
0
, |𝑑(𝑥, 𝐴

𝑚𝑘
) − 𝑑(𝑥, 𝐴)| < 𝜀. Hence,

{𝑘 ∈ N :

𝑑 (𝑥, 𝐴

𝑚𝑘
) − 𝑑 (𝑥, 𝐴)


< 𝜀}

⊇ 𝑀 \ {𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑘𝑜
} .

(48)

Then, the set on the right hand side of (48) does not belong
to 𝐼; therefore

{𝑘 ∈ N :

𝑑 (𝑥, 𝐴

𝑚𝑘
) − 𝑑 (𝑥, 𝐴)


< 𝜀} ∉ 𝐼 (49)

which means that 𝐴 ∈ 𝐼
𝑊
(Γ
{𝐴𝑛}
).

Theorem 28. Let 𝐼 ⊆ 2N be a proper ideal in N and let (𝑋, 𝑑)
be a separable metric space. Then for each sequence {𝐴

𝑛
} ⊂ 𝑋

one has 𝐼
𝑊
(Γ
{𝐴𝑛}
) ⊆ 𝐿
{𝐴𝑛}

.

Proof. Let 𝐴 ∈ 𝐼
𝑊
(Γ
{𝐴𝑛}
). Then for each 𝜀 > 0 and for each

𝑥 ∈ 𝑋, we have

{𝑛 ∈ N :
𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)

 < 𝜀} ∉ 𝐼. (50)

Let

𝐾
𝑛
:= {𝑛 ∈ N :

𝑑 (𝑥, 𝐴𝑛) − 𝑑 (𝑥, 𝐴)
 <
1

𝑛
} (51)

for 𝑛 ∈ N. {𝐾
𝑛
}
∞

𝑛=1
is decreasing sequence of infinite subsets

of N. Hence 𝐾 = {𝑛 = (𝑛
𝑖
) : 𝑛
𝑖
< 𝑛
𝑖+1
, 𝑖 ∈ N} ∉ 𝐼 such that

lim
𝑛→∞

𝑑(𝑥, 𝐴
𝑛𝑖
) = 𝑑(𝑥, 𝐴)whichmeans that𝐴 ∈ 𝐿

{𝐴𝑛}
.

Theorem29. Let 𝐼 ⊆ 2N a proper ideal inN, (𝑋, 𝑑) a separable
metric space, and 𝐴

𝑘
, 𝐵
𝑘
nonempty subsets of 𝑋. If {𝐴

𝑘
} =

{𝐵
𝑘
} 𝐼-a.a.k for 𝑘 ∈ N, then 𝐼

𝑊
(Γ
{𝐴𝑘}
) = 𝐼

𝑊
(Γ
{𝐵𝑘}
) and

𝐼
𝑊
(Λ
{𝐴𝑘}
) = 𝐼
𝑊
(Λ
{𝐵𝑘}
).

Proof. If {𝐴
𝑘
} = {𝐵

𝑘
} a.a.k for 𝑘 ∈ N, then

𝐾 := {𝑘 ∈ N : 𝐴
𝑘
̸= 𝐵
𝑘
} ∈ 𝐼 (52)

Let 𝐴 ∈ 𝐼
𝑊
(Γ
{𝐴𝑘}
). For each 𝜀 > 0 and for each 𝑥 ∈ 𝑋 we have

{𝑘 ∈ N :
𝑑 (𝑥, 𝐴𝑘) − 𝑑 (𝑥, 𝐴)

 < 𝜀} ∉ 𝐼, (53)

∀𝜀 > 0. If {𝐴
𝑘
} = {𝐵

𝑘
} 𝐼-a.a.k, then {𝑘 ∈ N : |𝑑(𝑥, 𝐵

𝑘
) −

𝑑(𝑥, 𝐴)| < 𝜀} ∉ 𝐼 which means that 𝐴 ∈ 𝐼
𝑊
(Γ
{𝐵𝑘}
);

hence 𝐼
𝑊
(Γ
{𝐴𝑘}

⊂ 𝐼
𝑊
(Γ
{𝐵𝑘}
). Similarly we can also prove that

𝐼
𝑊
(Γ
{𝐵𝑘}
) ⊂ 𝐼
𝑊
(Γ
{𝐴𝑘}

. So we have 𝐼
𝑊
(Γ
{𝐴𝑘}

= 𝐼
𝑊
(Γ
{𝐵𝑘}
).

Now, we show that 𝐼
𝑊
(Λ
{𝐴𝑘}
) = 𝐼

𝑊
(Λ
{𝐵𝑘}
). Let 𝐴 ∈

𝐼
𝑊
(Λ
{𝐴𝑘}
). Then there exists a set 𝑀 = {𝑚 = (𝑚

𝑖
) : 𝑚

𝑖
<

𝑚
𝑖+1
, 𝑖 ∈ N} ⊂ N such that𝑀 ∉ 𝐼 and

lim
𝑘→∞

𝑑 (𝑥, 𝐴
𝑚𝑘
) = 𝑑 (𝑥, 𝐴) ,

𝑀 = {𝑘 : 𝑘 ∈ 𝑀 and𝐴
𝑘
̸= 𝐵
𝑘
}

∪ {𝑘 : 𝑘 ∈ 𝑀 and𝐴
𝑘
= 𝐵
𝑘
} ,

(54)

𝑀 ∉ 𝐼, and hence {𝑘 : 𝑘 ∈ 𝑀 and𝐴
𝑘
= 𝐵
𝑘
} ∉ 𝐼. Then there

exists

𝑃 = {𝑝 = (𝑝
𝑖
) : 𝑝
𝑖
< 𝑝
𝑖+1
, 𝑖 ∈ N} ∉ 𝐼 (55)

such that

lim
𝑘→∞

𝑑 (𝑥, 𝐵
𝑝𝑘
) = 𝑑 (𝑥, 𝐴) (56)

which means that𝐴 ∈ 𝐼
𝑊
(Λ
{𝐵𝑘}
). Similarly we can also prove

that 𝐼
𝑊
(Λ
{𝐵𝑘}
) ⊂ 𝐼
𝑊
(Λ
{𝐴𝑘}
). Therefore we have 𝐼

𝑊
(Λ
{𝐴𝑘}
) =

𝐼
𝑊
(Λ
{𝐵𝑘}
).
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