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Uniform improving estimates of damped plane Radon transforms in Lebesgue and Lorentz spaces are studied under mild
assumptions on the rotational curvature. The results generalize previously known estimates. Also, they extend sharp estimates
known for convolution operators with affine arclength measures to the semitranslation-invariant case.

1. Introduction

LetD be a domain in R2 and let

D
∗
:= {𝑥
1
∈ R : (𝑥

1
, 𝑦) ∈ D for some𝑦 ∈ R} ,

D
∗
:= {𝑦 ∈ R : (𝑥

1
, 𝑦) ∈ D for some𝑥

1
∈ R} .

(1)

For 𝑥
1
∈ D∗ and 𝑦 ∈ D

∗
, we write

D
𝑥
1

:= {𝑧 ∈ R : (𝑥
1
, 𝑧) ∈ D} ,

D
𝑦
:= {𝑧 ∈ R : (𝑧, 𝑦) ∈ D} .

(2)

To avoid technical difficulties, we assume that, for 𝑥
1
∈ D∗

and 𝑦 ∈ D
∗
, D
𝑥
1

and D𝑦 are finite intervals throughout
the paper. For a 𝐶2 function 𝜑 and a measurable function
𝜔 defined on D, we consider the damped Radon transform
R
𝜑,𝜔

defined by

R
𝜑,𝜔
𝑓 (𝑥
1
, 𝑥
2
) := ∫

D
𝑥1

𝑓 (𝑦, 𝑥
2
+ 𝜑 (𝑥

1
, 𝑦)) 𝜔 (𝑥

1
, 𝑦) 𝑑𝑦

(3)

for 𝑓 ∈ 𝐶
∞

0
(R2). Mapping properties of such operators in

various function spaces have been studied by many authors
[1–9]. Sharper estimates are available in translation-invariant
cases where 𝜑(𝑥

1
, 𝑦) = 𝜙(𝑥

1
− 𝑦) with a 𝐶

2 function 𝜙

defined on an interval [10, 11] and it is widely known that
the so-called affine arclength measure introduced by Drury
[12] is better suited in obtaining degeneracy independent

results in many interesting cases. Analogous quantity in
nontranslation-invariant situation is rotational curvature,
which is given by 𝜑

12
(𝑥
1
, 𝑦) = 𝜕

2
𝜑/𝜕𝑥
1
𝜕𝑦 in this setting. In

this paper, we are interested in uniform optimal improving
properties in Lebesgue spaces and Lorentz spaces.The results
will generalize known estimates for dampedRadon transform
and convolution operators with affine arclength measure on
plane curves.

Before we state the results, we introduce certain condi-
tions on functions defined on intervals. For an interval 𝐽

1
in

R, a locally integrable function Φ : 𝐽
1
→ R+, and a positive

real number 𝐴, we let

G (Φ, 𝐴) := {𝜔 : 𝐽
1
→ R

+
| √𝜔 (𝑠

1
) 𝜔 (𝑠
2
)

≤

𝐴

𝑠
2
− 𝑠
1

∫

𝑠
2

𝑠
1

Φ (𝑠) 𝑑𝑠

whenever 𝑠
1
< 𝑠
2
and [𝑠

1
, 𝑠
2
] ⊂ 𝐽
1
} ,

E
1
(𝐴) := {Φ : 𝐽 → R

+
| Φ ∈ G (Φ, 𝐴)} .

(4)

An interesting subclass of E
1
(2𝐴) is the collection E

2
(𝐴),

introduced in [13], of functionsΦ : 𝐽 → R+ such that

(1) Φ is monotone,
(2) whenever 𝑠

1
< 𝑠
2
and [𝑠

1
, 𝑠
2
] ⊂ 𝐽,

√Φ(𝑠
1
)Φ (𝑠
2
) ≤ 𝐴Φ(

𝑠
1
+ 𝑠
2

2

) . (5)
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In connection with the problems related to convolution
operators with affine arclength measure on curves in the
plane, the author of [10] proved the following.

Theorem 1. Let 𝐽 be an open interval inR, and let 𝜙 : 𝐽 → R

be a 𝐶
2 function such that 𝜙 ≥ 0. Let 𝜔 : 𝐽 → R be a

nonnegative measurable function. Suppose that there exists a
positive constant 𝐴 such that 𝜔 ∈ G(𝜙, 𝐴); that is,

𝜔(𝑠
1
)

1/2

𝜔(𝑠
2
)

1/2

≤

𝐴

𝑠
2
− 𝑠
1

∫

𝑠
2

𝑠
1

𝜙

(V) 𝑑V (6)

holds whenever 𝑠
1
< 𝑠
2
and [𝑠

1
, 𝑠
2
] ⊂ 𝐽. LetS

𝜙
be the operator

given by

S
𝜙
𝑓 (𝑥
1
, 𝑥
2
) = ∫

𝐽

𝑓 (𝑥
1
− 𝑠, 𝑥
2
− 𝜙 (𝑠)) 𝜔

1/3
(𝑠) 𝑑𝑠 (7)

for 𝑓 ∈ 𝐶
∞

0
(R2). Then, there exists a constant 𝐶 that depends

only on 𝐴 such that





S
𝜙
𝑓





𝐿
3
(R2)

≤ 𝐶




𝑓



𝐿
3/2
(R2) (8)

holds uniformly in 𝑓 ∈ 𝐶
∞

0
(R2).

Regarding the endpoint Lorentz space estimates, the
following result due to Oberlin is available.

Theorem 2 (Oberlin [11]). Let 𝜙 be a 𝐶
2 function on an

interval 𝐽 such that 𝜙 > 0 on 𝐽 and 𝜙 ∈ E
2
(𝐴). Then, S

𝜙

defined in (7) maps 𝐿3/2,3(R2) boundedly to 𝐿3(R2) with the
operator norm depending only on 𝐴.

In this paper, the author generalizes the aforementioned
theorems to damped Radon transforms where the condition
on the affine arclength measure is replaced by that on the
rotational curvature. This paper is organized as follows: in
Section 2, uniform estimate in Lebesgue spaces is studied,
and in Section 3, endpoint Lorentz space estimate will be
given based on an approach similar to Oberlin’s approach
[11, 14].

2. Uniform Estimates on the Plane

Theorem 3. Let 𝜑 be a 𝐶2 function on D such that 𝜑
12

> 0,
and let 𝜔 be a nonnegative measurable function onD. Suppose
that there exists a positive constant 𝐴 such that, for each 𝑥

1
∈

D∗, 𝜔(𝑥
1
, ⋅) ∈ G(𝜑

12
(𝑥
1
, ⋅), 𝐴); that is,

𝜔(𝑥
1
, 𝑦
1
)

1/2

𝜔(𝑥
1
, 𝑦
2
)

1/2

≤

𝐴

𝑦
2
− 𝑦
1

∫

𝑦
2

𝑦
1

𝜑


12
(𝑥
1
, 𝑧) 𝑑𝑧 (9)

holds whenever 𝑦
1
< 𝑦
2
and [𝑦

1
, 𝑦
2
] ⊂ D

𝑥
1

. Let R
𝜑,𝜔

be
the operator given by (3). Then, there exists a constant 𝐶 that
depends only on 𝐴 such that






R
𝜑,𝜔
𝑓





𝐿
3
(R2)

≤ 𝐶




𝑓



𝐿
3/2
(R2) (10)

holds uniformly in 𝑓 ∈ 𝐶
∞

0
(R2).

Proof of Theorem 3. Our proof is based on the method intro-
duced by Drury and Guo [15], which was later refined by
Oberlin [16] and the author of [10]. We have






R
𝜑,𝜔
𝑓







3

3

= ∫

R

∫

D∗

3

∏

𝑗=1

(∫

D
𝑥1

𝑓 (𝑦
1
, 𝑥
2
+ 𝜑 (𝑥

1
, 𝑦
𝑗
))

×𝜔
1/3

(𝑥
1
, 𝑦
𝑗
) 𝑑𝑦
𝑗
)𝑑𝑥
1
𝑑𝑥
2

=∭

D
∗

[G (𝑓 (𝑦
1
, ⋅) , 𝑓 (𝑦

2
, ⋅) , 𝑓 (𝑦

3
, ⋅))]

× (𝑦
1
, 𝑦
2
, 𝑦
3
) 𝑑𝑦
1
𝑑𝑦
2
𝑑𝑦
3
,

(11)

where for 𝑦
1
, 𝑦
2
, 𝑦
3
∈ D
∗
and suitable functions 𝑔

1
, 𝑔
2
, 𝑔
3

defined on R,
[G (𝑔

1
, 𝑔
2
, 𝑔
3
)] (𝑦
1
, 𝑦
2
, 𝑦
3
)

:= ∫

R

∫

D𝑦1,𝑦2,𝑦3

3

∏

𝑗=1

[𝑔
𝑗
(𝑥
2
+ 𝜑 (𝑥

1
, 𝑦
𝑗
)) 𝜔
1/3

(𝑥
1
, 𝑦
𝑗
)] 𝑑𝑥
1
𝑑𝑥
2

(12)

withD𝑦1,𝑦2,𝑦3 := ⋂
3

𝑗=1
D𝑦𝑗 . As in the proof of Theorem 2.1 in

[10], one can show that the estimate




[G (𝑔

1
, 𝑔
2
, 𝑔
3
)] (𝑦
1
, 𝑦
2
, 𝑦
3
)





≤

𝐶




𝑔
1




𝐿
3/2
(R)





𝑔
2




𝐿
3/2
(R)





𝑔
3




𝐿
3/2
(R)





(𝑦
1
− 𝑦
2
) (𝑦
1
− 𝑦
3
) (𝑦
2
− 𝑦
3
)





1/3

(13)

holds uniformly in 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑦
1
, 𝑦
2
, and 𝑦

3
. Combining this

with Proposition 2.2 in the work by Christ [17] finishes the
proof.

Remark 4. The special case in which 𝜔 = 𝜑


12
provides a

uniform estimate for the damped plane Radon transform.We
write

R
𝜑
𝑓 (𝑥
1
, 𝑥
2
) = ∫

D
𝑥1

𝑓 (𝑦, 𝑥
2
+ 𝜑 (𝑥

1
, 𝑦)) 𝜑



12
(𝑥
1
, 𝑥
2
, 𝑦)

1/3

𝑑𝑦

(14)

for 𝑓 ∈ 𝐶
∞

0
(R2).

Corollary 5. Let 𝜑 : D → R be a 𝐶
2 function such that

𝜑


12
> 0. Suppose that there exists a constant 𝐴 such that, for

each 𝑥
1
∈ D∗, 𝜑

12
(𝑥
1
, ⋅) ∈ E

1
(𝐴); that is,

𝜑


12
(𝑥
1
, 𝑦
1
)

1/2

𝜑


12
(𝑥
1
, 𝑦
2
)

1/2

≤

𝐴

𝑦
2
− 𝑦
1

∫

𝑦
2

𝑦
1

𝜑


12
(𝑥
1
, 𝑧) 𝑑𝑧

(15)

holds whenever 𝑦
1
< 𝑦
2
and [𝑦

1
, 𝑦
2
] ⊂ D

𝑥
1

. Let R
𝜑
be the

operator given by (14). Then, there exists a constant 𝐶 that
depends only on 𝐴 such that






R
𝜑
𝑓





𝐿
3
(R2)

≤ 𝐶




𝑓



𝐿
3/2
(R2) (16)

holds uniformly in 𝑓 ∈ 𝐶
∞

0
(R2).
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Remark 6. A duality argument shows the following.

Corollary 7. Let 𝜑 : D → R be a 𝐶
2 function such that

𝜑


12
> 0. Suppose that there exists a constant 𝐴 such that, for

each 𝑦
1
∈ D
∗
, 𝜑
12
(⋅, 𝑦
1
) ∈ E
1
(𝐴); that is,

𝜑


12
(𝑥
1
, 𝑦
1
)

1/2

𝜑


12
(𝑥
2
, 𝑦
1
)

1/2

≤

𝐴

𝑥
2
− 𝑥
1

∫

𝑥
2

𝑥
1

𝜑


12
(𝑧, 𝑦
1
) 𝑑𝑧

(17)

holds whenever 𝑥
1
< 𝑥
2
and [𝑥

1
, 𝑥
2
] ⊂ D𝑦1 . Let R

𝜑
be the

operator given by (14). Then, there exists a constant 𝐶 that
depends only on 𝐴 such that






R
𝜑
𝑓





𝐿
3
(R2)

≤ 𝐶




𝑓



𝐿
3/2
(R2) (18)

holds uniformly in 𝑓 ∈ 𝐶
∞

0
(R2).

3. Endpoint Lorentz Estimates

Under somewhat stronger condition, estimates in Section 2
can be improved. Namely, we have the following.

Theorem 8. Let 𝜑 : D → R be a 𝐶2 function such that 𝜑
12
>

0. Suppose that there exists a constant 𝐴 such that, for each
𝑥
1
∈ D∗, 𝜑

12
(𝑥
1
, ⋅) ∈ E

2
(𝐴); that is,

𝜑


12
(𝑥
1
, 𝑦
1
)

1/2

𝜑


12
(𝑥
1
, 𝑦
2
)

1/2

≤ 𝐴𝜑


12
(𝑥
1
,

(𝑦
1
+ 𝑦
2
)

2

) (19)

holds whenever 𝑦
1
< 𝑦
2
and [𝑦

1
, 𝑦
2
] ⊂ D

𝑥
1

. Let R
𝜑
be the

operator given by (14). Then, there exists a constant 𝐶 that
depends only on 𝐴 such that






R
𝜑
𝑓





𝐿
3,3/2
(R2)

≤ 𝐶




𝑓



𝐿
3/2
(R2) (20)

holds uniformly in 𝑓 ∈ 𝐶
∞

0
(R2).

Proof of Theorem 8. To ease our notation, we let 𝜔 := 𝜑


12
.

For a measurable subset 𝐸 of either R or R2, we denote the
Lebesgue measure and the characteristic function of 𝐸 by |𝐸|
and 1

𝐸
, respectively.

By a well-known interpolation argument as in [2, 18], it
suffices to establish the estimate

𝐼 (𝐸
1
, 𝐸
2
, 𝐸
3
) := ∬

R2

3

∏

𝑗=1

[R1
𝐸
𝑗

(𝑥
1
, 𝑥
2
)] 𝑑𝑥
1
𝑑𝑥
2

≤ 𝐶




𝐸
1










𝐸
2






1/2



𝐸
3






1/2

(21)

for all measurable subsets 𝐸
1
, 𝐸
2
, and 𝐸

3
of R2. We have

𝐼 (𝐸
1
, 𝐸
2
, 𝐸
3
)

= ∬

R2

3

∏

𝑗=1

[∫

D
𝑥1

1
𝐸
𝑗

(𝑦
𝑗
, 𝑥
2
+ 𝜑 (𝑥

1
, 𝑦
𝑗
))

× 𝜔(𝑥
1
, 𝑦
𝑗
)

1/3

𝑑𝑦
𝑗
]𝑑𝑥
1
𝑑𝑥
2

= ∫

D
∗

∫

R

[A (𝑥
2
, 𝑦
1
; 𝐸
2
, 𝐸
3
)] 1
𝐸
1

(𝑦
1
, 𝑥
2
) 𝑑𝑥
2
𝑑𝑦
1
,

(22)

where

A (𝑥
2
, 𝑦
1
; 𝐸
2
, 𝐸
3
)

:= ∫

D𝑦1

3

∏

𝑗=2

[
̃B (𝑥
1
, 𝑥
2
, 𝑦
1
; 𝐸
𝑗
)] 𝜔(𝑥

1
, 𝑦
1
)

1/3

𝑑𝑥
1
,

̃B (𝑥
1
, 𝑥
2
, 𝑦
1
; 𝐸)

:= ∫

D
𝑥1

1
𝐸
(𝑦, 𝑥
2
+ 𝜑 (𝑥

1
, 𝑦) − 𝜑 (𝑥

1
, 𝑦
1
)) 𝜔(𝑥

1
, 𝑦)

1/3

𝑑𝑦.

(23)

By Schwarz inequality, it suffices to get an estimate

∫

D𝑦1
[
̃B (𝑥
1
, 𝑥
2
, 𝑦
1
; 𝐸)]

2

𝜔(𝑥
1
, 𝑦
1
)

1/3

𝑑𝑥
1
≤ 𝐶 |𝐸| (24)

uniformly in 𝑥
2
, 𝑦
1
, and 𝐸. By translation invariance of

̃B(𝑥
1
, 𝑥
2
, 𝑦
1
; 𝐸) in 𝑥

2
variable, it is enough to establish

∫

D𝑦1
[B
1
(𝑥
1
, 𝑦
1
; 𝐸)]

2

𝜔(𝑥
1
, 𝑦
1
)

1/3

𝑑𝑥
1
≤ 𝐶 |𝐸| , (25)

∫

D𝑦1
[B
2
(𝑥
1
, 𝑦
1
; 𝐸)]

2

𝜔(𝑥
1
, 𝑦
1
)

1/3

𝑑𝑥
1
≤ 𝐶 |𝐸| (26)

uniformly in 𝑦
1
and 𝐸, where

B
1
(𝑥
1
, 𝑦
1
; 𝐸)

:= ∫

D𝑥1
∩[𝑦1 ,∞)

1
𝐸
(𝑦, 𝜑 (𝑥

1
, 𝑦) − 𝜑 (𝑥

1
, 𝑦
1
)) 𝜔(𝑥

1
, 𝑦)

1/3

𝑑𝑦,

B
2
(𝑥
1
, 𝑦
1
; 𝐸)

:= ∫

D𝑥1
∩(−∞,𝑦1)

1
𝐸
(𝑦, 𝜑 (𝑥

1
, 𝑦) − 𝜑 (𝑥

1
, 𝑦
1
)) 𝜔(𝑥

1
, 𝑦)

1/3

𝑑𝑦.

(27)

Notice that the map Γ : (𝑥
1
, 𝑦) → (𝑦, 𝜑(𝑥

1
, 𝑦) − 𝜑(𝑥

1
, 𝑦
1
))

is one-to-one and has the absolute value of Jacobian determi-
nant 𝐽(𝑥

1
, 𝑦) := |𝜑



1
(𝑥
1
, 𝑦) − 𝜑



1
(𝑥
1
, 𝑦
1
)| for a given 𝑦

1
∈ D
∗
.

3.1. Estimate for B
1
. We follow an approach by Oberlin [14].

Letting

𝐹 := 𝐹 (𝑥
1
, 𝑦
1
; 𝐸) := {𝑦 ∈ D

𝑥
1

∩ [𝑦
1
,∞) : Γ (𝑥

1
, 𝑦) ∈ 𝐸} ,

(28)

we have

∫

D
𝑥1
∩[𝑦
1
,∞)

1
𝐹
(𝑦) (𝜑



1
(𝑥
1
, 𝑦) − 𝜑



1
(𝑥
1
, 𝑦
1
)) 𝑑𝑦

= ∫

D
𝑥1
∩[𝑦
1
,∞)

1
𝐹
(𝑦) ∫

𝑦

𝑦
1

𝜔 (𝑥
1
, 𝑧) 𝑑𝑧 𝑑𝑦

= ∫

[𝑦
1
,∞)





𝐹
𝑧





𝜔 (𝑥
1
, 𝑧) 𝑑𝑧.

(29)
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Here, for 𝑧 > 𝑦
1
, we denoted by 𝐹

𝑧
the set 𝐹 ∩ [𝑧,∞). On the

other hand, applying Hölder’s inequality as in [14], we get

∫

D
𝑥1
∩[𝑦
1
,∞)

1
𝐹
(𝑧) 𝜔(𝑥

1
, 𝑧)

1/3

𝑑𝑧

≤ 2
2/3
|𝐹|
1/3
(∫

D
𝑥1
∩[𝑦
1
,∞)

1
𝐹
(𝑦) 𝐽 (𝑥

1
, 𝑦) 𝑑𝑦)

1/3

.

(30)

Combined with the monotonicity of 𝜔(𝑥
1
, ⋅), we obtain

𝜔(𝑥
1
, 𝑦
1
)

1/3

[B
1
(𝑥
1
, 𝑦
1
; 𝐸)]

2

= 𝜔(𝑥
1
, 𝑦
1
)

1/3

(∫

D
𝑥1
∩[𝑦
1
,∞)

1
𝐹
(𝑧)𝜔(𝑥

1
, 𝑧)

1/3

𝑑𝑧)

2

≤ |𝐹|
−1
(∫

D
𝑥1
∩[𝑦
1
,∞)

1
𝐹
(𝑧)𝜔(𝑥

1
, 𝑧)

1/3

𝑑𝑧)

3

≤ 4∫

D
𝑥1
∩[𝑦
1
,∞)

1
𝐹
(𝑦) 𝐽 (𝑥

1
, 𝑦) 𝑑𝑦.

(31)

An integration in 𝑥
1
provides (25).

3.2. Estimate for B
2
. For fixed 𝑥

1
and 𝑦

1
, we let

𝜌 =

1

2𝐶 (1)

∫

D
𝑥1
∩(−∞,𝑦

1
)

1
𝐹
(𝑦) 𝜔(𝑥

1
, 𝑦)

1/3

𝑑𝑦, (32)

where 𝐶(1) is the constant that appears in Lemma 2.2 in [11],
which implies

∫

𝜔(𝑥
1
,𝑦
1
)
1/3
|𝑦−𝑦
1
|≥𝜌

1
𝐹
(𝑦) 𝜔(𝑥

1
, 𝑦)

1/3

𝑑𝑦

≥

1

2

∫

D
𝑥1
∩(−∞,𝑦

1
)

1
𝐹
(𝑦) 𝜔(𝑥

1
, 𝑦)

1/3

𝑑𝑦.

(33)

Since 𝜔(𝑥
1
, ⋅) is nondecreasing, we see

LHS of (26) ≤ 2∫

D∗
∫

D
𝑥1
∩(−∞,𝑦

1
)





𝑦
1
− 𝑦





𝜔(𝑥
1
, 𝑦
1
)

2/3

× 𝜔(𝑥
1
, 𝑦)

1/3

1
𝐹
(𝑦) 𝑑𝑦 𝑑𝑥

1

≤ 2𝑐 (𝐴)∫

D∗
∫

D
𝑥1
∩(−∞,𝑦

1
)

𝐽 (𝑥
1
, 𝑦) 1
𝐹
(𝑦) 𝑑𝑦 𝑑𝑥

1

= 2𝑐 (𝐴)∫

D∗
∫

D̃
𝑥1
∩(−∞,𝑦

1
)

1
𝐸
(𝑥
1
, 𝑦) 𝑑𝑦 𝑑𝑥

1

= 2𝑐 (𝐴)




𝐸
1





.

(34)

Note that the second inequality follows from a simple modi-
fication of Lemma 2.1 in [11]. This finishes the proof.

Remark 9. A duality argument shows the following.

Corollary 10. Let 𝜑 : D → R be a 𝐶2 function such that
𝜑


12
> 0. Suppose that there exists a constant 𝐴 such that, for

each 𝑦 ∈ D
∗
, 𝜑
12
(⋅, 𝑦) ∈ E

2
(𝐴); that is,

𝜑


12
(𝑥
1
, 𝑦)

1/2

𝜑


12
(𝑥
2
, 𝑦)

1/2

≤ 𝐴𝜑


12
(

(𝑥
1
+ 𝑥
2
)

2

, 𝑦
1
) (35)

holds whenever 𝑥
1
< 𝑥
2
and [𝑥

1
, 𝑥
2
] ⊂ D𝑦. Let R

𝜑
be the

operator given by (14). Then, there exists a constant 𝐶 that
depends only on 𝐴 such that






R
𝜑
𝑓





𝐿
3
(R2)

≤ 𝐶




𝑓



𝐿
3/2,3
(R2) (36)

holds uniformly in 𝑓 ∈ 𝐶
∞

0
(R2).

Remark 11. As is well known, if R
𝜑
maps boundedly from

𝐿
𝑝,𝑢
(R2) to 𝐿

𝑞,V
(R2), then (1/𝑝, 1/𝑞) belongs to the convex

hull of {(0, 0), (1, 1), (2/3, 1/3)}, and uniform estimates are
possible only if (1/𝑝, 1/𝑞) = (2/3, 1/3). In the latter case,
3/2 ≤ V ≤ 𝑢 ≤ 3 is necessary, implying the sharpness of the
results. We refer interested readers to [2, 19].
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