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The matrix equation ∑𝑢
𝑙=1
𝐴
𝑙
𝑋𝐵
𝑙
+ ∑

V
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹, which includes some frequently investigated matrix equations as its special

cases, plays important roles in the system theory. In this paper, we propose an iterative algorithm for solving the quaternion matrix
equation∑𝑢

𝑙=1
𝐴
𝑙
𝑋𝐵
𝑙
+∑

V
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹 over generalized (𝑃, 𝑄)-reflexive matrices.The proposed iterative algorithm automatically

determines the solvability of the quaternion matrix equation over generalized (𝑃, 𝑄)-reflexive matrices. When the matrix equation
is consistent over generalized (𝑃, 𝑄)-reflexive matrices, the sequence {𝑋(𝑘)} generated by the introduced algorithm converges to a
generalized (𝑃, 𝑄)-reflexive solution of the quaternion matrix equation. And the sequence {𝑋(𝑘)} converges to the least Frobenius
norm generalized (𝑃, 𝑄)-reflexive solution of the quaternionmatrix equation when an appropriate initial iterative matrix is chosen.
Furthermore, the optimal approximate generalized (𝑃, 𝑄)-reflexive solution for a given generalized (𝑃, 𝑄)-reflexive matrix 𝑋

0
can

be derived. The numerical results indicate that the iterative algorithm is quite efficient.

1. Introduction and Notations

Quaternionmatrix equation is one of the topics of very active
research in matrix theory and applications, and some impor-
tant results have been developed. For example, Kyrchei [1]
derived the explicit representation formulas for theminimum
norm least squares solutions of quaternion matrix equations
𝐴𝑋 = 𝐵, 𝑋𝐴 = 𝐵, 𝐴𝑋𝐵 = 𝐷. Yuan and Liao [2] derived the
expressions of the least squares (𝑗-self-conjugate) solution
with the least norm of the quaternion matrix equation 𝑋 −

𝐴𝑋𝐵 = 𝐶. Song et al. [3] obtained the expressions of the
explicit solutions of quaternion matrix equations𝑋𝐹−𝐴𝑋 =

𝐵𝑌 and 𝑋𝐹 − 𝐴𝑋 = 𝐵𝑌. He and Wang [4] studied the nec-
essary and sufficient conditions for the existence of a solu-
tion to the quaternion matrix equation 𝐴

1
𝑋 + (𝐴

1
𝑋)𝜂∗ +

𝐵
1
𝑌(𝐵
1
)𝜂∗ + 𝐶

1
𝑍(𝐶
1
)𝜂∗ = 𝐷

1
and derived a general solution

when the equation is solvable.

The definition of generalized (𝑃, 𝑄)-reflexive matrix can
be found in [5]. A complex matrix 𝐴 is called (𝑃, 𝑄)-general-
ized reflexive (generalized anti-reflexive) if 𝐴 = 𝑃𝐴𝑄 (𝐴 =
−𝑃𝐴𝑄), where 𝑃 and 𝑄 are two generalized reflection matri-
ces; that is, 𝑃 = 𝑃𝐻 = 𝑃−1 and 𝑄 = 𝑄𝐻 = 𝑄−1. The general-
ized (𝑃, 𝑄)-reflexive matrices have been widely used in engi-
neering and scientific computations [5–7]. Throughout, we
useH𝑚×𝑛
𝑟

(𝑃, 𝑄) to denote the set of 𝑚 × 𝑛 generalized (𝑃, 𝑄)-
reflexive quaternion matrices.

The iterative method is a very important method to solve
matrix equations. Peng et al. [8, 9] constructed iteration
methods to solve the symmetric and reflexive solutions of
matrix equations𝐴

1
𝑋𝐵
1
= 𝐶
1
, 𝐴
2
𝑋𝐵
2
= 𝐶
2
. Ding and Chen

[10, 11] developed iterative methods for solving a wide variety
of matrix equations, based on the hierarchical identification
principle [12]. Peng [13–15] presented several efficient itera-
tive methods to solve the constrained least squares solutions
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of linear matrix equations𝐴𝑋𝐵 = 𝐶 and𝐴𝑋𝐵+𝐶𝑌𝐷 = 𝐸, by
using Paige’s algorithm [16] as the frame method. Wang et al.
[17] proposed iterative algorithms for solving the matrix
equation 𝐴𝑋𝐵+𝐶𝑋𝑇𝐷 = 𝐸. Xie et al. [18] presented a gradi-
ent based iterative algorithm for solving

𝑢

∑
𝑙=1

𝐴
𝑙
𝑋𝐵
𝑙
+

V

∑
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹. (1)

In [19], Li et al. proposed iterative algorithms to solve themin-
imal norm least squares solution to (1). Duan et al. [20–24]
proposed iterative algorithms for the (Hermitian) positive
definite solutions of some nonlinear matrix equations.
Dehghan and Hajarian constructed iterative algorithms to
solve several linear matrix equations over (anti-)reflexive
[25, 26], generalized centrosymmetric [27, 28], and general-
ized bisymmetric [29, 30]matrices. Recently,Wu et al. [31–35]
proposed iterative algorithms for solving various complex
matrix equations.Wang et al. [36] derived an iterativemethod
for finding the minimum-norm solution of the QLS problem
in quaternionic quantum theory.

However, to our best knowledge, the generalized (𝑃, 𝑄)-
reflexive solution of (1) over the quaternion algebraH has not
been considered so far. Due to the noncommutativity of H,
some well-known equalities for complex and real matrices no
longer hold for quaternion matrices, which make the study
of quaternion matrix equation more complex than that of
real and complex equation.Motivated by theworkmentioned
previously and keeping the interests and wide applications of
quaternion matrices in view (e.g., [37–47]), we, in this paper,
consider an iterative method for the following two problems.

Problem 1. For given matrices 𝐴
𝑙
, 𝐶
𝑠
∈ H𝑝×𝑛, 𝐵

𝑙
, 𝐷
𝑠
∈ H𝑛×𝑞,

𝑙 = 1, 2, . . . , 𝑢, 𝑠 = 1, 2, . . . , V, 𝐹 ∈ H𝑝×𝑞, and the generalized
reflection matrices 𝑃 ∈ H𝑛×𝑛, 𝑄 ∈ H𝑛×𝑛, find that 𝑋 ∈
H𝑛×𝑛
𝑟

(𝑃, 𝑄), such that
𝑢

∑
𝑙=1

𝐴
𝑙
𝑋𝐵
𝑙
+

V

∑
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹. (2)

Problem 2. When Problem 1 is consistent, let its solution set
be denoted by 𝑆

𝑋
. For a given (𝑃, 𝑄)-reflexive matrix 𝑋

0
∈

H𝑛×𝑛
𝑟

(𝑃, 𝑄), find𝑋 ∈ H𝑛×𝑛
𝑟

(𝑃, 𝑄), such that
𝑋 − 𝑋

0

 = min
𝑋∈𝑆𝑋

𝑋 − 𝑋
0

 . (3)

The matrix equation (2) plays important roles in the
system theory [48–50]. Moreover, (2) obviously includes the
matrix equations 𝐴𝑋𝐵 + 𝐶𝑋𝑇𝐷 = 𝐹, 𝐴𝑋 + 𝑋𝑇𝐷 = 𝐹, and
𝐴𝑋𝐵 = 𝐶 as special cases, which have been investigated in
[17, 28, 36, 51–53].

Throughout this paper, R𝑚×𝑛 and H𝑚×𝑛 represent the set
of all 𝑚 × 𝑛 real matrices and the set of all 𝑚 × 𝑛 matrices
over the quaternion algebra H = {𝑎

1
+ 𝑎
2
𝑖 + 𝑎
3
𝑗 + 𝑎
4
𝑘 |

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1, 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
∈ R}. We use 𝐴𝐻,

𝐴𝑇,𝐴, tr(𝐴),𝑅(𝐴), Re(𝐴), and vec(𝐴) to denote the conjugate
transpose, the transpose, the conjugate, the trace, the column
space, the real part, and the𝑚𝑛 × 1 vector formed by the ver-
tical concatenation of the respective columns of a matrix 𝐴;

respectively. We use ‖𝐴‖ to denote the Frobenius norm of 𝐴,
that is, ‖𝐴‖ = √tr(𝐴𝐻𝐴). The Kronecker matrix product and
Hadamard matrix product of the matrices 𝐴 and 𝐵 are
denoted by 𝐴 ⊗ 𝐵 and 𝐴 ⊙ 𝐵. We use 𝐼 to denote the identity
matrix with the appropriate size.

2. Preliminaries

In this section, we provide some results which will play
important roles in this paper.

Firstly, we recall the definition of real inner product space.
Thenwedefine a real inner product in the spaceH𝑚×𝑛 over the
field R.

Definition 3 (see [54]). A real inner product space is a vector
space 𝑉 over the real field R together with an inner product
defined by a mapping

⟨⋅, ⋅⟩ : 𝑉 × 𝑉 → R (4)

satisfying the following three axioms for all vectors 𝑥, 𝑦, 𝑧 ∈
𝑉 and all scalars 𝑎 ∈ R.

(1) Symmetry: ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩;
(2) Linearity in the first argument: ⟨𝑎𝑥, 𝑦⟩ = 𝑎⟨𝑥, 𝑦⟩, ⟨𝑥+

𝑦, 𝑧⟩ = ⟨𝑥, 𝑧⟩ + ⟨𝑦, 𝑧⟩;
(3) Positive definiteness: ⟨𝑥, 𝑥⟩ > 0 for all 𝑥 ̸= 0.

In [33–35], the following real inner product was presented
to solve some complex matrix equations:

⟨𝐴, 𝐵⟩ = Re [tr (𝐵𝐻𝐴)] , (5)

for 𝐴, 𝐵 ∈ C𝑚×𝑛. It is easy to verify that if we let 𝐴, 𝐵 ∈ H𝑚×𝑛,
(5) also defines a real inner product in H𝑚×𝑛 over R. We
denote this real inner product space by (H𝑚×𝑛,R, ⟨⋅, ⋅⟩). From
the equalities

√⟨𝐴,𝐴⟩ = √Re [tr (𝐴𝐻𝐴)]

= √tr (𝐴𝐻𝐴) = ‖𝐴‖ , 𝐴 ∈ H
𝑚×𝑛,

(6)

we know that the induced matrix norm by the introduced
inner product ⟨⋅, ⋅⟩ is exactly the Frobenius norm. For
convenience, we still use ‖ ⋅ ‖ to denote the induced matrix
norm. Let 𝐸

𝑖𝑗
denote the𝑚 × 𝑛matrix whose (𝑖, 𝑗) entry is 1,

and the other elements are zeros. In inner product space
(H𝑚×𝑛,R, ⟨⋅, ⋅⟩), it is easy to verify that 𝐸

𝑖𝑗
, 𝐸
𝑖𝑗
𝑖, 𝐸
𝑖𝑗
𝑗, 𝐸
𝑖𝑗
𝑘, 𝑖 =

1, 2, . . . 𝑚, 𝑗 = 1, 2, . . . 𝑛, is an orthonormal basis, which
reveals that the dimension of the inner product space
(H𝑚×𝑛,R, ⟨⋅, ⋅⟩) is 4𝑚𝑛.

Next, we introduce the well-known real representation of
a quaternionmatrix. For an arbitrary quaternionmatrix𝑀 =
𝑀
1
+ 𝑀
2
𝑖 + 𝑀

3
𝑗 + 𝑀

4
𝑘 ∈ H𝑚×𝑛, a map 𝜙(⋅), from H𝑚×𝑛 to

R4𝑚×4𝑛, can be defined as

𝜙 (𝑀) =
[
[
[

[

𝑀
1
−𝑀
2
−𝑀
3
−𝑀
4

𝑀
2

𝑀
1

−𝑀
4

𝑀
3

𝑀
3

𝑀
4

𝑀
1

−𝑀
2

𝑀
4
−𝑀
3

𝑀
2

𝑀
1

]
]
]

]

. (7)
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Let 𝑀 and 𝑁 be two arbitrary quaternion matrices with
appropriate size. We know that 𝜙(⋅) satisfies the following
properties:

𝑀 = 𝑁 ⇐⇒ 𝜙 (𝑀) = 𝜙 (𝑁) , (8)

𝜙 (𝑀 +𝑁) = 𝜙 (𝑀) + 𝜙 (𝑁) ,

𝜙 (𝑀𝑁) = 𝜙 (𝑀) 𝜙 (𝑁) ,

𝜙 (𝑘𝑀) = 𝑘𝜙 (𝑀) , 𝑘 ∈ R,

(9)

𝜙 (𝑀𝐻) = 𝜙𝑇 (𝑀) . (10)

It follows a simple verification that 𝜙(⋅) also satisfies the fol-
lowing two properties which is useful for some deduction in
this paper:

𝜙 (𝑀)
 = 2 ‖𝑀‖ , (11)

𝜙 (𝑀𝑇) = 2𝜙𝑇 (𝑀) ⊙𝑊 − 𝜙𝑇 (𝑀) , (12)

where

𝑊 =
[
[
[

[

𝐸 0 0 0
0 𝐸 0 0
0 0 𝐸 0
0 0 0 𝐸

]
]
]

]

(13)

and 𝐸 is a matrix whose elements are all equal to one with the
same size as𝑀.

Finally, we recall some results about the commutation
matrix. A commutation matrix 𝑃(𝑚, 𝑛) is a 𝑚𝑛 × 𝑚𝑛 matrix
which has the following explicit form:

𝑃 (𝑚, 𝑛) =
𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝐸
𝑖𝑗
⊗ 𝐸𝑇
𝑖𝑗
= [𝐸𝑇
𝑖𝑗
] 𝑖=1,...,𝑚
𝑗=1,...,𝑛

. (14)

Moreover, 𝑃(𝑚, 𝑛) is a permutation matrix and 𝑃(𝑚, 𝑛) =

𝑃𝑇(𝑛,𝑚) = 𝑃−1(𝑛,𝑚). We have the following lemmas on the
commutation matrix.

Lemma 4 (see [55]). Let𝐴 be an𝑚×𝑛matrix.There is a com-
mutation matrix 𝑃(𝑚, 𝑛) such that

vec (𝐴𝑇) = 𝑃 (𝑚, 𝑛) vec (𝐴) . (15)

Lemma 5 (see [55]). Let 𝐴 be an𝑚 × 𝑛matrix and 𝐵 a 𝑝 × 𝑞
matrix. There exist two commutation matrices 𝑃(𝑚, 𝑝) and
𝑃(𝑛, 𝑞) such that

𝐵 ⊗ 𝐴 = 𝑃𝑇 (𝑚, 𝑝) (𝐴 ⊗ 𝐵) 𝑃 (𝑛, 𝑞) . (16)

3. An Iterative Algorithm for
Solving Problem 1

In this section, we firstly construct an algorithm for solving
Problem 1. Then we show that if the problem is consistent,
the sequence {𝑋(𝑘)} generated by the introduced algorithm
converges to a solution of Problem 1 within at most 4𝑝𝑞
iteration steps.

Algorithm 6. (1) Input matrices 𝐴
𝑙
, 𝐶
𝑠
∈ H𝑝×𝑛, 𝐵

𝑙
, 𝐷
𝑠
∈

H𝑛×𝑞, 𝑙 = 1, 2, . . . , 𝑢, 𝑠 = 1, 2, . . . , V, 𝐹 ∈ H𝑝×𝑞, generalized
reflection matrices 𝑃 ∈ H𝑛×𝑛, 𝑄 ∈ H𝑛×𝑛, 𝑋(1) ∈ H𝑛×𝑛

𝑟
(𝑃, 𝑄).

(2) Calculate

𝑅 (1) = 𝐹−
𝑢

∑
𝑙=1

𝐴
𝑙
𝑋 (1) 𝐵

𝑙
−

V

∑
𝑠=1

𝐶
𝑠
𝑋𝑇 (1)𝐷

𝑠
;

𝑆 (1) =
1

2
(
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (1) 𝐵

𝐻

𝑙
+

V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (1)𝐷

𝐻

𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝑅 (1) 𝐵

𝐻

𝑙
𝑄 +

V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝑅 (1)𝐷

𝐻

𝑠
)
𝑇

𝑄) ;

𝑇 (1) = 𝑆 (1)

𝑘 := 1.

(17)

(3) If 𝑅(𝑘) = 0, or 𝑅(𝑘) ̸= 0 and 𝑇(𝑘) = 0, stop; otherwise
𝑘 := 𝑘 + 1.

(4) Calculate

𝑋 (𝑘) = 𝑋 (𝑘 − 1) +
‖𝑅(𝑘 − 1)‖2

‖𝑇(𝑘 − 1)‖2
𝑇 (𝑘 − 1) ;

𝑅 (𝑘) = 𝑅 (𝑘 − 1)

−
‖𝑅 (𝑘 − 1)‖2

‖𝑇 (𝑘 − 1)‖2
(
𝑢

∑
𝑙=1

𝐴
𝑙
𝑇 (𝑘 − 1) 𝐵

𝑙

+
V

∑
𝑠=1

𝐶
𝑠
𝑇𝑇 (𝑘 − 1)𝐷

𝑠
) ;

𝑆 (𝑘) =
1

2
(
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (𝑘) 𝐵

𝐻

𝑙
+

V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (𝑘)𝐷

𝐻

𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝑅 (𝑘) 𝐵

𝐻

𝑙
𝑄

+
V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝑅 (𝑘)𝐷

𝐻

𝑠
)
𝑇

𝑄)

𝑇 (𝑘) = 𝑆 (𝑘) +
‖𝑅 (𝑘)‖2

‖𝑅 (𝑘 − 1)‖2
𝑇 (𝑘 − 1) .

(18)

(5) Go to Step (3).

The following Lemmas show some properties of
Algorithm 6.
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Lemma 7. The sequences {𝑅(𝑖)}, {𝑆(𝑖)}, and {𝑇(𝑖)} generated
by Algorithm 6 satisfy

Re {tr [𝑅𝐻 (𝑗 + 1) 𝑅 (𝑖)]}

= Re {tr [𝑅𝐻 (𝑗) 𝑅 (𝑖)]}

−

𝑅 (𝑗)

2

𝑇 (𝑗)

2
Re {tr [𝑇𝐻 (𝑗) 𝑆 (𝑖)]} ,

(19)

Re {tr [𝑇𝐻 (𝑗 + 1) 𝑇 (𝑖)]}

=

𝑅 (𝑗 + 1)

2

𝑅 (𝑗)

2

Re {tr [𝑇𝐻 (𝑗) 𝑇 (𝑖)]}

+
‖𝑇 (𝑖)‖2

‖𝑅 (𝑖)‖2
(Re {tr [𝑅𝐻 (𝑗 + 1) 𝑅 (𝑖)]}

−Re {tr [𝑅𝐻 (𝑗 + 1) 𝑅 (𝑖 + 1)]}) ,

for 𝑖, 𝑗 = 1, 2, . . . .
(20)

Proof. One has the following:

Re {tr [𝑅𝐻 (𝑗 + 1) 𝑅 (𝑖)]}

= Re
{
{
{

tr[

[

(𝑅 (𝑗) −

𝑅 (𝑗)

2

𝑇 (𝑗)

2

× (
𝑢

∑
𝑙=1

𝐴
𝑙
𝑇 (𝑗) 𝐵

𝑙

+
V

∑
𝑠=1

𝐶
𝑠
𝑇𝑇 (𝑗)𝐷

𝑠
))

𝐻

𝑅 (𝑖)]}

= Re {tr [𝑅𝐻 (𝑗) 𝑅 (𝑖)]} −
𝑅 (𝑗)


2

𝑇 (𝑗)

2

× Re{tr[
𝑢

∑
𝑙=1

𝐵𝐻
𝑙
𝑇𝐻 (𝑗) 𝐴𝐻

𝑙
𝑅 (𝑖)

+
V

∑
𝑠=1

𝐷𝐻
𝑠
𝑇 (𝑗)𝐶𝐻

𝑠
𝑅 (𝑖)]}

= Re {tr [𝑅𝐻 (𝑗) 𝑅 (𝑖)]} −
𝑅 (𝑗)


2

𝑇 (𝑗)

2

× Re{tr[𝑇𝐻 (𝑗)(
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (𝑖) 𝐵

𝐻

𝑙

+
V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (𝑖)𝐷

𝐻

𝑠
)
𝑇

)]}

= Re {tr [𝑅𝐻 (𝑗) 𝑅 (𝑖)]} −
𝑅 (𝑗)


2

𝑇 (𝑗)

2

× Re{tr[𝑇𝐻 (𝑗)

× (
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (𝑖) 𝐵

𝐻

𝑙

+
V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (𝑖)𝐷

𝐻

𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝑅 (𝑖) 𝐵

𝐻

𝑙
𝑄

+
V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝑅 (𝑖)𝐷

𝐻

𝑠
)
𝑇

𝑄)

×2−1]}

= Re {tr [𝑅𝐻 (𝑗) 𝑅 (𝑖)]}

−

𝑅 (𝑗)

2

𝑇 (𝑗)

2
Re {tr [𝑇𝐻 (𝑗) 𝑆 (𝑖)]} .

(21)

Therefore, the conclusion (19) holds. Consider

Re {tr [𝑇𝐻 (𝑗 + 1) 𝑇 (𝑖)]}

= Re{tr[(𝑆𝐻 (𝑗 + 1) +
𝑅 (𝑗 + 1)


2

𝑅 (𝑗)

2

𝑇𝐻 (𝑗))𝑇 (𝑖)]}

=

𝑅 (𝑗 + 1)

2

𝑅 (𝑗)

2

Re {tr [𝑇𝐻 (𝑗) 𝑇 (𝑖)]}

+ Re{tr[1
2
(
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (𝑗 + 1) 𝐵𝐻

𝑙

+
V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (𝑗 + 1)𝐷𝐻

𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝑅 (𝑗 + 1) 𝐵𝐻

𝑙
𝑄

+
V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝑅 (𝑗 + 1)𝐷𝐻

𝑠
)
𝑇

𝑄)

𝐻

× 𝑇 (𝑖) ]}
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=

𝑅 (𝑗 + 1)

2

𝑅 (𝑗)

2

Re {tr [𝑇𝐻 (𝑗) 𝑇 (𝑖)]}

+ Re{tr[𝑇𝐻 (𝑖) (
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (𝑗 + 1) 𝐵𝐻

𝑙

+
V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (𝑗 + 1)𝐷𝐻

𝑠
)
𝑇

)]}

=

𝑅 (𝑗 + 1)

2

𝑅 (𝑗)

2

Re {tr [𝑇𝐻 (𝑗) 𝑇 (𝑖)]}

+ Re{tr[
𝑢

∑
𝑙=1

𝑅𝐻 (𝑗 + 1)𝐴
𝑙
𝑇 (𝑖) 𝐵

𝑙

+
V

∑
𝑠=1

𝑇 (𝑖)𝐶
𝐻

𝑠
𝑅 (𝑗 + 1)𝐷𝐻

𝑠
]}

=

𝑅 (𝑗 + 1)

2

𝑅 (𝑗)

2

Re {tr [𝑇𝐻 (𝑗) 𝑇 (𝑖)]}

+ Re{tr[𝑅𝐻 (𝑗 + 1)(
𝑢

∑
𝑙=1

𝐴
𝑙
𝑇 (𝑖) 𝐵

𝑙

+
V

∑
𝑠=1

𝐶
𝑠
𝑇𝑇 (𝑖) 𝐷

𝑠
)]}

=

𝑅 (𝑗 + 1)

2

𝑅 (𝑗)

2

Re {tr [𝑇𝐻 (𝑗) 𝑇 (𝑖)]}

+
‖𝑇 (𝑖)‖2

‖𝑅 (𝑖)‖2
Re {tr [𝑅𝐻 (𝑗 + 1) (𝑅 (𝑖) − 𝑅 (𝑖 + 1))]}

=

𝑅 (𝑗 + 1)

2

𝑅 (𝑗)

2

Re {tr [𝑇𝐻 (𝑗) 𝑇 (𝑖)]}

+
‖𝑇 (𝑖)‖2

‖𝑅 (𝑖)‖2
(Re {tr [𝑅𝐻 (𝑗 + 1) 𝑅 (𝑖)]}

−Re {tr [𝑅𝐻 (𝑗 + 1) 𝑅 (𝑖 + 1)]}) .
(22)

Therefore, the conclusion (20) holds.

Lemma 8. Assume that the sequences {𝑅(𝑖)} and {𝑇(𝑖)} are
generated by Algorithm 6, and then ⟨𝑅(𝑖), 𝑅(𝑗)⟩ = 0 and
⟨𝑇(𝑖), 𝑇(𝑗)⟩ = 0 for 𝑖, 𝑗 = 1, 2, . . . , 𝑖 ̸= 𝑗.

Proof. Since ⟨𝑅(𝑖), 𝑅(𝑗)⟩ = ⟨𝑅(𝑗), 𝑅(𝑖)⟩ and ⟨𝑇(𝑖), 𝑇(𝑗)⟩ =
⟨𝑇(𝑗), 𝑇(𝑖)⟩ for 𝑖, 𝑗 = 1, 2, . . ., we only need to prove that
⟨𝑅(𝑖), 𝑅(𝑗)⟩ = 0 and ⟨𝑇(𝑖), 𝑇(𝑗)⟩ = 0 for 1 ≤ 𝑖 < 𝑗.

Now we prove this conclusion by induction.
First, we prove

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 1)⟩ = 0, ⟨𝑇 (𝑖) , 𝑇 (𝑖 + 1)⟩ = 0

for 𝑖 = 1, 2, . . . .
(23)

When 𝑖 = 1, from Lemma 7 we have

⟨𝑅 (1) , 𝑅 (2)⟩ = Re {tr [𝑅𝐻 (2) 𝑅 (1)]}

= Re {tr [𝑅𝐻 (1) 𝑅 (1)]}

−
‖𝑅 (1)‖2

‖𝑇 (1)‖2
Re {tr [𝑇𝐻 (1) 𝑆 (1)]}

= ‖𝑅 (1)‖
2 −

‖𝑅 (1)‖2

‖𝑇 (1)‖2
‖𝑇 (1)‖

2

= 0.

(24)

From Lemma 7 and conclusion (24), we have

⟨𝑇 (1) , 𝑇 (2)⟩ = Re {tr [𝑇𝐻 (2) 𝑇 (1)]}

=
‖𝑅 (2)‖2

‖𝑅 (1)‖2
Re {tr [𝑇𝐻 (1) 𝑇 (1)]}

+
‖𝑇 (1)‖2

‖𝑅 (1)‖2
(Re {tr [𝑅𝐻 (2) 𝑅 (1)]}

−Re {tr [𝑅𝐻 (2) 𝑅 (2)]})

=
‖𝑅 (2)‖2

‖𝑅 (1)‖2
‖𝑇 (1)‖

2 −
‖𝑇 (1)‖2

‖𝑅 (1)‖2
‖𝑅 (2)‖

2

= 0.

(25)

Now assume that conclusion (23) holds for 1 ≤ 𝑖 ≤ 𝑡−1; from
Lemma 7, we have

⟨𝑅 (𝑡) , 𝑅 (𝑡 + 1)⟩

= Re {tr [𝑅𝐻 (𝑡 + 1) 𝑅 (𝑡)]}

= Re {tr [𝑅𝐻 (𝑡) 𝑅 (𝑡)]}

−
‖𝑅 (𝑡)‖2

‖𝑇 (𝑡)‖2
Re {tr [𝑇𝐻 (𝑡) 𝑆 (𝑡)]}

= Re {tr [𝑅𝐻 (𝑡) 𝑅 (𝑡)]} − ‖𝑅 (𝑡)‖2

‖𝑇 (𝑡)‖2

× Re{tr[𝑇𝐻 (𝑡) (𝑇 (𝑡) − ‖𝑅 (𝑡)‖2

‖𝑅 (𝑡 − 1)‖2
𝑇 (𝑡 − 1))]}

= 0.

(26)
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From Lemma 7 and conclusion (26), it can also be obtained
that

⟨𝑇 (𝑡) , 𝑇 (𝑡 + 1)⟩

= Re {tr [𝑇𝐻 (𝑡 + 1) 𝑇 (𝑡)]}

=
‖𝑅 (𝑡 + 1)‖2

‖𝑅 (𝑡)‖2
Re {tr [𝑇𝐻 (𝑡) 𝑇 (𝑡)]}

+
‖𝑇 (𝑡)‖2

‖𝑅 (𝑡)‖2
(Re {tr [𝑅𝐻 (𝑡 + 1) 𝑅 (𝑡)]}

−Re {tr [𝑅𝐻 (𝑡 + 1) 𝑅 (𝑡 + 1)]})

=
‖𝑅 (𝑡 + 1)‖2

‖𝑅 (𝑡)‖2
‖𝑇 (𝑡)‖

2 −
‖𝑇 (𝑡)‖2

‖𝑅 (𝑡)‖2
‖𝑅 (𝑡 + 1)‖

2 = 0.

(27)

Therefore, by the principle of induction, conclusion (23)
holds.

Next, assume that ⟨𝑅(𝑖), 𝑅(𝑖+𝑟)⟩ = 0 and ⟨𝑇(𝑖), 𝑇(𝑖+𝑟)⟩ =
0 for 𝑖 ≥ 1 and 𝑟 ≥ 1. We will prove that

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩ = 0,

⟨𝑇 (𝑖) , 𝑇 (𝑖 + 𝑟 + 1)⟩ = 0.
(28)

In order to prove conclusion (28), we first prove that

⟨𝑅 (1) , 𝑅 (𝑟 + 2)⟩ = 0,

⟨𝑇 (1) , 𝑇 (𝑟 + 2)⟩ = 0.
(29)

From Lemma 7 we have

⟨𝑅 (1) , 𝑅 (𝑟 + 2)⟩

= Re {tr [𝑅𝐻 (𝑟 + 2) 𝑅 (1)]}

= Re {tr [𝑅𝐻 (𝑟 + 1) 𝑅 (1)]}

−
‖𝑅 (𝑟 + 1)‖2

‖𝑇 (𝑟 + 1)‖2
Re {tr [𝑇𝐻 (𝑟 + 1) 𝑆 (1)]}

= Re {tr [𝑅𝐻 (𝑟 + 1) 𝑅 (1)]}

−
‖𝑅 (𝑟 + 1)‖2

‖𝑇 (𝑟 + 1)‖2
Re {tr [𝑇𝐻 (𝑟 + 1) 𝑇 (1)]}

= 0.

(30)

From Lemma 7 and conclusion (30), we have

⟨𝑇 (1) , 𝑇 (𝑟 + 2)⟩

= Re {tr [𝑇𝐻 (𝑟 + 2) 𝑇 (1)]}

=
‖𝑅 (𝑟 + 2)‖2

‖𝑅 (𝑟 + 1)‖2
Re {tr [𝑇𝐻 (𝑟 + 1) 𝑇 (1)]}

+
‖𝑇 (1)‖2

‖𝑅 (1)‖2
(Re {tr [𝑅𝐻 (𝑟 + 2) 𝑅 (1)]}

−Re {tr [𝑅𝐻 (𝑟 + 2) 𝑅 (2)]})

= 0.

(31)

Also we have

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩

= Re {tr [𝑅𝐻 (𝑖 + 𝑟 + 1) 𝑅 (𝑖)]}

= Re {tr [𝑅𝐻 (𝑖 + 𝑟) 𝑅 (𝑖)]}

−
‖𝑅 (𝑖 + 𝑟)‖2

‖𝑇 (𝑖 + 𝑟)‖2
Re {tr [𝑇𝐻 (𝑖 + 𝑟) 𝑆 (𝑖)]}

= −
‖𝑅 (𝑖 + 𝑟)‖2

‖𝑇 (𝑖 + 𝑟)‖2
Re{ tr[𝑇𝐻 (𝑖 + 𝑟)

× (𝑇 (𝑖) −
‖𝑅 (𝑖)‖2

‖𝑅 (𝑖 − 1)‖2

× 𝑇 (𝑖 − 1) )]}

=
‖𝑅 (𝑖 + 𝑟)‖2‖𝑅 (𝑖)‖2

‖𝑇 (𝑖 + 𝑟)‖2‖𝑅 (𝑖 − 1)‖2

× Re {tr [𝑇𝐻 (𝑖 + 𝑟) 𝑇 (𝑖 − 1)]} ,

⟨𝑇 (𝑖) , 𝑇 (𝑖 + 𝑟 + 1)⟩

= Re {tr [𝑇𝐻 (𝑖 + 𝑟 + 1) 𝑇 (𝑖)]}

=
‖𝑅 (𝑖 + 𝑟 + 1)‖2

‖𝑅 (𝑖 + 𝑟)‖2
Re {tr [𝑇𝐻 (𝑖 + 𝑟) 𝑇 (𝑖)]}

+
‖𝑇 (𝑖)‖2

‖𝑅 (𝑖)‖2
(Re {tr [𝑅𝐻 (𝑖 + 𝑟 + 1) 𝑅 (𝑖)]}

− Re {tr [𝑅𝐻 (𝑖 + 𝑟 + 1)

× 𝑅 (𝑖 + 1) ]})
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=
‖𝑇(𝑖)‖2

‖𝑅(𝑖)‖2
Re {tr [𝑅𝐻 (𝑖 + 𝑟 + 1) 𝑅 (𝑖)]}

=
‖𝑇(𝑖)‖2‖𝑅(𝑖 + 𝑟)‖2‖𝑅(𝑖)‖2

‖𝑅(𝑖)‖2‖𝑇(𝑖 + 𝑟)‖2‖𝑅(𝑖 − 1)‖2

× Re {tr [𝑇𝐻 (𝑖 + 𝑟) 𝑇 (𝑖 − 1)]} .
(32)

Repeating the previous process (32), we have

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩ = ⋅ ⋅ ⋅ = 𝛼Re {tr [𝑇𝐻 (𝑟 + 2) 𝑇 (1)]} ,

⟨𝑇 (𝑖) , 𝑇 (𝑖 + 𝑟 + 1)⟩ = ⋅ ⋅ ⋅ = 𝛽Re {tr [𝑇𝐻 (𝑟 + 2) 𝑇 (1)]} .
(33)

Combining these two relations with (30) and (31), it implies
that (28) holds. So, by the principle of induction,we know that
Lemma 8 holds.

Lemma 9. When Problem 1 is consistent, let 𝑋 ∈ H𝑛×𝑛
𝑟

(𝑃, 𝑄)
be its solution; then, for any generalized (𝑃, 𝑄)-reflexive initial
matrix 𝑋(1) ∈ H𝑛×𝑛

𝑟
(𝑃, 𝑄), the sequences {𝑅(𝑖)}, {𝑇(𝑖)} and

{𝑋(𝑖)} generated by Algorithm 6 satisfy

⟨𝑇 (𝑖) , 𝑋 − 𝑋 (𝑖)⟩ = ‖𝑅 (𝑖)‖
2, 𝑖 = 1, 2, . . . . (34)

Proof. When 𝑖 = 1, it follows from Algorithm 6 that

⟨𝑇 (1) , 𝑋 − 𝑋 (1)⟩

= Re {tr [(𝑋 − 𝑋 (1))
𝐻

𝑇 (1)]}

= Re{tr[(𝑋 − 𝑋 (1))
𝐻

× (
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (1) 𝐵

𝐻

𝑙

+
V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (1)𝐷

𝐻

𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝑅 (1) 𝐵

𝐻

𝑙
𝑄

+
V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝑅 (1)𝐷

𝐻

𝑠
)
𝑇

𝑄) × 2−1]}

= Re{tr[(𝑋 − 𝑋 (1))
𝐻

(
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (1) 𝐵

𝐻

𝑙

+
V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (1)𝐷

𝐻

𝑠
)
𝑇

)]}

= Re{tr[𝑅𝐻 (1) (
𝑢

∑
𝑙=1

𝐴
𝑙
(𝑋 − 𝑋 (1)) 𝐵

𝑙

+
V

∑
𝑠=1

𝐶
𝑠
(𝑋𝑇 − 𝑋𝑇 (1)))𝐷

𝑠
]}

= Re {tr [𝑅𝐻 (1) 𝑅 (1)]}

= ‖𝑅 (1)‖
2.

(35)

This implies that (34) holds for 𝑖 = 1.
Assume that (34) holds for 𝑖 = 𝑡, and then, when 𝑖 = 𝑡+ 1,

⟨𝑇 (𝑡 + 1) , 𝑋 − 𝑋 (𝑡 + 1)⟩

= Re {tr [(𝑋 − 𝑋 (𝑡 + 1))
𝐻

𝑇 (𝑡 + 1)]}

= Re{ tr[(𝑋 − 𝑋(𝑡 + 1))
𝐻

× (
1

2
(
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (𝑡 + 1) 𝐵

𝐻

𝑙

+
V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (𝑡 + 1)𝐷

𝐻

𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝑅 (𝑡 + 1) 𝐵

𝐻

𝑙
𝑄

+
V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝑅 (𝑡 + 1)𝐷

𝐻

𝑠
)
𝑇

𝑄)

+
‖𝑅 (𝑡 + 1)‖2

‖𝑅 (𝑡)‖2
𝑇 (𝑡))]}

= Re{tr[(𝑋 − 𝑋 (𝑡 + 1))
𝐻

× (
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝑅 (𝑡 + 1) 𝐵

𝐻

𝑙

+
V

∑
𝑠=1

(𝐶𝐻
𝑠
𝑅 (𝑡 + 1)𝐷

𝐻

𝑠
)
𝑇

)]}

+
‖𝑅 (𝑡 + 1)‖2

‖𝑅 (𝑡)‖2
Re {tr [(𝑋 − 𝑋 (𝑡 + 1))

𝐻

𝑇 (𝑡)]}
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= Re{tr[𝑅𝐻 (𝑡 + 1)

× (
𝑢

∑
𝑙=1

𝐴
𝑙
(𝑋 − 𝑋 (𝑡 + 1)) 𝐵

𝑙

+
V

∑
𝑠=1

𝐶
𝑠
(𝑋𝑇 − 𝑋𝑇 (𝑡 + 1))𝐷

𝑠
)]}

+
‖𝑅 (𝑡 + 1)‖2

‖𝑅 (𝑡)‖2

× {Re {tr [(𝑋 − 𝑋 (𝑡))
𝐻

𝑇 (𝑡)]}

−Re {tr [(𝑋 (𝑡 + 1) − 𝑋 (𝑡))
𝐻𝑇 (𝑡)]}}

= ‖𝑅 (𝑡 + 1)‖
2

+
‖𝑅 (𝑡 + 1)‖2

‖𝑅 (𝑡)‖2
{‖𝑅 (𝑡)‖

2

−
‖𝑅 (𝑡)‖2

‖𝑇 (𝑡)‖2
Re {tr [𝑇𝐻 (𝑡) 𝑇 (𝑡)]}}

= ‖𝑅 (𝑡 + 1)‖
2.

(36)

Therefore, Lemma 9 holds by the principle of induction.

Remark 10. Lemma 9 implies that if there exists a positive
integer 𝑖 such that 𝑅(𝑖) ̸= 0 and 𝑇(𝑖) = 0, then Problem 1 is
not consistent. Therefore, the solvability of Problem 1 can be
determined by Algorithm 6 in the absence of round-off
errors.

From Lemmas 8 and 9, we have the following theorem.

Theorem 11. Assume that Problem 1 is consistent, and then
using Algorithm 6 for any generalized (𝑃,𝑄)-reflexive initial

matrix 𝑋(1) ∈ H𝑛×𝑛
𝑟

(𝑃, 𝑄), a solution of Problem 1 can be
obtained within finite iteration steps in the absence of round-
off errors.

Proof. If 𝑅(𝑖) ̸= 0, 𝑖 = 1, 2, . . . , 4𝑝𝑞, from Lemma 9 we can
obtain𝑇(𝑖) ̸= 0, 𝑖 = 1, 2, . . . , 4𝑝𝑞.Thus𝑅(4𝑝𝑞+1) and𝑇(4𝑝𝑞+
1) can be computed by Algorithm 6. According to Lemma 8,
we have ⟨𝑅(𝑖), 𝑅(𝑗)⟩ = 0, 𝑖, 𝑗 = 1, 2, . . . , 4𝑝𝑞. Considering that
the inner product space (H𝑝×𝑞,R, ⟨⋅, ⋅⟩) is 4𝑝𝑞-dimensional,
we know that the set of 𝑅(1), 𝑅(2), . . . , 𝑅(4𝑝𝑞) is an orthogo-
nal basis of the inner product space (H𝑝×𝑞,R, ⟨⋅, ⋅⟩). Also from
Lemma 8, we have ⟨𝑅(𝑖), 𝑅(4𝑝𝑞+1)⟩ = 0 for 𝑖 = 1, 2, . . . , 4𝑝𝑞,
which implies that 𝑅(4𝑝𝑞 + 1) = 0; that is, 𝑋(4𝑝𝑞 + 1) is a
solution of Problem 1.

4. The Solution of Problem 2

In this section, we will prove that the sequence {𝑋(𝑘)} gen-
erated by Algorithm 6 converges to the least Frobenius norm
generalized (𝑃,𝑄)-reflexive solution of the quaternionmatrix
equation∑𝑢

𝑙=1
𝐴
𝑙
𝑋𝐵
𝑙
+∑

V
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹when an appropriate

initial iterative matrix is chosen. Then, we solve Problem
2 by finding the least Frobenius norm generalized (𝑃,𝑄)-
reflexive solution of a new constructed quaternion matrix
equation.

Lemma 12 (see [51]). Assume that the consistent system of
linear equations𝑀𝑦 = 𝑏 has a solution 𝑦

0
∈ 𝑅(𝑀𝑇); then, 𝑦

0

is the unique least Frobenius norm solution of the system of
linear equations.

Lemma 13. If Problem 1 is consistent, then the following system
of real linear equations is consistent:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(

𝑢

∑
𝑙=1

𝜙𝑇 (𝐵
𝑙
) ⊗ 𝜙 (𝐴

𝑙
) −

V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) 𝑃 (4𝑛, 4𝑛)

+2
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) diag (vec (𝑊)) 𝑃 (4𝑛, 4𝑛)

)

(
(
(
(

(

𝑢

∑
𝑙=1

𝜙𝑇 (𝐵
𝑙
) 𝜙 (𝑄) ⊗ 𝜙 (𝐴

𝑙
) 𝜙 (𝑃)

−
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) 𝜙 (𝑃) ⊗ 𝜙 (𝐶

𝑠
) 𝜙 (𝑄)) 𝑃 (4𝑛, 4𝑛)

+2
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) × diag (vec (𝑊)) (𝜙 (𝑃) ⊗ 𝜙 (𝑄)) 𝑃 (4𝑛, 4𝑛)

)
)
)
)

)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑌 = [
vec (𝜙 (𝐹))
vec (𝜙 (𝐹))] . (37)

Furthermore, if the solution sets of Problem 1 and (37) are
denoted by 𝑆

𝑋
and 𝑆
𝑌
, respectively, then,

vec (𝜙 (𝑆
𝑋
)) ⊆ 𝑆

𝑌
. (38)

Proof. If Problem 1 is consistent, let 𝑋 be a solution of
Problem 1, then we have∑𝑢

𝑙=1
𝐴
𝑙
𝑋𝐵
𝑙
+∑

V
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹 and

𝑃𝑋𝑄 = 𝑋, which implies that 𝑋 is a solution of quaternion
matrix equations
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Figure 1: The curve for the Frobenius norm of the residuals from Example 17.
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Figure 2: The curve for the Frobenius norm of the residuals from Example 18.

𝑢

∑
𝑙=1

𝐴
𝑙
𝑋𝐵
𝑙
+

V

∑
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹,

𝑢

∑
𝑙=1

𝐴
𝑙
𝑃𝑋𝑄𝐵

𝑙
+

V

∑
𝑠=1

𝐶
𝑠
(𝑃𝑋𝑄)

𝑇𝐷
𝑠
= 𝐹.

(39)

By (8), (9), and (12), we can derive that the quaternion
matrix equations (39) is equivalent to the following real
matrix equations:

𝑢

∑
𝑙=1

𝜙 (𝐴
𝑙
) 𝜙 (𝑋) 𝜙 (𝐵

𝑙
)

−
V

∑
𝑠=1

𝜙 (𝐶
𝑠
) 𝜙𝑇 (𝑋) 𝜙 (𝐷

𝑠
)

+ 2
V

∑
𝑠=1

𝜙 (𝐶
𝑠
) (𝜙𝑇 (𝑋) ⊙𝑊)𝜙 (𝐷

𝑠
) = 𝜙 (𝐹) ,
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𝑢

∑
𝑙=1

𝜙 (𝐴
𝑙
) 𝜙 (𝑃) 𝜙 (𝑋) 𝜙 (𝑄) 𝜙 (𝐵

𝑙
)

−
V

∑
𝑠=1

𝜙 (𝐶
𝑠
) 𝜙 (𝑄) 𝜙

𝑇

(𝑋) 𝜙 (𝑃) 𝜙 (𝐷
𝑠
)

+ 2
V

∑
𝑠=1

𝜙 (𝐶
𝑠
) ((𝜙 (𝑄) 𝜙

𝑇

(𝑋) 𝜙 (𝑃)) ⊙𝑊)𝜙 (𝐷
𝑠
)

= 𝜙 (𝐹) .

(40)

By the operation properties of vec(⋅), ⊗, ⊙, and Lemma 4,
it is not difficult to verify that matrix equations (40) is
equivalent to

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(

𝑢

∑
𝑙=1

𝜙𝑇 (𝐵
𝑙
) ⊗ 𝜙 (𝐴

𝑙
) −

V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) 𝑃 (4𝑛, 4𝑛)

+2
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) diag (vec (𝑊)) 𝑃 (4𝑛, 4𝑛)

)

(
(
(

(

𝑢

∑
𝑙=1

𝜙𝑇 (𝐵
𝑙
) 𝜙 (𝑄) ⊗ 𝜙 (𝐴

𝑙
) 𝜙 (𝑃)

−
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) 𝜙 (𝑃) ⊗ 𝜙 (𝐶

𝑠
) 𝜙 (𝑄)) 𝑃 (4𝑛, 4𝑛)

+2
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) × diag (vec (𝑊)) (𝜙 (𝑃) ⊗ 𝜙 (𝑄)) 𝑃 (4𝑛, 4𝑛)

)
)
)

)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

× vec (𝜙 (𝑋)) = [vec (𝜙 (𝐹))vec (𝜙 (𝐹))] ,

(41)

which implies that vec(𝜙(𝑋)) is a solution of (37). So system
of real linear equations (37) is consistent.

From the previous procedure, the proof of (38) is trivial.

Theorem 14. If
∘

𝑋 is a solution of Problem 1 and
∘

𝑋 can be
expressed as the following form:

∘

𝑋 =
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝐺𝐵𝐻
𝑙
+

V

∑
𝑠=1

(𝐶𝐻
𝑠
𝐺𝐷𝐻
𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝐺𝐵𝐻
𝑙
𝑄

+
V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝐺𝐷𝐻
𝑠
)
𝑇

𝑄, 𝐺 ∈ H
𝑝×𝑞

(42)

then,
∘

𝑋 is the least Frobenius norm solution of Problem 1.

Proof. By (8), (9), (10), and (12) and Lemmas 4 and 5, we have

vec (𝜙 (
∘

𝑋))

= vec(
𝑢

∑
𝑙=1

𝜙𝑇 (𝐴
𝑙
) 𝜙 (𝐺) 𝜙

𝑇 (𝐵
𝑙
) + 2

V

∑
𝑠=1

(𝜙 (𝐷
𝑠
) 𝜙𝑇 (𝐺) 𝜙 (𝐶

𝑠
)) ⊙ 𝑊

−
V

∑
𝑠=1

𝜙 (𝐷
𝑠
) 𝜙𝑇 (𝐺) 𝜙 (𝐶

𝑠
) +
𝑢

∑
𝑙=1

𝜙 (𝑃) 𝜙
𝑇 (𝐴
𝑙
) 𝜙 (𝐺) 𝜙

𝑇 (𝐵
𝑙
) 𝜙 (𝑄)

+2
V

∑
𝑠=1

𝜙 (𝑃) ((𝜙 (𝐷
𝑠
) 𝜙𝑇 (𝐺) 𝜙 (𝐶

𝑠
)) ⊙ 𝑊)𝜙 (𝑄) −

V

∑
𝑠=1

𝜙 (𝑃) 𝜙 (𝐷
𝑠
) 𝜙𝑇 (𝐺) 𝜙 (𝐶

𝑠
) 𝜙 (𝑄))
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= [
𝑢

∑
𝑙=1

𝜙 (𝐵
𝑙
) ⊗ 𝜙𝑇 (𝐴

𝑙
) + 2

V

∑
𝑠=1

diag (vec (𝑊)) (𝜙
𝑇 (𝐶
𝑠
) ⊗ 𝜙 (𝐷

𝑠
)) 𝑃 (4𝑝, 4𝑞)

−
V

∑
𝑠=1

(𝜙𝑇 (𝐶
𝑠
) ⊗ 𝜙 (𝐷

𝑠
)) 𝑃 (4𝑝, 4𝑞) ,

𝑢

∑
𝑙=1

𝜙 (𝑄) 𝜙 (𝐵
𝑙
) ⊗ 𝜙 (𝑃) 𝜙

𝑇 (𝐴
𝑙
) + 2

V

∑
𝑠=1

(𝜙 (𝑄) ⊗ 𝜙 (𝑃)) diag (vec (𝑊)) (𝜙
𝑇 (𝐶
𝑠
) ⊗ 𝜙 (𝐷

𝑠
)) 𝑃 (4𝑝, 4𝑞)

−
V

∑
𝑠=1

(𝜙 (𝑄) 𝜙
𝑇 (𝐶
𝑠
) ⊗ 𝜙 (𝑃) 𝜙 (𝐷

𝑠
)) 𝑃 (4𝑝, 4𝑞)] [

vec (𝜙 (𝐺))
vec (𝜙 (𝐺))

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(

𝑢

∑
𝑙=1

𝜙𝑇 (𝐵
𝑙
) ⊗ 𝜙 (𝐴

𝑙
) −

V

∑
𝑠=1

𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
) 𝑃 (4𝑛, 4𝑛)

+2
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) diag (vec (𝑊)) 𝑃 (4𝑛, 4𝑛)

)

(
(
(

(

𝑢

∑
𝑙=1

𝜙𝑇 (𝐵
𝑙
) 𝜙 (𝑄) ⊗ 𝜙 (𝐴

𝑙
) 𝜙 (𝑃)

−
V

∑
𝑠=1

𝜙𝑇 (𝐷
𝑠
) 𝜙 (𝑃) ⊗ 𝜙 (𝐶

𝑠
) 𝜙 (𝑄) 𝑃 (4𝑛, 4𝑛)

+2
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) diag (vec (𝑊) (𝜙 (𝑃) ⊗ 𝜙 (𝑄))) 𝑃 (4𝑛, 4𝑛)

)
)
)

)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

× [
vec (𝜙 (𝐺))
vec (𝜙 (𝐺))]

∈ 𝑅

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

(

𝑢

∑
𝑙=1

𝜙𝑇 (𝐵
𝑙
) ⊗ 𝜙 (𝐴

𝑙
) −

V

∑
𝑠=1

𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
) 𝑃 (4𝑛, 4𝑛)

+2
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) diag (vec (𝑊)) 𝑃 (4𝑛, 4𝑛)

)

(
(
(

(

𝑢

∑
𝑙=1

𝜙𝑇 (𝐵
𝑙
) 𝜙 (𝑄) ⊗ 𝜙 (𝐴

𝑙
) 𝜙 (𝑃)

−
V

∑
𝑠=1

𝜙𝑇 (𝐷
𝑠
) 𝜙 (𝑃) ⊗ 𝜙 (𝐶

𝑠
) 𝜙 (𝑄) 𝑃 (4𝑛, 4𝑛)

+2
V

∑
𝑠=1

(𝜙𝑇 (𝐷
𝑠
) ⊗ 𝜙 (𝐶

𝑠
)) diag (vec (𝑊) (𝜙 (𝑃) ⊗ 𝜙 (𝑄))) 𝑃 (4𝑛, 4𝑛)

)
)
)

)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

.

(43)

By Lemma 12, vec(𝜙(
∘

𝑋)) is the least Frobenius norm solution
of (37).

Noting (11), we derive from Lemma 13 that
∘

𝑋 is the least
Frobenius norm solution of Problem 1.
Remark 15. From Algorithm 6, we can derive that if
we choose 𝑋(1) = ∑

𝑢

𝑙=1
𝐴𝐻
𝑙
𝐺𝐵𝐻
𝑙

+ ∑
V
𝑠=1
(𝐶𝐻
𝑠
𝐺𝐷𝐻
𝑠
)𝑇 +

∑
𝑢

𝑙=1
𝑃𝐴𝐻
𝑙
𝐺𝐵𝐻
𝑙
𝑄 + ∑

V
𝑠=1

𝑃(𝐶𝐻
𝑠
𝐺𝐷𝐻
𝑠
)𝑇𝑄, 𝐺 ∈ H𝑝×𝑞, as

the initial iteration matrix, then all 𝑋(𝑘) generated by
Algorithm 6 have a form of

𝑋(𝑘) =
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝐺
𝑘
𝐵𝐻
𝑙
+

V

∑
𝑠=1

(𝐶𝐻
𝑠
𝐺
𝑘
𝐷𝐻
𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝐺
𝑘
𝐵𝐻
𝑙
𝑄

+
V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝐺
𝑘
𝐷𝐻
𝑠
)
𝑇

𝑄, 𝐺
𝑘
∈ H
𝑝×𝑞.

(44)
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Theorem 16. When Problem 1 is consistent, if we choose the
following matrix as the initial iteration matrix

𝑋 (1) =
𝑢

∑
𝑙=1

𝐴𝐻
𝑙
𝐺𝐵𝐻
𝑙
+

V

∑
𝑠=1

(𝐶𝐻
𝑠
𝐺𝐷𝐻
𝑠
)
𝑇

+
𝑢

∑
𝑙=1

𝑃𝐴𝐻
𝑙
𝐺𝐵𝐻
𝑙
𝑄 +

V

∑
𝑠=1

𝑃(𝐶𝐻
𝑠
𝐺𝐷𝐻
𝑠
)
𝑇

𝑄,

(45)

where 𝐺 ∈ H𝑝×𝑞 is arbitrary, or especially, 𝑋(1) = 0, then
the solution 𝑋∗, generated by Algorithm 6, is exactly the least
Frobenius norm solution of Problem 1.

From conclusion (44) and Theorem 14, the proof of
Theorem 16 is trivial.

Now we consider Problem 2. When Problem 1 is consis-
tent, the solution set of Problem 1 𝑆

𝑋
is not empty. For a given

generalized (𝑃,𝑄)-reflexive matrix 𝑋
0
∈ H𝑛×𝑛
𝑟

(𝑃, 𝑄), let �̇� =

𝑋 − 𝑋
0
, �̇� = 𝐹 − ∑

𝑢

𝑙=1
𝐴
𝑙
𝑋
0
𝐵
𝑙
− ∑

V
𝑠=1

𝐶
𝑠
𝑋𝑇
0
𝐷
𝑠
; then the least

Frobenius norm generalized (𝑃, 𝑄)-reflexive solution of the

following quaternion matrix equation is exactly the solution
of min

𝑋∈𝑆𝑋
‖𝑋 − 𝑋

0
‖

𝑢

∑
𝑙=1

𝐴
𝑙
�̇�𝐵
𝑙
+

V

∑
𝑠=1

𝐶
𝑠
�̇�
𝑇

𝐷
𝑠
= �̇�. (46)

According to Theorem 16, if we choose the initial itera-
tion matrix �̇�(1) = ∑

𝑢

𝑙=1
𝐴𝐻
𝑙
𝐺𝐵𝐻
𝑙
+ ∑

V
𝑠=1
(𝐶𝐻
𝑠
𝐺𝐷𝐻
𝑠
)𝑇 +

∑
𝑢

𝑙=1
𝑃𝐴𝐻
𝑙
𝐺𝐵𝐻
𝑙
𝑄 + ∑

V
𝑠=1

𝑃(𝐶𝐻
𝑠
𝐺𝐷𝐻
𝑠
)𝑇𝑄, where 𝐺 ∈ H𝑝×𝑞

is arbitrary, or especially, choosing �̇�(1) = 0, the least
Frobenius norm generalized (𝑃, 𝑄)-reflexive solution �̇�

∗ of
(46) can be obtained. Then the solution of Problem 2 is 𝑋 =
�̇�
∗

+ 𝑋
0
.

5. Examples

In this section, we give two examples to illustrate the perfor-
mance of the proposed algorithm.

Example 17. Consider the quaternion matrix equation

𝐴
1
𝑋𝐵
1
+ 𝐶
1
𝑋𝑇𝐷
1
+ 𝐴
2
𝑋𝐵
2
+ 𝐶
2
𝑋𝑇𝐷
2
= 𝐹, (47)

with the matrices

𝐴
1
= [

2 + 𝑖 + 2𝑗 1 + 2𝑖 + 2𝑗 + 𝑘 3𝑗 2𝑖 + 𝑗 + 2𝑘
2𝑖 + 2𝑗 + 𝑘 −1 + 3𝑘 1 + 2𝑖 + 4𝑗 + 2𝑘 4 + 𝑖 + 2𝑗 + 4𝑘

] ,

𝐴
2
= [

𝑖 + 𝑗 + 𝑘 𝑖 1 − 2𝑖 + 𝑗 + 2𝑘 2 + 4𝑖 + 2𝑘
2𝑖 + 2𝑗 + 𝑘 1 + 3𝑖 + 𝑗 3 + 4𝑖 + 𝑗 − 2𝑘 2 + 2𝑖 + 2𝑗 + 𝑘

] ,

𝐵
1
=
[
[
[

[

1 + 5𝑖 + 2𝑗 + 𝑘 2 + 3𝑖 + 3𝑗 + 2𝑘
6𝑖 + 4𝑗 − 𝑘 2 + 5𝑗
2 + 2𝑖 + 𝑗 − 𝑘 4 + 7𝑖 + 2𝑗 + 2𝑘
3 + 𝑗 − 𝑘 1 + 2𝑖 − 2𝑗 + 3𝑘

]
]
]

]

, 𝐵
2
=
[
[
[

[

−𝑖 + 4𝑗 + 𝑘 −3 + 2𝑖 + 3𝑗 + 2𝑘
2 + 4𝑖 − 𝑘 −1 + 5𝑖 + 2𝑗 − 2 𝑘

1 + 6𝑖 + 4𝑗 + 5𝑘 2 − 3𝑖 + 𝑗 + 𝑘
−𝑖 + 6𝑗 + 3𝑘 1 + 7𝑖 − 2𝑗 − 4𝑘

]
]
]

]

,

𝐶
1
= [

𝑖 + 2𝑗 + 𝑘 1 + 𝑖 − 3𝑗 + 2𝑘 1 + 5𝑖 + 𝑘 2𝑖 + 4𝑗 − 4𝑘
1 − 4𝑖 + 2𝑗 + 𝑘 5 + 5𝑖 − 𝑗 + 𝑘 −4 + 2𝑖 + 3𝑗 + 2𝑘 1 + 5𝑖 + 2𝑗 − 4𝑘

] ,

𝐶
2
= [

1 + 𝑖 + 3𝑗 3 − 𝑖 + 3𝑗 + 𝑘 1 + 𝑖 + 5𝑗 + 3𝑘 2 + 4𝑖 + 2𝑗
5 + 3𝑖 + 𝑗 + 4𝑘 2 + 𝑖 + 2𝑗 + 3𝑘 3 + 4𝑖 + 3𝑗 + 2𝑘 −2 + 𝑖 − 3𝑗 + 𝑘

] ,

𝐷
1
=
[
[
[

[

2 + 6𝑖 + 6𝑗 + 𝑘 1 + 3𝑖 + 𝑗 − 2𝑘
−4𝑖 + 3𝑗 + 8𝑘 −2 − 2𝑖 − 4𝑗 + 5𝑘
5 + 3𝑖 − 2𝑗 + 4𝑘 1 + 2𝑖 + 𝑗 + 2𝑘
3 − 𝑖 + 2𝑗 − 2𝑘 3 + 𝑖 − 𝑗 + 3𝑘

]
]
]

]

, 𝐷
2
=
[
[
[

[

𝑖 − 5𝑗 + 6𝑘 −2 − 8𝑖 − 4𝑗 − 3𝑘
3 + 4𝑖 + 7𝑗 + 2𝑘 5𝑖 + 2𝑗
5 + 7𝑖 − 2𝑗 − 𝑘 −2 + 9𝑖 + 7𝑗 + 𝑘
1 + 3𝑖 + 4𝑗 6 + 2𝑗 + 7𝑘

]
]
]

]

,

𝐹 = [
6 + 𝑖 + 2𝑗 + 𝑘 −8 − 7𝑖 − 3𝑗 + 2𝑘
𝑖 − 6𝑗 − 4𝑘 3 − 2𝑖 + 6𝑘

] .

(48)
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We apply Algorithm 6 to find the generalized (𝑃, 𝑄)-reflexive
solution of (47), where

𝑃 =
[
[
[

[

0.28 0 0.96𝑘 0
0 0.28 0 −0.96𝑗

−0.96𝑘 0 −0.28 0
0 0.96𝑗 0 −0.28

]
]
]

]

,

𝑄 =
[
[
[

[

0.28 0 0.96𝑘 0
0 −1 0 0

−0.96𝑘 0 −0.28 0
0 0 0 −1

]
]
]

]

(49)

are two generalized reflection matrices. Choosing an initial
matrix

𝑋(1) =
[
[
[

[

1 0 0 0
0 0.36 0 0.48𝑗
0 0 1 0
0 −0.48𝑗 0 0.64

]
]
]

]

∈ H
4×4

𝑟
(𝑃, 𝑄) , (50)

we obtain that the sequence {𝑋(𝑘)} after 21 steps is

𝑋∗ = 𝑋 (21)

=
[
[

[

0.51783 + 0.066965𝑖 + 0.095973𝑗 − 0.025639𝑘 −0.088601 + 0.063970𝑖 + 0.075293𝑗 + 0.15420𝑘
−0.13818 − 0.050488𝑖 − 0.073437𝑗 + 0.11425𝑘 0.12924 − 0.077969𝑖 − 0.12809𝑗 + 0.12008𝑘
0.026384 + 0.045766𝑖 − 0.22964𝑗 + 0.066304𝑘 −0.20560 − 0.10039𝑖 + 0.085294𝑗 − 0.11813𝑘
0.12175 + 0.14209𝑖 − 0.11665𝑗 + 0.20690𝑘 −0.17079 − 0.16010𝑖 − 0.17233𝑗 − 0.10396𝑘

−0.026384 + 0.045766𝑖 − 0.22964𝑗 − 0.066304𝑘 −0.034186 + 0.089643𝑖 − 0.0029795𝑗 + 0.11576𝑘
−0.14209 − 0.12175𝑖 + 0.20690𝑗 − 0.11665𝑘 −0.080702 + 0.12324𝑖 + 0.20981𝑗 + 0.11867𝑘
0.55651 + 0.066993𝑖 − 0.069276𝑗 − 0.041030𝑘 −0.15435 + 0.0039727𝑖 + 0.11952𝑗 − 0.045581𝑘
0.070202 − 0.070130𝑖 − 0.031364𝑗 + 0.0024134𝑘 0.27974 − 0.15822𝑖 + 0.10760𝑗 + 0.16431𝑘

]
]

]

,

(51)

with ‖𝑅(21)‖ = 2.047 × 10−13. The obtained results are
presented in Figure 1, where 𝑟(𝑘) = ‖𝑅(𝑘)‖.

Example 18. Let

𝑋
0
=
[
[
[

[

0.64 −0.72𝑖 − 0.75𝑘 0.48𝑘 −0.5625𝑖 − 0.96𝑘
0.64 + 0.36𝑖 0 0.48𝑗 + 0.48𝑘 0
−0.48𝑘 1 − 0.96𝑗 0.36 1.28 − 0.75𝑗

0.48𝑗 + 0.48𝑘 0 0.64 + 0.36𝑖 0

]
]
]

]

∈ H
4×4

𝑟
(𝑃, 𝑄) . (52)

Now we consider Problem 2, that is, finding the optimal
approximate generalized (𝑃, 𝑄)-reflexive solution of the

quaternionmatrix equation (47) to𝑋
0
. ApplyingAlgorithm 6

to (46) by choosing the initial matrix �̇�(1) = 0, we obtain that
the sequence {𝑋(𝑘)} after 22 steps is

�̇�
∗

= �̇� (22)

=
[
[
[

[

−0.60797 + 0.14851𝑖 − 0.031273𝑗 + 0.032158𝑘 0.093923 + 0.086087𝑖 + 0.24350𝑗 + 0.44225𝑘
−0.32942 − 0.34127𝑖 − 0.091587𝑗 + 0.36047𝑘 −0.092590 − 0.15547𝑖 − 0.19614𝑗 + 0.067121𝑘
−0.087200 − 0.13538𝑖 + 0.090255𝑗 + 0.25660𝑘 −0.58966 − 0.32467𝑖 + 0.11478𝑗 + 0.12523𝑘
0.020667 + 0.14412𝑖 − 0.17405𝑗 + 0.058232𝑘 −0.26152 − 0.089494𝑖 + 0.12345𝑗 − 0.20729𝑘

0.087200 − 0.13538𝑖 + 0.090255𝑗 − 0.25660𝑘 −0.021779 + 0.31853𝑖 − 0.55293𝑗 + 0.58717𝑘
−0.14412 − 0.020667𝑖 + 0.058232𝑗 − 0.17405𝑘 0.090225 − 0.057613𝑖 − 0.17618𝑗 − 0.066567𝑘
−0.45828 − 0.20116𝑖 − 0.047696𝑗 + 0.083025𝑘 −0.78290 + 0.73724𝑖 + 0.42471𝑗 − 0.029038𝑘
−0.30730 − 0.22789𝑖 − 0.27640𝑗 + 0.079531𝑘 −0.23490 + 0.088756𝑖 − 0.12030𝑗 − 0.076818𝑘

]
]
]

]

,

(53)

with ‖�̇�(22)‖ = 2.1855 × 10−14. The obtained results are
presented in Figure 2, where 𝑟(𝑘) = ‖�̇�(𝑘)‖. So we can obtain the solution of Problem 2; that is,
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𝑋 = �̇�
∗

+ 𝑋
0

=
[
[
[

[

0.032031 + 0.14851𝑖 − 0.031273𝑗 + 0.032158𝑘 0.093923 − 0.63391𝑖 + 0.24350𝑗 − 0.30775𝑘
0.31058 + 0.018728𝑖 − 0.091587𝑗 + 0.36047𝑘 −0.092590 − 0.15547𝑖 − 0.19614𝑗 + 0.067121𝑘
−0.087200 − 0.13538𝑖 + 0.090255𝑗 − 0.22340𝑘 0.41034 − 0.32467𝑖 − 0.84522𝑗 + 0.12523𝑘
0.020667 + 0.14412𝑖 + 0.30595𝑗 + 0.53823𝑘 −0.26152 − 0.089494𝑖 + 0.12345𝑗 − 0.20729𝑘

0.087200 − 0.13538𝑖 + 0.090255𝑗 + 0.22340𝑘 −0.021779 − 0.24397𝑖 − 0.55293𝑗 − 0.37283𝑘
−0.14412 − 0.020667𝑖 + 0.53823𝑗 + 0.30595𝑘 0.090225 − 0.057613𝑖 − 0.17618𝑗 − 0.066567𝑘
−0.098285 − 0.20116𝑖 − 0.047696𝑗 + 0.083025𝑘 0.49710 + 0.73724𝑖 − 0.32529𝑗 − 0.029038𝑘
0.33270 + 0.13211𝑖 − 0.27640𝑗 + 0.079531𝑘 −0.23490 + 0.088756𝑖 − 0.12030𝑗 − 0.076818𝑘

]
]
]

]

.

(54)

6. Conclusions

In this paper, an algorithm has been presented for solving the
quaternion matrix equation ∑𝑢

𝑙=1
𝐴
𝑙
𝑋𝐵
𝑙
+ ∑

V
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹

over generalized (𝑃, 𝑄)-reflexive matrices. It has been proven
that when the quaternion matrix equation ∑

𝑢

𝑙=1
𝐴
𝑙
𝑋𝐵
𝑙
+

∑
V
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
= 𝐹 is consistent over generalized (𝑃, 𝑄)-

reflexive matrices, for any generalized (𝑃, 𝑄)-reflexive ini-
tial iterative matrix, the sequence {𝑋(𝑘)} generated by
Algorithm 6 will converge to a generalized (𝑃, 𝑄)-reflexive
solution within finite iteration steps in the absence of round-
off errors.We have also proven that by choosing a suitable ini-
tial iterative matrix, the sequence {𝑋(𝑘)} will converge to the
least Frobenius norm generalized (𝑃, 𝑄)-reflexive solution of
the quaternionmatrix equation∑𝑢

𝑙=1
𝐴
𝑙
𝑋𝐵
𝑙
+∑

V
𝑠=1

𝐶
𝑠
𝑋𝑇𝐷
𝑠
=

𝐹. Then, by using Algorithm 6, we solved Problem 2. The
numerical results have shown that the presented algorithm
is quite effective.
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