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Within the conventional framework of a native space structure, a smooth kernel generates a small native space, and radial basis
functions stemming from the smooth kernel are intended to approximate only functions from this small native space. In this paper,
we embed the smooth radial basis functions in a larger native space generated by a less smooth kernel and use them to interpolate the
samples. Our result shows that there exists a linear combination of spherical radial basis functions that can both exactly interpolate
samples generated by functions in the larger native space and near best approximate the target function.

1. Introduction

Many scientific questions boil down to synthesizing an
unknown but definite function from finitely many samples
(𝑥

𝑖
, 𝑦

𝑖
)
𝑚

𝑖=1
. The purpose is to find a functional model that can

effectively represent or approximate the underlying relation
between the input 𝑥

𝑖
and the output 𝑦

𝑖
. If the unknown func-

tions are defined on spherical domains, then data collected by
satellites or ground stations are usually not restricted on any
regular region and are scattered.Thus, any numerical method
relying on the structure of a “grid” is doomed to fail.

The success of the radial basis function networksmethod-
ology in Euclidean space derives from its ability to generate
estimators from data with essentially unstructured geometry.
Therefore, it is natural to borrow this ideal to deal with spher-
ical scattered data. This method, called the spherical radial
basis function networks (SRBFNs), has been extensively used
in gravitational phenomenon [1, 2], image processing [3, 4],
and learning theory [5].

Mathematically, the SRBFN can be represented as

𝑆
𝑛 (𝑥) :=

𝑛

∑
𝑖=1

𝑐
𝑖
𝜙 (𝜉

𝑖
⋅ 𝑥) :=

𝑛

∑
𝑖=1

𝑐
𝑖
𝜙
𝜉𝑖
(𝑥) , 𝑥 ∈ S𝑑, (1)

where 𝑐
𝑖
∈ R, 𝜉

𝑖
∈ S𝑑, and 𝜙 : [−1, 1] → R are called

the connection weight, center, and activation function in

the terminology of neural networks, respectively. Here and
hereafter, S𝑑 denotes the unit sphere embedded in the 𝑑 +
1-dimensional Euclidean space, R𝑑+1. Both the connection
weights 𝑐

𝑖
and the centers 𝜉

𝑖
are adjustable in the process of

training. We denote byΦ
𝑛
the collection of functions formed

as (1).
A basic and classical approach for training SRBFN is

to construct exact interpolant based on the given samples
(𝑥

𝑖
, 𝑦

𝑖
)
𝑚, that is, to find a function 𝑆

𝑛
in Φ

𝑛
such that

𝑆
𝑛
(𝑥

𝑖
) = 𝑦

𝑖
, 𝑖 = 1, . . . , 𝑚. (2)

If the activation function 𝜙 is chosen to be positive
definite [2], then the matrix 𝐴 := (𝜙(𝑥

𝑖
⋅ 𝑥

𝑗
))
𝑚

𝑖,𝑗=1
is nonsin-

gular. Thus, the system of (2) can be easily solved by taking
the scattered data as the centers of SRBFN. This method
has been already named the spherical basis function (SBF)
method. Under this circumstance, the connectionweights are
determined via

c = 𝐴−1y, (3)

where c = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
)
𝑇, y = (𝑦

1
, . . . , 𝑦

𝑚
)
𝑇, 𝑈𝑇 denotes the

transpose of the matrix (or vector) 𝑈, and 𝐴−1 denotes the
inverse matrix of 𝐴.

For the SBF method, if the target function 𝑓 belongs to
the native space𝑁

𝜙
associated with the activation function 𝜙,
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then the best SBF approximant of 𝑓 is characterized by the
exact interpolation:



𝑓 − 𝑐
𝑖

𝑚

∑
𝑖=1

𝜙
𝑥𝑖

𝑁𝜙

= inf
𝑔∈Φ𝑚

𝑓 − 𝑔
𝑁𝜙

, (4)

where {𝑐
𝑖
}
𝑚

𝑖=1
are determined by (3). This property makes

the SBF interpolation strategy popular in spherical scattered
data fitting [6–14]. However, there are also two disadvantages
for the SBF method. On one hand, since the centers of
SRBFN interpolants are chosen as the scattered data, the
interpolation capability depends heavily on their geometric
distributions. This implies that we cannot obtain a satis-
factory interpolation error estimate if the data are “badly”
located on the sphere. On the other hand, the well known
“native space barrier” [11, 12, 15] shows that (4) only holds for
a small class of smooth functions if𝜙 is smooth.Therefore, for
functions outside𝑁

𝜙
, the SBF interpolants are not guaranteed

to be the best approximants.
Along the flavor of the previous papers [7, 11, 12], we

use SRBFNs to interpolate functions in a large native space
𝑁
𝜓
associated with the kernel 𝜓 which is less smooth than

𝜙 and study its interpolation capability. Different from the
previous work, the centers are chosen in advance to be quasi-
uniform located on spheres, which makes the interpolation
error depend on the number rather than the geometric
distribution of centers. Our purpose is not to give the
detailed error estimate of the SRBFN interpolation. Instead,
we focus on investigating the relation between interpolation
and approximation for SRBFN. Indeed, we find that there
exists an SRBFN interpolant which is also the near best
approximant of functions in𝑁

𝜓
, when the number of centers

and geometric distribution of the scattered data satisfy a
certain assumption. That is, for a suitable choice of 𝑛, there
exists a function 𝑔

𝑛
∈ Φ

𝑛
such that

(1) 𝑔 exactly interpolates the samples (𝑥
𝑖
, 𝑦

𝑖
)
𝑚

𝑖=1
;

(2) ‖𝑓 − 𝑔
𝑛
‖
𝑁𝜓
≤ 𝐶 inf

𝑔∈Φ𝑛
‖𝑓 − 𝑔‖

𝑁𝜓
,

where 𝐶 is a constant depending only on 𝑑, 𝛼, and 𝛽.

2. Positive Radial Basis Function on
the Sphere

It is easy to deduce that the volume of S𝑑,Ω
𝑑
, satisfies

Ω
𝑑
:= ∫

S𝑑
𝑑𝜔 =

2𝜋(𝑑+1)/2

Γ ((𝑑 + 1) /2)
, (5)

where 𝑑𝜔 denotes the surface area element on S𝑑. For integer
𝑘 ≥ 0, the restriction to S𝑑 of a homogeneous harmonic
polynomial of degree 𝑘 on the unit sphere is called a spherical
harmonic of degree 𝑘. The span of all spherical harmonics
of degree 𝑘 is denoted by H𝑑

𝑘
, and the class of all spherical

harmonics (or spherical polynomials) of degree 𝑘 ≤ 𝑠 is

denoted by Π𝑑

𝑠
. It is obvious that Π𝑑

𝑠
= ⊕𝑠

𝑘=0
H𝑑

𝑘
. The dimen-

sion ofH𝑑

𝑘
is given by

𝐷
𝑑

𝑘
:= dimH𝑑

𝑘
=

{{

{{

{

2𝑘 + 𝑑 − 1

𝑘 + 𝑑 − 1
(
𝑘 + 𝑑 − 1

𝑘
) , 𝑘 ≥ 1;

1, 𝑘 = 0,

(6)

and that of Π𝑑

𝑠
is ∑𝑠

𝑘=0
𝐷𝑑

𝑘
= 𝐷𝑑+1

𝑠
∼ 𝑠𝑑.

Denote by {𝑌
𝑘,𝑗
}
𝐷
𝑑

𝑘

𝑗=1
an orthonormal basis ofH𝑑

𝑘
; then the

following addition formula [16, 17] holds

𝐷
𝑑

𝑘

∑
𝑙=1

𝑌
𝑘,𝑙 (𝑥) 𝑌𝑘,𝑙 (𝑦) =

𝐷𝑑

𝑘

Ω
𝑑

𝑃
𝑑+1

𝑘
(𝑥 ⋅ 𝑦) , (7)

where 𝑃𝑑+1
𝑘

is the Legendre polynomial with degree 𝑘 and
dimension 𝑑 + 1. The Legendre polynomial 𝑃𝑑+1

𝑘
can be nor-

malized such that 𝑃𝑑+1
𝑘
(1) = 1 and satisfies the orthogonality

relation

∫
1

−1

𝑃
𝑑+1

𝑘
(𝑡) 𝑃

𝑑+1

𝑗
(𝑡) (1 − 𝑡

2
)
(𝑑−2)/2

𝑑𝑡 =
Ω
𝑑

Ω
𝑑−1
𝐷𝑑

𝑘

𝛿
𝑘,𝑗
, (8)

where 𝛿
𝑘,𝑗

is the usual Kronecker symbol.
Positive definite radial basis functions on spheres were

introduced and characterized by Schoenberg [18]. Namely, a
radial basis function 𝜑 is positive definite if and only if its
expansion

𝜑 (𝑥 ⋅ 𝑦) =

∞

∑
𝑘=0

𝑒
𝑘

𝐷𝑑

𝑘

Ω
𝑑

𝑃
𝑑

𝑘
(𝑥 ⋅ 𝑦) (9)

has all Fourier-Legendre coefficients 𝑒
𝑘
≥ 0 and ∑∞

𝑘=0
𝑒
𝑘
(𝐷𝑑

𝑘
/

Ω
𝑑
)<∞. We define the native space𝑁

𝜑
as

𝑁
𝜑
:=
{

{

{

𝑓 (𝑥) =

∞

∑
𝑘=0

𝐷
𝑑

𝑗

∑
𝑗=1

𝑓
𝑘,𝑗
𝑌
𝑘,𝑗 (𝑥) :

∞

∑
𝑘=0

𝑒
−1

𝑘

𝐷
𝑑

𝑗

∑
𝑗=1

𝑓
2

𝑘,𝑗
< ∞

}

}

}

,

(10)

with its inner product

⟨𝑓, 𝑔⟩
𝑁𝜑
:=

∞

∑
𝑘=0

𝑒
−1

𝑘

𝐷
𝑑

𝑗

∑
𝑗=1

𝑓
𝑘,𝑗
𝑔
𝑘,𝑗
, (11)

where 𝑓
𝑘,𝑗
:= ∫S𝑑 𝑓(𝑥)𝑌𝑘,𝑗(𝑥)𝑑𝜔(𝑥).

3. Interpolation and Near Best Approximation

LetΛ := {𝜂
𝑗
}
𝑛

𝑗=1
⊂ S𝑑 be a set of points and𝑑(𝑥, 𝑦) = arccos𝑥⋅

𝑦 be the spherical distance between 𝑥and 𝑦. We denote by
ℎ
Λ
:= max

𝑥∈S𝑑min
𝑗
𝑑(𝑥, 𝜂

𝑗
), 𝑞

Λ
:= (1/2)min

𝑗 ̸= 𝑘
𝑑(𝜉

𝑗
, 𝜂

𝑘
), and

𝜏
Λ
:= ℎ

Λ
/𝑞

Λ
the mesh norm, separation radius, and mesh

ratio of Λ, respectively. It is easy to check that these three
quantities describe the geometric distribution of points in Λ.
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The 𝜏-uniform set 𝐹
𝜏
:= 𝐹

𝜏
(S𝑑) is defined by the family of all

centers sets Ξ with 𝜏
Λ
≤ 𝜏.

Let 𝜙 and 𝜓 satisfy

𝜙 (𝑥 ⋅ 𝑦) :=

∞

∑
𝑘=0

𝑎
𝑘

𝐷𝑑

𝑘

Ω
𝑑

𝑃
𝑑

𝑘
(𝑥 ⋅ 𝑦) , (12)

𝜓 (𝑥 ⋅ 𝑦) :=

∞

∑
𝑘=0

𝑏
𝑘

𝐷𝑑

𝑘

Ω
𝑑

𝑃
𝑑

𝑘
(𝑥 ⋅ 𝑦) (13)

with

𝑎
𝑘
∼ (1 + 𝜆

𝑘
)
−𝛼
, 𝑏

𝑘
∼ (1 + 𝜆

𝑘
)
−𝛽
. (14)

The Sobolev embedding theorem [12] implies that if
𝛼, 𝛽 > 𝑑/2, then 𝑁

𝜙
and 𝑁

𝜓
are continuously embedded in

𝐶(S𝑑), and so there are reproducing kernel Hilbert spaces,
with reproducing kernels being 𝜙 and 𝜓, respectively.

The aim of this section is to study the relation between
the exact interpolation and best approximation forΦ

𝑛
with its

centers set Ξ
𝑛
:= {𝜉

𝑖
}
𝑛

𝑖=1
and activation function 𝜙 satisfying

(12) and (14). It is obvious that such a Φ
𝑛
is a linear space.

The following Theorem 1 shows that there exists an SRBFN
interpolant which can near best approximate 𝑓 ∈ 𝑁

𝜓
in the

metric of𝑁
𝜓
, where 𝜓 satisfies (13) and (14).

Theorem 1. Let 𝑋 := {𝑥
𝑖
}
𝑚

𝑖=1
be the set of scattered data with

separation radius 𝑞
𝑋
, and 𝛼 > 𝛽 > 𝑑/2. If Ξ

𝑛
∈ 𝐹

𝜏
and 𝑛 ≥

𝐶
𝜏
𝑞−𝑑
𝑋
, where 𝐶

𝜏
> 1 is a constant depending only on 𝜏 and

𝑑, then, for every 𝑓 ∈ 𝑁
𝜓
, there exists an SRBFN interpolant

𝑆
𝑛
∈ Φ

𝑛
such that

(i) 𝑆
𝑛
exactly interpolates the samples (𝑥

𝑖
, 𝑦

𝑖
)
𝑚

𝑖=1
,

(ii) ‖𝑓 − 𝑆
𝑛
‖
𝑁𝜓
≤ 5 inf

𝑔∈Φ𝑛
‖𝑓 − 𝑔‖

𝑁𝜓
.

Remark 2. Similar results have been considered for spherical
polynomials both in 𝐶(S𝑑) and 𝑁

𝜓
. Narcowich et al. [11, 12]

proved that there exists a spherical polynomial interpolant of
degree at most 𝐿 ≥ 𝐶𝑞

𝑋
which can also best approximate the

target both in 𝐶(S𝑑) and𝑁
𝜓
.

To proveTheorem 1, we need the following three lemmas,
which can be found in [12, Proposition 5.2], [12,Theorem5.5],
and [19, Example 2.10], respectively.

Lemma 3. Let Y be a (possibly complex) Banach space, V a
subspace ofY, and𝑍∗ a finite-dimensional subspace ofY∗, the
dual ofY. If for every 𝑧∗ ∈ 𝑍∗ and some 𝛾 > 1, 𝛾 independent
of 𝑧∗,

𝑧
∗Y∗ ≤ 𝛾

𝑧
∗
|V
V∗ , (15)

then for 𝑦 ∈ Y there exists V ∈ V such that V interpolates
𝑦 on 𝑍

∗; that is, 𝑧∗(𝑦) = 𝑧∗(V) for all 𝑧∗ ∈ 𝑍∗. In
addition, V approximates 𝑦 in the sense that ‖𝑦 − V‖Y ≤ (1 +

2𝛾) distY(𝑦,V).

Lemma 4. Let 𝛽 > 𝑑/2. If 𝑓 ∈ 𝑁
𝜙
, then there is a 𝑢 ∈ Φ

𝑛
such

that
𝑓 − 𝑢

𝑁𝜓
≤ 𝐶ℎ

𝛼−𝛽

Ξ𝑛

𝑓
𝑁𝜙

. (16)

Lemma 5. Let𝜓 be defined in (13) and (14) and 𝛽 > 𝑑/2.Then
for arbitrary set of real numbers {𝑐

𝑖
}
𝑚

𝑖=1
, we have



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖



2

𝑁𝜓

≥ 𝐶𝑞
2𝛽

𝑋

𝑚

∑
𝑖=1

𝑐
2

𝑖
, (17)

where 𝐶 is a constant depending only on 𝑑 and 𝛽.

Now we provide the proof of Theorem 1.

Proof of Theorem 1. We apply Lemma 3 to the case in which
the underlying space is the native space Y = 𝑁

𝜓
. Let 𝑍∗ =

span{𝛿
𝑥𝑖
}
𝑚

𝑖=1
and V = Φ

𝑛
. So in order to prove Theorem 1, it

suffices to prove that for arbitrary𝑚 real numbers {𝑐
𝑖
}
𝑚

𝑖=1
such

that


𝑚

∑
𝑖=1

𝑐
𝑖
𝛿
𝑥𝑖

𝑁∗
𝜓

≤ 5



𝑚

∑
𝑖=1

𝑐
𝑖
𝛿
𝑥𝑖
|
Φ𝑛

Φ∗
𝑛

. (18)

Since 𝑁
𝜓
is a reproducing kernel Hilbert space with 𝜓 its

reproducing kernel, we have


𝑚

∑
𝑖=1

𝑐
𝑖
𝛿
𝑥𝑖

𝑁∗
𝜓

= sup
𝑓∈𝑁𝜓,‖𝑓‖𝑁𝜓

=1



𝑚

∑
𝑖=1

𝑐
𝑖
𝑓 (𝑥

𝑖
)



= sup
𝑓∈𝑁𝜓,‖𝑓‖𝑁𝜓

=1



⟨

𝑚

∑
𝑖=1

𝑐
𝑖
𝑓, 𝜓

𝑥𝑖
⟩

𝑁𝜓



= sup
𝑓∈𝑁𝜓,‖𝑓‖𝑁𝜓

=1



⟨

𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖
, 𝑓⟩

𝑁𝜓



=



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖

𝑁𝜓

.

(19)

Similarly, we obtain


𝑚

∑
𝑖=1

𝑐
𝑖
𝛿
𝑥𝑖
|
Φ𝑛

Φ∗
𝑛

= sup
𝑔∈Φ𝑛,‖𝑔‖𝑁𝜓

=1



𝑚

∑
𝑖=1

𝑐
𝑖
𝑔 (𝑥

𝑖
)



= sup
𝑔∈Φ𝑛,‖𝑔‖𝑁𝜓

=1



⟨

𝑚

∑
𝑖=1

𝑐
𝑖
𝑔, 𝜓

𝑥𝑖
⟩

𝑁𝜓



= sup
𝑔∈Φ𝑛,‖𝑔‖𝑁𝜓

=1



⟨

𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖
, 𝑔⟩

𝑁𝜓



= ‖𝑠‖𝑁𝜓 ,

(20)

where 𝑠 is the orthogonal projection of∑𝑚

𝑖=1
𝑐
𝑖
𝜓
𝑥𝑖
toΦ

𝑛
in the

metric of𝑁
𝜓
. Then the Pythagorean theorem yields that

‖𝑠‖
2

𝑁𝜓
=



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖



2

𝑁𝜓

−



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖
− 𝑠



2

𝑁𝜓

. (21)
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Thus, Lemma 3 with 𝛾 = 2 yields that in order to prove (18),
it suffices to prove


∑
𝑚

𝑖=1
𝑐
𝑖
𝜓
𝑥𝑖
− 𝑠
𝑁𝜓


∑
𝑚

𝑖=1
𝑐
𝑖
𝜓
𝑥𝑖

𝑁𝜓

≤
√3

2
. (22)

Let 𝐿 ∈ N, 𝑃 ∈ Π
𝐿
be the best polynomial approximation of

∑
𝑚

𝑖=1
𝑐
𝑖
𝜓
𝑥𝑖
in the metric of𝑁

𝜓
; then for arbitrary 𝑠 ∈ Φ

𝑛
, we

have


𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖
− 𝑠

𝑁𝜓

≤



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖
− 𝑃

𝑁𝜓

+

𝑃 − 𝑠

𝑁𝜓
. (23)

It follows from [12, Page 382] that there exists a constant, 𝜅,
depending only on 𝛽 such that for arbitrary 𝐿 ≥ 𝜅𝑞−1

𝑋
, there

holds


𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖
− 𝑃

𝑁𝜓

≤
√3

4



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖

𝑁𝜓

. (24)

Let 𝑠 be the best Φ
𝑛
approximation of 𝑃 in the metric

of 𝑁
𝜓
. Then it follows from Lemma 4 and the well-known

Bernstein inequality [17] that

𝑃 − 𝑠

𝑁𝜓
≤ 𝐶ℎ

𝛼−𝛽

Ξ
‖𝑃‖𝑁𝜓 ≤ 𝐶ℎ

𝛼−𝛽

Ξ
𝐿
𝛼
‖𝑃‖2. (25)

Since 𝑃 is the best polynomial approximation of∑𝑚

𝑖=1
𝑐
𝑖
𝜓
𝑥𝑖
in

the metric of𝑁
𝜓
, a simple computation yields

‖𝑃‖
2

2
=

𝑚

∑
𝑖=1

𝑐
2

𝑖
. (26)

Furthermore, it follows from Lemma 5 that


𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖



2

𝑁𝜓

≥ 𝐶𝑞
2𝛽

𝑋

𝑚

∑
𝑖=1

𝑐
2

𝑖
. (27)

Then, Ξ
𝑛
∈ 𝐹

𝜏
together with 𝐿 = max{[𝜅𝑞−1

𝑋
] + 1, [3𝛽/2/

(4𝐶)
𝛽
𝑞
𝑋
]} yields that


𝑃 − 𝑠

𝑁𝜓
≤ 𝐶ℎ

𝛼−𝛽

Ξ
𝐿
𝛼
𝑞
−𝛽

𝑋



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖

𝑁𝜓

≤ 𝐶(𝑛
−1/𝑑

𝑞
𝑋
)
𝛼−𝛽



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖

𝑁𝜓

,

(28)

where 𝐶 is a constant depending only on 𝛽, 𝑑, and 𝜏. Thus,
there exists a constant 𝐶

𝜏
depending only on 𝛼, 𝛽, 𝑑, and 𝜏

such that for arbitrary 𝑛 ≥ 𝐶
𝜏
𝑞𝑑
𝑋
, there holds


𝑃 − 𝑠

𝑁𝜓
≤
√3

4



𝑚

∑
𝑖=1

𝑐
𝑖
𝜓
𝑥𝑖

𝑁𝜓

. (29)

Inserting (24) and (29) into (23), we finish the proof of (22)
and then complete the proof of Theorem 1.
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