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This paper is concerned with partial regularity to nonlinear subelliptic systems with Dini continuous coefficients under quadratic
controllable growth conditions in the Heisenberg group H𝑛. Based on a generalization of the technique of A-harmonic
approximation introduced byDuzaar and Steffen, partial regularity to the sub-elliptic system is established in theHeisenberg group.
Our result is optimal in the sense that in the case of Hölder continuous coefficients we establish the optimal Hölder exponent for
the horizontal gradients of the weak solution on its regular set.

1. Introduction and Statements of
Main Results

In this paper, we are concernedwith partial regularity of weak
solutions to nonlinear sub-elliptic systems of equations of
second order in the Heisenberg groupH𝑛 in divergence form,
and more precisely, we consider the following systems:

−

2𝑛

∑

𝑖=1

𝑋

𝑖
𝐴

𝛼

𝑖
(𝜉, 𝑢 (𝜉) , 𝑋𝑢 (𝜉)) = 𝐵

𝛼

(𝜉, 𝑢 (𝜉) , 𝑋𝑢 (𝜉)) in Ω,

(1)

where Ω is a bounded domain in H𝑛, 𝑋 = {𝑋

1
, . . . , 𝑋

2𝑛
}, the

definition of𝑋
𝑖
(𝑖 = 1, . . . , 2𝑛) is to be seen in the next section

(11), 𝑢 = (𝑢1, . . . , 𝑢𝑁) : Ω → R𝑁, 𝐴𝛼
𝑖
(𝜉, 𝑢, 𝑝) : R2𝑛+1 × R𝑁 ×

R2𝑛𝑁 → R2𝑛𝑁, and 𝐵𝛼(𝜉, 𝑢, 𝑝) : R2𝑛+1 ×R𝑁 ×R2𝑛𝑁 → R𝑁.
Under the coefficients𝐴𝛼

𝑖
assumed to beDini continuous,

the aim of this paper is to establish optimal partial regularity
to the sub-elliptic system (1) in the Heisenberg group H𝑛.
Comparing Hölder continuous coefficients (see [1, 2] for the
case of sub-elliptic systems), such assumption is weaker.More
precisely, we assume for the continuity of 𝐴𝛼

𝑖
with respect to

the variables (𝜉, 𝑢) that

(1 +









𝑝









)

−1 








𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝) − 𝐴

𝛼

𝑖
(

̃

𝜉, �̃�, 𝑝)











≤ 𝜅 (|𝑢|) 𝜇 (𝑑 (𝜉,

̃

𝜉) + |𝑢 − �̃�|) (2)

for all 𝜉, ̃𝜉 ∈ Ω, 𝑢, �̃� ∈ R𝑁, and 𝑝 ∈ R2𝑛𝑁, where
𝜅 : (0, +∞) → [1, +∞) is monotone nondecreasing and
𝜇 : (0, +∞) → [0, +∞) is monotone nondecreasing and
concave with 𝜇(0+) = 0. We also required that 𝑟 → 𝑟

−𝛾

𝜇(𝑟)

be nonincreasing for some 𝛾 ∈ (0, 1) and that

𝑀(𝑟) = ∫

𝑟

0

𝜇 (𝜌)

𝜌

𝑑𝜌 < ∞ for some 𝑟 > 0. (3)

We adopt the method of A-harmonic approximation to
the case of sub-elliptic systems in the Heisenberg groups
and establish the optimal partial regularity result. Roughly
speaking, assume additionally to the standard hypotheses
(see precisely (H1), (H2), and (H4)) that (1+ |𝑝|)−1𝐴𝛼

𝑖
(𝜉, 𝑢, 𝑝)

satisfies (2) and (3). Let 𝑢 ∈ 𝐻𝑊1,2(Ω,R𝑁) be aweak solution
of the sub-elliptic system (1). Then, 𝑢 is of class 𝐶1 outside
a closed singular set Sing𝑢 ⊂ Ω of the Haar measure 0.
Furthermore, for 𝜉

0
∈ Ω \ Sing𝑢, the derivative 𝑋𝑢 of 𝑢 has

the modulus of continuity 𝑟 → 𝑀(𝑟) in a neighborhood of
𝜉

0
. Our result is optimal in the sense that in the case 𝜇(𝑟) = 𝑟𝛾,

0 < 𝛾 < 1, we have𝑀(𝑟) = 𝛾−1𝑟𝛾 Hölder continuity Γ1,𝛾 to be
optimal in that case.

As is well known, even under reasonable assumptions
on 𝐴𝛼
𝑖
and 𝐵𝛼 of the systems of equations, one cannot, in

general, expect that weak solutions of (1) will be classical,
that is, 𝐶2-solutions. This was first shown by de Giorgi [3];



2 Abstract and Applied Analysis

we also refer the reader to Giaquinta [4] and Chen and Wu
[5] for further discussion and additional examples. Then,
the goal is to establish partial regularity theory. Moreover, a
new method calledA-harmonic approximation technique is
introduced by Duzaar and Steffen in [6] and simplified by
Duzaar and Grotowski in [7] to study elliptic systems with
quadratic growth case.Then, similar results have been proved
for more general 𝐴𝛼

𝑖
or 𝐵𝛼 in the Euclidean setting; see [8–

11] for Hölder continuous coefficients and [12–15] for Dini
continuous coefficients.

However, turning to sub-elliptic equations and systems
in the Heisenberg groups H𝑛, some new difficulties will
arise. Already in the first step, trying to apply the standard
difference quotient method, the main difference between
Euclidean R𝑛 and Heisenberg groups H𝑛 becomes clear. Any
time we use horizontal difference quotients (i.e., in the direc-
tions 𝑋

𝑖
), extra terms with derivatives in the 𝑇 direction will

arise due to noncommutativity (see (12)), but these cannot
be controlled by using the initial assumptions on the weak
solution. Several results were focused on those equations
which have a bearing on basic vector fields on the Heisenberg
group or, more generally, the Carnot group. Capogna [16, 17]
studied the regularities for weak solutions to quasi-linear
equations. Concretely, by a technique combining fractional
difference quotients and fractional derivatives defined by
Fourier transform, differentiability in the nonhorizontal
direction,𝑊2,2 estimate, and𝐶∞ continuity of weak solutions
are obtained; see [16] for the case of Heisenberg groups and
[17] for Carnot groups. To sub-elliptic 𝑝-Laplace equations in
Heisenberg groups, Marchi in [18–20] showed that 𝑇𝑢 ∈ 𝐿𝑝loc
and 𝑋2𝑢 ∈ 𝐿

2

loc for 1 + (1/√5) < 𝑝 < 1 +

√

5 by using
theories of Besov space and Bessel potential space. Domokos
in [21, 22] improved these results for 1 < 𝑝 < 4 employing
the A. Zygmund theory related to vector fields. Recently, by
meticulous arguments, Manfredi and Mingione in [23] and
Mingione et al. in [24] proved Hölder regularity with regard
to full Euclidean gradient for weak solutions and further 𝐶∞
continuity under the coefficients assumed to be smooth.

While regularities for weak solutions to sub-elliptic sys-
tems concerning vector fields aremore complicated, Capogna
and Garofalo in [25] showed the partial Hölder regularity
for the horizontal gradient of weak solutions to quasilinear
sub-elliptic systems −∑𝑘

𝑖=1
𝑋

𝑖
(𝐴

𝛼

𝑖
(𝜉, 𝑢)𝑋

𝑗
𝑢) = 𝐵

𝛼

(𝜉, 𝑢, 𝑋𝑢)

with 𝑋
𝑖
, 𝑋
𝑗
(𝑖, 𝑗 = 1, . . . , 𝑘) being horizontal vector fields

in Carnot groups of step two, where 𝐴𝛼
𝑖
and 𝐵𝛼 satisfy the

quadratic structure conditions. Their way relies mainly on
generalization of classical direct method in the Euclidean
setting. Shores in [26] considered a homogeneous quasi-
linear system −∑

𝑘

𝑖=1
𝑋

𝑖
(𝐴

𝛼

𝑖
(𝜉, 𝑢)𝑋

𝑗
𝑢) = 0 in the Carnot

group with general step, where 𝐴𝛼
𝑖
also satisfies the quadratic

growth condition. She established higher differentiability and
smoothness for weak solutions of the system with constant
coefficients and deduced partial regularity for weak solutions
of the original system. With respect to the case of non-
quadratic growth, Föglein in [27] treated the homogeneous
nonlinear system −∑

2𝑛

𝑖=1
𝑋

𝑖
𝐴

𝛼

𝑖
(𝜉, 𝑋𝑢) = 0 in the Heisenberg

group under superquadratic structure conditions. She got

a priori estimates for weak solutions of the system with
constant coefficients and partial regularity for the horizontal
gradient of weak solutions to the initial system. Later, Wang
and Niu [1] and Wang and Liao [2] treated more general
nonlinear sub-elliptic system in the Carnot groups under
superquadratic growth conditions and subquadratic growth
conditions, respectively.

The regularity results for sub-elliptic systems mentioned
above require Hölder continuity with respect to the coef-
ficients 𝐴𝛼

𝑖
. When the assumption of Hölder continuity on

𝐴

𝛼

𝑖
is weakened to Dini continuity, how to establish partial

regularity of weak solutions to nonlinear sub-elliptic systems
in the Heisenberg group. This paper is devoted to this topic.
To define weak solution to (1), we assume the following
structure conditions on 𝐴𝛼

𝑖
and 𝐵𝛼.

(H1) 𝐴𝛼
𝑖
(𝜉, 𝑢, 𝑝) is differentiable in 𝑝, and there exist some

constants 𝐿 such that














𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉, 𝑢, 𝑝)















≤ 𝐿, (𝜉, 𝑢, 𝑝) ∈ Ω ×R
𝑁

×R
2𝑛𝑁

. (4)

Here, we write down 𝐴𝛼
𝑖,𝑝
𝑗

𝛽

(𝜉, 𝑢, 𝑝) = (𝜕𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝)/

𝜕𝑝

𝑗

𝛽
).

(H2) 𝐴𝛼
𝑖
(𝜉, 𝑢, 𝑝) is uniformly elliptic; that is, for some 𝜆 >

0, we have

𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉, 𝑢, 𝑝) 𝜂

𝛼

𝑖
𝜂

𝛽

𝑗
≥ 𝜆









𝜂









2

, ∀𝜂 ∈ R
2𝑛𝑁

. (5)

(H3) There exist a modulus of continuity 𝜇 : (0, +∞) →

[0, +∞) and a nondecreasing function 𝜅 : [0, +∞) →

[1, +∞) such that

(1 +









𝑝









)

−1 








𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝) − 𝐴

𝛼

𝑖
(

̃

𝜉, �̃�, 𝑝)











≤ 𝜅 (|𝑢|) 𝜇 (𝑑 (𝜉,

̃

𝜉) + |𝑢 − �̃�|) .

(6)

(H4) 𝐵𝛼 satisfies quadratic controllable growth condition









𝐵

𝛼

(𝜉, 𝑢, 𝑝)









≤ 𝐶 (1 + |𝑢|

𝑟−1

+









𝑝









2(1−1/𝑟)

) , (7)

where 𝑟 = 2𝑄/(𝑄 − 2) because 𝑄 > 2; see (16).

Without loss of generality, we can assume that 𝜅 ≥ 1 and
the following.

(𝜇1) 𝜇 is nondecreasing with 𝜇(0+) = 0.
(𝜇2) 𝜇 is concave; in the proof of the regularity theorem,

we have to require that 𝑟 → 𝑟

−𝛾

𝜇(𝑟) is nonincreasing
for some exponent 𝛾 ∈ (0, 1). We also require Dini’s
condition (2) which was already mentioned in the
introduction.

(𝜇3) 𝑀(𝑟) = ∫𝑟
0

(𝜇(𝜌)/𝜌)𝑑𝜌 < ∞ for some 𝑟 > 0.

In the present paper, we will apply the method of A-
harmonic approximation adapting to the setting of Heisen-
berg groups to study partial regularity for the system (1). Since
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basic vector fields 𝑋
𝑖
of Lie algebras corresponding to the

Heisenberg group are more complicated than gradient vector
fields in the Euclidean setting, we have to find a different
auxiliary function in proving Caccioppoli type inequality.
Besides, the nonhorizontal derivatives of weak solutions
will happen in the Taylor type formula in the Heisenberg
group and cannot be effectively controlled in the present
hypotheses. So, the method employing Taylor’s formula in
[12] is not appropriate in our setting. In order to obtain the
desired decay estimate, we use the Poincaré type inequality
in [28] as a replacement. And we obtain the following main
result.

Theorem 1. Assume that coefficients 𝐴𝛼
𝑖
and 𝐵𝛼 satisfy (H1)–

(H4), (𝜇1)–(𝜇3) and that 𝑢 ∈ 𝐻𝑊1,2(Ω,R𝑁) is a weak solution
to the system (1); that is,

∫

Ω

𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑋𝑢)𝑋

𝑖
𝜙

𝛼

𝑑𝜉 = ∫

Ω

𝐵

𝛼

(𝜉, 𝑢, 𝑋𝑢) 𝜙

𝛼

𝑑𝜉

∀𝜙 ∈ 𝐶

∞

0
(Ω,R

𝑁

) .

(8)

Then, there exists a relatively closed set Sing 𝑢 ⊂ Ω such that
𝑢 ∈ 𝐶

1

(Ω \ Sing 𝑢, R𝑁). Furthermore, Sing 𝑢 ⊂ Σ
1
∪ Σ

2
and

Haar meas (Ω \ Sing 𝑢) = 0, where

Σ

1
= {𝜉

0
∈ Ω : sup

𝑟>0

(











𝑢

𝜉0,𝑟











+











(𝑋𝑢)

𝜉0,𝑟











) = ∞} ,

Σ

2
= {𝜉

0
∈ Ω : lim

𝑟→0
+
inf 





𝐵

𝑟
(𝜉

0
)









−1

H𝑛

×∫

𝐵𝑟(𝜉0)











𝑋𝑢 − (𝑋𝑢)

𝜉0,𝑟











2

𝑑𝜉 > 0} .

(9)

In addition, for 𝜏 ∈ [𝛾, 1) and 𝜉
0
∈ Ω \ Sing 𝑢, the derivative

𝑋𝑢 has the modulus of continuity 𝑟 → 𝑟

𝜏

+ 𝑀(𝑟) in a neigh-
borhood of 𝜉

0
.

2. Preliminaries

The Heisenberg group H𝑛 is defined as R2𝑛+1 endowed with
the following group multiplication:

⋅ : H
𝑛

× H
𝑛

→ H
𝑛

,

((𝜉

1

, 𝑡) , (

̃

𝜉

1

,

̃

𝑡)) → (𝜉

1

+

̃

𝜉

1

, 𝑡 +

̃

𝑡 +

1

2

𝑛

∑

𝑖=1

(𝑥

𝑖
𝑦

𝑖
− 𝑥

𝑖
𝑦

𝑖
)) ,

(10)

for all 𝜉 = (𝜉

1

, 𝑡) = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
, 𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
, 𝑡), ̃𝜉 =

(

̃

𝜉

1

,

̃

𝑡) = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
, 𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
,

̃

𝑡). This multiplication
corresponds to addition in Euclidean R2𝑛+1. Its neutral
element is (0, 0), and its inverse to (𝜉1, 𝑡) is given by (−𝜉1, −𝑡).
Particularly, the mapping (𝜉, ̃𝜉) → 𝜉 ⋅

̃

𝜉

−1 is smooth, so (H𝑛, ⋅)
is a Lie group.

The basic vector corresponding to its Lie algebra can be
explicitly calculated by the exponential map and is given by

𝑋

𝑖
=

𝜕

𝜕𝑥

𝑖

−

𝑦

𝑖

2

𝜕

𝜕𝑡

, 𝑋

𝑖+𝑛
=

𝜕

𝜕𝑦

𝑖

+

𝑥

𝑖

2

𝜕

𝜕𝑡

, 𝑇 =

𝜕

𝜕𝑡

(11)

for 𝑖 = 1, 2, . . . , 𝑛, and note that the special structure of the
commutators:

[𝑋

𝑖
, 𝑋

𝑖+𝑛
] = − [𝑋

𝑖+𝑛
, 𝑋

𝑖
] = 𝑇, else [𝑋

𝑖
, 𝑋

𝑗
] = 0,

[𝑇, 𝑇] = [𝑇,𝑋

𝑖
] = 0,

(12)

that is, (H𝑛, ⋅), is a nilpotent Lie group of step 2. 𝑋 =

(𝑋

1
, . . . , 𝑋

2𝑛
) is called the horizontal gradient and 𝑇 the

vertical derivative.
The pseudonorm is defined by











(𝜉

1

, 𝑡)











= (











𝜉

1










4

+ 𝑡

2

)

1/4

,

(13)

and the metric induced by this pseudonorm is given by

𝑑 (

̃

𝜉, 𝜉) =











𝜉

−1

⋅

̃

𝜉











. (14)

The measure used on H𝑛 is Haar measure, and the volume of
the pseudoball 𝐵

𝑅
(𝜉

0
) = {𝜉 ∈ H𝑛 : 𝑑(𝜉

0
, 𝜉) < 𝑅} is given by









𝐵

𝑅
(𝜉

0
)







H𝑛
= 𝑅

2𝑛+2






𝐵

1
(𝜉

0
)







H𝑛
≜ 𝜔

𝑛
𝑅

2𝑛+2

.
(15)

The number

𝑄 = 2𝑛 + 2 (16)

is called the homogeneous dimension of H𝑛.
The horizontal Sobolev spaces 𝐻𝑊1,𝑝(Ω) (1 ≤ 𝑝 < ∞)

are defined as

𝐻𝑊

1,𝑝

(Ω) = {𝑢 ∈ 𝐿

𝑝

(Ω) : 𝑋

𝑖
𝑢 ∈ 𝐿

𝑝

(Ω) ,

𝑖 = 1, 2, . . . , 2𝑛} .

(17)

Then,𝐻𝑊1,𝑝(Ω) is a Banach space with the norm

‖𝑢‖

𝐻𝑊
1,𝑝
(Ω)

= ‖𝑢‖

𝐿
𝑝
(Ω)
+

2𝑛

∑

𝑖=1









𝑋

𝑖
𝑢







𝐿
𝑝
(Ω)
. (18)

𝐻𝑊

1,𝑝

0
(Ω) is the completion of 𝐶∞

0
(Ω) under norm (18).

Lu [28] showed the following Poincaré type inequality
related to Hörmander’s vector fields for 𝑢 ∈ 𝐻𝑊1,𝑞(𝐵

𝑅
(𝜉

0
)),

1 < 𝑞 < 𝑄, 1 ≤ 𝑝 ≤ 𝑞𝑄/(𝑄 − 𝑞):

(∮

𝐵𝑅(𝜉0)











𝑢 − 𝑢

𝜉0,𝑅











𝑝

𝑑𝜉)

1/𝑝

≤ 𝐶

𝑝
𝑅(∮

𝐵𝑅(𝜉0)

|𝑋𝑢|

𝑞

𝑑𝜉)

1/𝑞

,

(19)

where we write down ∮
𝐵𝑟(𝜉0)

𝑢𝑑𝜉 = |𝐵

𝑟
(𝜉

0
)|

−1

H𝑛 ∫𝐵𝑟(𝜉0)
𝑢𝑑𝜉 here

and there. Note the fact that the horizontal vectors𝑋
𝑖
defined
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in (11) fit Hörmander’s vector fields and that (19) is valid for
𝑝 = 𝑞 = 2.

Following [12], for technical convenience, letting 𝜂(𝑡) =
𝜇

2

(

√

2𝑡), we have the corresponding properties for 𝜂: (𝜂1) 𝜂
is continuous, nondecreasing and 𝜂(0) = 0; (𝜂2) 𝜂 is concave,
and 𝑟 → 𝑟

−𝛾

𝜂(𝑟) is nonincreasing for some exponent 𝛾 ∈
(0, 1); (𝜂3)𝐻(𝑟) := 4𝑀2(√2𝑟) = [∫𝑟

0

(

√

𝜂(𝜌)/𝜌)𝑑𝜌]

2

< ∞ for
some 𝑟 > 0. Changing 𝜅 by a constant, but keeping 𝜅 ≥ 1, we
may assume the following: (𝜂4) 𝜂(1) = 1, implying 𝜂(𝑡) ≥ 𝑡
for 𝑡 ∈ [0, 1]. Also note that it implies that from (𝜂2) and (𝜂4),
𝜂(𝑡) ≤ (𝛾

2

/4)𝐻(𝑡) for all 𝑡 ≥ 0.
Furthermore, the following inequality holds:

𝑠𝜂 (𝑡) ≤ 𝑠𝜂 (𝑠) + 𝑡, 𝑠 ∈ [0, 1] , 𝑡 > 0. (20)

The condition (H3) becomes











𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝) − 𝐴

𝛼

𝑖
(

̃

𝜉, �̃�, 𝑝)











≤ 𝜅 (|𝑢|)
√
𝜂 (𝑑

2

(𝜉,

̃

𝜉) + |𝑢 − �̃�|

2

) (1 +









𝑝









) .

(21)

Moreover, we deduce the existence of a nonnegative modulus
of continuity with 𝜔(𝑡, 0) = 0 for all 𝑡 such that 𝜔(𝑠, 𝑡) is
nondecreasing with respect to 𝑡 for fixed 𝑠 and 𝜔2(𝑠, 𝑡) is
concave and nondecreasing with respect to 𝑠 for fixed 𝑡. Also,
we have for |𝑢| + |𝑋𝑢| ≤ 𝑀,















𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉, 𝑢, 𝑝) − 𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(

̃

𝜉, �̃�,

̃

𝑝)















≤ 𝜔 (𝑀, 𝑑

2

(𝜉,

̃

𝜉) + |𝑢 − �̃�|

2

+









𝑝 −

̃

𝑝









2

) .

(22)

Using (H1) and (H2), we see that









𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝) − 𝐴

𝛼

𝑖
(𝜉, 𝑢,

̃

𝑝)









≤ 𝐿









𝑝 −

̃

𝑝









, (23)

(𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝) − 𝐴

𝛼

𝑖
(𝜉, 𝑢,

̃

𝑝)) (𝑝 −

̃

𝑝) ≥ 𝜆









𝑝 −

̃

𝑝









2

.

(24)

In the sequel, the constant 𝐶may vary from line to line.

3. Caccioppoli Type Inequality

In this section, we present the followingA-harmonic approx-
imation lemma in the Heisenberg group introduced by
Föglein [27] with 𝑝 = 2 as a special case and prove a
Caccioppoli type inequality in our setting.

Lemma 2. Let 𝜆 and 𝐿 be fixed positive numbers and 𝑛,𝑁 ∈

N with 𝑛 ≥ 2. If for any given 𝜀 > 0, there exists 𝛿 =

𝛿(𝑛,𝑁, 𝜆, 𝜀) ∈ (0, 1] with the following properties:

(I) for anyA ∈ Bil(R2𝑛𝑁) satisfying

A (], ]) ≥ 𝜆|]|2, A (], ]) ≤ 𝐿 |]| |]| , ], ] ∈ R
2𝑛𝑁

,
(25)

(II) for any 𝑤 ∈ 𝐻𝑊1,2(𝐵
𝜌
(𝜉

0
),R𝑁) satisfying

∮

𝐵𝜌(𝜉0)

|𝑋𝑤|

2

𝑑𝜉 ≤ 1,



















∮

𝐵𝜌(𝜉0)

A (𝑋𝑤,𝑋𝜑) 𝑑𝜉



















≤ 𝛿 sup
𝐵𝜌(𝜉0)









𝑋𝜑









,

∀𝜑 ∈ 𝐶

1

0
(𝐵

𝜌
(𝜉

0
) ,R
𝑁

) ,

(26)

then, there exists anA-harmonic function ℎ such that

∮

𝐵𝜌(𝜉0)

|𝑋ℎ|

2

𝑑𝜉 ≤ 1, 𝜌

−2

∮

𝐵𝜌(𝜉0)

|ℎ − 𝑤|

2

𝑑𝜉 ≤ 𝜀. (27)

Föglein [27] established a priori estimate for the weak
solution 𝑢 to homogeneous sub-elliptic systemswith constant
coefficients in the Heisenberg group (also see [25] for Carnot
groups of step 2). We list it as follows:

sup
𝐵𝜌/2(𝜉0)

(|𝑢|

2

+ 𝜌

2

|𝑋𝑢|

2

+ 𝜌

4










𝑋

2

𝑢











2

) ≤ 𝐶

0
∮

𝐵𝜌(𝜉0)

|𝑋𝑢|

2

𝑑𝜉.

(28)

In what follows, we let 𝜌
1
(𝑠, 𝑡) = (1 + 𝑠 + 𝑡)

−1

𝜅(𝑠 + 𝑡)

−1 and
𝐾

1
(𝑠, 𝑡) = (1 + 𝑡)

4

𝜅(𝑠 + 𝑡)

4 for 𝑠, 𝑡 ≥ 0. Note that 𝜌
1
≤ 1 and

that 𝑠 → 𝜌

1
(𝑠, 𝑡), 𝑡 → 𝜌

1
(𝑠, 𝑡) are nonincreasing functions.

Lemma 3. Let 𝑢 ∈ 𝐻𝑊1,2(Ω,R𝑁) be a weak solution to the
system (1) under the conditions (H1)–(H4), (𝜇1)–(𝜇3). Then,
for every 𝜉

0
= (𝑥

0

1
, 𝑥

0

2
, . . . , 𝑥

0

𝑛
, 𝑦

0

1
, 𝑦

0

2
, . . . , 𝑦

0

𝑛
, 𝑡) ∈ Ω, 𝑢

0
∈ R𝑁,

𝑝

0
∈ R2𝑛𝑁, and 0 < 𝜌 < 𝑅 < 𝜌

1
(|𝑢

0
|, |𝑝

0
|) ≤ 1 such that

𝐵

𝑅
(𝜉

0
) ⊂⊂ Ω, the inequality

∫

𝐵𝜌(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝑑𝜉

≤ 𝐶

𝑐
[

1

(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)











𝑢 − 𝑢

0
− (𝜉

1

− 𝜉

1

0
) 𝑝

0











2

𝑑𝜉 + 𝐹]

(29)

holds, where 𝜉1 = (𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
, 𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
) is the horizon-

tal component of 𝜉 = (𝜉1, 𝑡) ∈ Ω and

𝐹 = 𝜔

𝑛
𝑅

𝑄

𝐾

1
(









𝑢

0









,









𝑝

0









) 𝜂 (𝑅

2

)

+ [∫

𝐵𝑅(𝜉0)

(1 + 𝑢

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉]

2(1−1/𝑟)

.

(30)

Proof. Let V = 𝑢−𝑢
0
−(𝜉

1

−𝜉

1

0
)𝑝

0
. Take a test function𝜑 = 𝜙2V

in (8) with 𝜙 ∈ 𝐶∞
0
(𝐵

𝑅
(𝜉

0
),R𝑁) satisfying 0 ≤ 𝜙 ≤ 1, |∇𝜙| ≤

𝐶/(𝑅−𝜌), and 𝜙 ≡ 1 on 𝐵
𝜌
(𝜉

0
). Then, we have𝑋V = 𝑋𝑢−𝑝

0
,

|𝑋𝜑| ≤ 𝜙|𝑋𝑢 − 𝑝

0
| + 𝐶/(𝑅 − 𝜌)|V|, and

∫

𝐵𝑅(𝜉0)

𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑋𝑢) 𝜙

2

(𝑋𝑢 − 𝑝

0
) 𝑑𝜉

= −2∫

𝐵𝑅(𝜉0)

𝜙𝑋𝜙𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑋𝑢) V𝑑𝜉

+ ∫

𝐵𝑅(𝜉0)

𝐵

𝛼

(𝜉, 𝑢, 𝑋𝑢) 𝜑

𝛼

𝑑𝜉.

(31)
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Adding this to the equations

− ∫

𝐵𝑅(𝜉0)

𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝

0
) 𝜙

2

(𝑋𝑢 − 𝑝

0
) 𝑑𝜉

= 2∫

𝐵𝑅(𝜉0)

𝜙𝑋𝜙𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝

0
) V𝑑𝜉

− ∫

𝐵𝑅(𝜉0)

𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝

0
)𝑋𝜑

𝛼

𝑑𝜉,

0 = ∫

𝐵𝑅(𝜉0)

𝐴

𝛼

𝑖
(𝜉

0
, 𝑢

0
, 𝑝

0
)𝑋𝜑

𝛼

.

(32)

It follows that by using the hypotheses (H1), (H3) (i.e., (23),
(21), resp.), and (H4),

∫

𝐵𝑅(𝜉0)

[𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑋𝑢)

−𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝

0
)] 𝜙

2

(𝑋𝑢 − 𝑝

0
) 𝑑𝜉

= 2∫

𝐵𝑅(𝜉0)

[𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝

0
)

−𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑋𝑢)] 𝜙V𝑋𝜙𝑑𝜉

+ ∫

𝐵𝑅(𝜉0)

[𝐴

𝛼

𝑖
(𝜉, 𝑢

0
+ (𝜉

1

− 𝜉

1

0
) 𝑝

0
, 𝑝

0
)

−𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝

0
) ]𝑋𝜑

𝛼

𝑑𝜉

+ ∫

𝐵𝑅(𝜉0)

[𝐴

𝛼

𝑖
(𝜉

0
, 𝑢

0
, 𝑝

0
)

−𝐴

𝛼

𝑖
(𝜉, 𝑢

0
+ (𝜉

1

− 𝜉

1

0
) 𝑝

0
, 𝑝

0
)]𝑋𝜑

𝛼

𝑑𝜉

+ ∫

𝐵𝑅(𝜉0)

𝐵

𝛼

(𝜉, 𝑢, 𝑋𝑢) 𝜑

𝛼

𝑑𝜉

≤ 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉 + 𝑉,

(33)

where

𝐼 = 2𝐿∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0

















𝜙









|V| 


𝑋𝜙









𝑑𝜉,

𝐼𝐼 = (1 +









𝑝

0









) 𝜅 (









𝑢

0









+ 𝑅









𝑝

0









)

× ∫

𝐵𝑅(𝜉0)

√
𝜂 (|V|2) 



𝑋𝑢 − 𝑝

0









𝜙

2

𝑑𝜉,

𝐼𝐼𝐼 = 2 (1 +









𝑝

0









) 𝜅 (









𝑢

0









+ 𝑅









𝑝

0









)

× ∫

𝐵𝑅(𝜉0)

√
𝜂 (|V|2) |V| 



𝑋𝜙

















𝜙









𝑑𝜉,

𝐼𝑉 = (1 +









𝑝

0









) 𝜅 (









𝑢

0









+ 𝑅









𝑝

0









)

× ∫

𝐵𝑅(𝜉0)

√
𝜂 (𝑅

2

(1 +









𝑝

0









2

)) [









𝑋𝑢 − 𝑝

0









𝜙

2

+2









𝜙









|V| 


𝑋𝜙









] 𝑑𝜉,

𝑉 = 𝐶∫

𝐵𝑅(𝜉0)

(1 + |𝑢|

𝑟−1

+ |𝑋𝑢|

2(1−1/𝑟)

) 𝜑𝑑𝜉.

(34)

Applying (H2), the left hand side of (33) can be estimated as

𝜆∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝜙

2

𝑑𝜉

≤ ∫

𝐵𝑅(𝜉0)

[𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑋𝑢) − 𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑝

0
)] 𝜙

2

(𝑋𝑢 − 𝑝

0
) 𝑑𝜉.

(35)

For 𝜀 > 0 to be fixed later, we have, using Young’s inequality,

𝐼 ≤ 𝜀∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0









2








𝜙









2

𝑑𝜉 +

𝐶𝐿

2

(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉.

(36)

Using Jensen’s inequality, (20), and the fact that 𝜂(𝑡𝑠) ≤ 𝑡𝜂(𝑠)
for 𝑡 ≥ 1, we arrive at

(1 +









𝑝

0









)

2

𝜅

2

(⋅) ∫

𝐵𝑅(𝜉0)

𝜂 (|V|2) 𝑑𝜉

≤ 𝜔

𝑛
𝑅

𝑄−2

(1 +









𝑝

0









)

2

𝜅

2

(⋅) 𝑅

2

𝜂 (∮

𝐵𝑅(𝜉0)

|V|2𝑑𝜉)

≤ 𝜔

𝑛
𝑅

𝑄−2

[∮

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ (1 +









𝑝

0









)

2

𝜅

2

(⋅) 𝑅

2

𝜂

× ((1 +









𝑝

0









)

2

𝜅

2

(⋅) 𝑅

2

) ]

≤ 𝑅

−2

∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ 𝜔

𝑛
𝑅

𝑄

(1 +









𝑝

0









)

4

𝜅

4

(⋅) 𝜂 (𝑅

2

) ,

(37)

where 𝜅(⋅) is an abbreviation of the function 𝜅(|𝑢
0
| + |𝑝

0
|).

Also, note that the application of (20) in the second last
inequality is possible by our choice 𝑅 ≤ 𝜌

1
(|𝑢

0
| + |𝑝

0
|).
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Using Young’s inequality and (37) in 𝐼𝐼, we obtain

𝐼𝐼 ≤ 𝜀∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0









2








𝜙









2

𝑑𝜉

+ 𝜀

−1

(1 +









𝑝

0









)

2

𝜅

2

(⋅) ∫

𝐵𝑅(𝜉0)

𝜂 (|V|2) 𝑑𝜉

≤ 𝜀∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0









2








𝜙









2

𝑑𝜉

+

1

𝜀(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ 𝜀

−1

𝜔

𝑛
𝑅

𝑄

(1 +









𝑝

0









)

4

𝜅

4

(⋅) 𝜂 (𝑅

2

) .

(38)

And similarly, we see

𝐼𝐼𝐼 ≤

4𝐶

(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ (1 +









𝑝

0









)

2

𝜅

2

(⋅) ∫

𝐵𝑅(𝜉0)

𝜂 (|V|2) 𝑑𝜉

≤

𝐶

(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ 𝜔

𝑛
𝑅

𝑄

(1 +









𝑝

0









)

4

𝜅

4

(⋅) 𝜂 (𝑅

2

) ,

𝐼𝑉 ≤ 𝜀∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0









2








𝜙









2

𝑑𝜉

+

4𝐶𝜀

(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ 𝜀

−1

𝜔

𝑛
𝑅

𝑄

(1 +









𝑝

0









)

2

𝜅

2

(⋅) 𝜂

× (∮

𝐵𝑅(𝜉0)

𝑅

2

(1 +









𝑝

0









2

) 𝑑𝜉)

≤ 𝜀∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0









2








𝜙









2

𝑑𝜉

+

𝐶𝜀

(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ 𝜀

−1

𝜔

𝑛
𝑅

𝑄

(1 +









𝑝

0









)

4

𝜅

4

(⋅) 𝜂 (𝑅

2

) .

(39)

Here we have used 𝜅 ≥ 1 in the last inequality.

By Hölder’s inequality, (19), and Young’s inequality, one
gets

𝑉 ≤ 𝐶(∫

𝐵𝑅(𝜉0)









𝜑









𝑟

𝑑𝜉)

1/𝑟

× (∫

𝐵𝑅(𝜉0)

(1 + |𝑢|

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉)

(𝑟−1)/𝑟

≤ 𝐶(∫

𝐵𝑅(𝜉0)









𝑋𝜑









2

𝑑𝜉)

1/2

× (∫

𝐵𝑅(𝜉0)

(1 + |𝑢|

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉)

(𝑟−1)/𝑟

≤ 𝜀∫

𝐵𝑅(𝜉0)









𝑋𝜑









2

𝑑𝜉 + 𝐶 (𝜀)

× (∫

𝐵𝑅(𝜉0)

(1 + |𝑢|

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉)

2(𝑟−1)/𝑟

≤ 𝜀∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0









2








𝜙









2

𝑑𝜉

+

𝐶𝜀

(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ 𝐶 (𝜀) (∫

𝐵𝑅(𝜉0)

(1 + |𝑢|

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉)

2(𝑟−1)/𝑟

,

(40)

where we have used the fact that |𝑋𝜑| ≤ 𝜙|𝑋𝑢 − 𝑝
0
| + 𝐶/(𝑅 −

𝜌)|V|.
Applying these estimates to (37), we obtain

(𝜆 − 4𝜀) ∫

𝐵𝑅(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝜙

2

𝑑𝜉

≤

𝐶 (𝐿, 𝜀)

(𝑅 − 𝜌)

2
∫

𝐵𝑅(𝜉0)

|V|2𝑑𝜉

+ (𝜀

−1

+ 2)𝜔

𝑛
𝑅

𝑄

(1 +









𝑝

0









)

4

𝜅

4

(⋅) 𝜂 (𝑅

2

)

+ 𝐶 (𝜀) (∫

𝐵𝑅(𝜉0)

(1 + |𝑢|

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉)

2(𝑟−1)/𝑟

.

(41)

Choosing 𝜀 = 𝜆/8, we obtain the desired inequality (29).

4. Proof of the Main Theorem

In this section, we will complete the proof of the partial
regularity results via the following lemmas. In the sequel, we
always suppose that 𝑢 ∈ 𝐻𝑊1,2(Ω,R𝑁) is a weak solution to
(1) with the assumptions of (H1)–(H4) and (𝜇1)–(𝜇3).
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Lemma 4. Let 𝐵
𝜌
(𝜉

0
) ⊂⊂ Ω with 𝜌 ≤ 𝜌

1
(|𝑢

0
|, |𝑝

0
|) and 𝜑 ∈

𝐶

∞

0
(𝐵

𝜌
(𝜉

0
),R𝑁) satisfying |𝜑| ≤ 𝜌

2 and sup
𝐵𝜌(𝜉0)

|𝑋𝜑| ≤ 1.
Then, there exists a constant 𝐶

1
≥ 1 such that

∮

𝐵𝜌(𝜉0)

𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉

0
, 𝑢

0
, 𝑝

0
) (𝑋𝑢 − 𝑝

0
)𝑋𝜑

𝛼

𝑑𝜉

≤ 𝐶

1
[Φ (𝜉

0
, 𝜌, 𝑝

0
)

+ 𝜔 (









𝑢

0









+









𝑝

0









, Φ (𝜉

0
, 𝜌, 𝑝

0
))Φ

1/2

(𝜉

0
, 𝜌, 𝑝

0
)

+ 𝐾

1
(









𝑢

0









,









𝑝

0









)
√
𝜂 (𝜌

2

)] sup
𝐵𝜌(𝜉0)









𝑋𝜑









.

(42)

Proof. Using the fact that ∫
𝐵𝜌(𝜉0)

𝐴

𝛼

𝑖
(𝜉

0
, 𝑢

0
, 𝑝

0
)𝑋𝜑

𝛼

𝑑𝜉 = 0 and
the weak form (8), we deduce

∮

𝐵𝜌(𝜉0)

[∫

1

0

𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉

0
, 𝑢

0
, 𝜃𝑋𝑢 + (1 − 𝜃) 𝑝

0
)

× (𝑋𝑢 − 𝑝

0
) 𝑑𝜃]𝑋𝜑

𝛼

𝑑𝜉

= ∮

𝐵𝜌(𝜉0)

[𝐴

𝛼

𝑖
(𝜉

0
, 𝑢

0
, 𝑋𝑢)

−𝐴

𝛼

𝑖
(𝜉

0
, 𝑢

0
, 𝑝

0
)]𝑋𝜑

𝛼

𝑑𝜉

= ∮

𝐵𝜌(𝜉0)

[𝐴

𝛼

𝑖
(𝜉

0
, 𝑢

0
, 𝑋𝑢)

−𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑋𝑢)]𝑋𝜑

𝛼

𝑑𝜉

+ ∮

𝐵𝜌(𝜉0)

𝐵

𝛼

(𝜉, 𝑢, 𝑋𝑢) 𝜑

𝛼

𝑑𝜉.

(43)

It yields

∮

𝐵𝜌(𝜉0)

𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉

0
, 𝑢

0
, 𝑝

0
) (𝑋𝑢 − 𝑝

0
)𝑋𝜑

𝛼

𝑑𝜉

= ∮

𝐵𝜌(𝜉0)

[∫

1

0

(𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉

0
, 𝑢

0
, 𝑝

0
)

−𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉

0
, 𝑢

0
, 𝜃𝑋𝑢 + (1 − 𝜃) 𝑝

0
))

× (𝑋𝑢 − 𝑝

0
) 𝑑𝜃] 𝑑𝜉 sup

𝐵𝜌(𝜉0)









𝑋𝜑









+ ∮

𝐵𝜌(𝜉0)

[𝐴

𝛼

𝑖
(𝜉

0
, 𝑢

0
, 𝑋𝑢)

−𝐴

𝛼

𝑖
(𝜉, 𝑢

0
+ 𝑝

0
(𝜉 − 𝜉

0
) , 𝑋𝑢)] sup

𝐵𝜌(𝜉0)









𝑋𝜑









+ ∮

𝐵𝜌(𝜉0)

[𝐴

𝛼

𝑖
(𝜉, 𝑢

0
+ 𝑝

0
(𝜉 − 𝜉

0
) , 𝑋𝑢)

−𝐴

𝛼

𝑖
(𝜉, 𝑢, 𝑋𝑢)] sup

𝐵𝜌(𝜉0)









𝑋𝜑









+ ∮

𝐵𝜌(𝜉0)

𝐵

𝛼

(𝜉, 𝑢, 𝑋𝑢) 𝜑

𝛼

𝑑𝜉

:= 𝐼



+ 𝐼𝐼



+ 𝐼𝐼𝐼



+ 𝐼𝑉



.

(44)

Using (22), Hölder’s inequality, the fact that 𝑡 → 𝜔

2

(𝑠, 𝑡) is
concave, and Jensen’s inequality, we have

𝐼



≤ sup
𝐵𝜌(𝜉0)









𝑋𝜑









∮

𝐵𝜌(𝜉0)

𝜔 (









𝑢

0









+









𝑝

0









,









𝑋𝑢 − 𝑝

0









2

)









𝑋𝑢 − 𝑝

0









𝑑𝜉

≤ sup
𝐵𝜌(𝜉0)









𝑋𝜑









[∮

𝐵𝜌(𝜉0)

𝜔

2

(









𝑢

0









+









𝑝

0









,









𝑋𝑢 − 𝑝

0









2

) 𝑑𝜉]

1/2

×[∮

𝐵𝜌(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝑑𝜉]

1/2

≤ 𝜔(









𝑢

0









+









𝑝

0









, Φ (𝜉

0
, 𝜌, 𝑝

0
))Φ

1/2

(𝜉

0
, 𝜌, 𝑝

0
) sup
𝐵𝜌(𝜉0)









𝑋𝜑









.

(45)

Similarly, using (21) and the fact that 𝜂(𝑡𝑠) ≤ 𝑡𝜂(𝑠) for 𝑡 ≥ 1,
we obtain

𝐼𝐼



≤ sup
𝐵𝜌(𝜉0)









𝑋𝜑









𝜅 (⋅)
√
𝜂 (𝜌

2

(1 +









𝑝

0









2

))

× ∮

𝐵𝜌(𝜉0)

(1 + |𝑋𝑢|) 𝑑𝜉

≤ sup
𝐵𝜌(𝜉0)









𝑋𝜑









𝜅 (⋅)
√
𝜂 (𝜌

2

(1 +









𝑝

0









)

2

)

× ∮

𝐵𝜌(𝜉0)

(1 +









𝑝

0









+









𝑋𝑢 − 𝑝

0









) 𝑑𝜉

≤ sup
𝐵𝜌(𝜉0)









𝑋𝜑









[(∮

𝐵𝜌(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝑑𝜉)

+ 𝜅

2

(⋅) (1 +









𝑝

0









)

2

𝜂 (𝜌

2

)

+ 𝜅 (⋅) (1 +









𝑝

0









)

3

√
𝜂 (𝜌

2

) ]

≤ [Φ (𝜉

0
, 𝜌, 𝑝

0
)+ 2𝜅

2

(⋅) (1 +









𝑝

0









)

3

√
𝜂 (𝜌

2

)]

× sup
𝐵𝜌(𝜉0)









𝑋𝜑









,

(46)
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where we have used the fact that 𝜂(𝜌2) ≤

√

𝜂(𝜌

2

) which
follows from the nondecreasing property of the function 𝜂(𝑡),
(𝜂4), and our assumption 𝜌 ≤ 𝜌

1
≤ 1.

In the same way, it follows that by using (21), (37), and
(19),

𝐼𝐼𝐼



≤ sup
𝐵𝜌(𝜉0)









𝑋𝜑









𝜅 (⋅)∮

𝐵𝜌(𝜉0)

√
𝜂 (|V|2) (1 + |𝑋𝑢|) 𝑑𝜉

≤ sup
𝐵𝜌(𝜉0)









𝑋𝜑









[∮

𝐵𝜌(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝑑𝜉

+ 𝜅

2

(⋅)∮

𝐵𝜌(𝜉0)

𝜂 (|V|2) 𝑑𝜉

+ 𝜅 (⋅) (1 +









𝑝

0









)∮

𝐵𝜌(𝜉0)

√
𝜂 (|V|2) 𝑑𝜉]

≤ sup
𝐵𝜌(𝜉0)









𝑋𝜑









[Φ (𝜉

0
, 𝜌, 𝑝

0
)

+ 2𝜌

−2

∮

𝐵𝜌(𝜉0)

|V|2𝑑𝜉 + 𝜅4 (⋅) 𝜂 (𝜌2)

+ 𝜅

2

(⋅) (1 +









𝑝

0









)

2

√
𝜂 (𝜌

2

) ]

≤ [(1 + 2𝐶

𝑝
)Φ (𝜉

0
, 𝜌, 𝑝

0
)

+ 2𝜅

4

(⋅) (1 +









𝑝

0









)

2

√
𝜂 (𝜌

2

)] .

(47)

Using Hölder’s inequality, (19), and Young’s inequality, we
have

𝐼𝑉



≤ 𝐶∮

𝐵𝜌(𝜉0)

(1 + |𝑢|

𝑟−1

+ |𝑋𝑢|

2(1−1/𝑟)

)









𝜑









𝑑𝜉

≤ 𝐶∮

𝐵𝜌(𝜉0)

|𝑋𝑢|

2(1−1/𝑟) 






𝜑









𝑑𝜉

+ 𝐶∮

𝐵𝜌(𝜉0)











𝑢 − 𝑢

0
− 𝑝

0
(𝜉

1

− 𝜉

1

0
)











𝑟−1








𝜑









𝑑𝜉

+ 𝐶𝜌

2

[1 + (









𝑢

0









+









𝑝

0









)

𝑟−1

]

≤ 𝐶(∮

𝐵𝜌(𝜉0)

|𝑋𝑢|

2

𝑑𝜉)

(1−1/𝑟)

(∮

𝐵𝜌(𝜉0)









𝜑









𝑟

𝑑𝜉)

1/𝑟

+ 𝐶(∮

𝐵𝜌(𝜉0)











𝑢 − 𝑢

0
− 𝑝

0
(𝜉

1

− 𝜉

1

0
)











𝑟

𝑑𝜉)

(1−1/𝑟)

× (∮

𝐵𝜌(𝜉0)









𝜑









𝑟

𝑑𝜉)

1/𝑟

+ 𝐶𝜌

2

[1 + (









𝑢

0









+









𝑝

0









)

𝑟−1

]

≤ 𝐶(∮

𝐵𝜌(𝜉0)

|𝑋𝑢|

2

𝑑𝜉)

(1−1/𝑟)

(∮

𝐵𝜌(𝜉0)









𝜑









𝑟

𝑑𝜉)

1/𝑟

+ (∮

𝐵𝜌(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝑑𝜉)

(𝑟/2)(1−1/𝑟)

× (∮

𝐵𝜌(𝜉0)









𝜑









𝑟

𝑑𝜉)

1/𝑟

+ 𝐶𝜌

2

[1 + (









𝑢

0









+









𝑝

0









)

𝑟−1

]

≤ 𝐶‖𝑢‖

𝐻𝑊
1,2(∮

𝐵𝜌(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝑑𝜉)

(1−1/𝑟)

× (∮

𝐵𝜌(𝜉0)









𝜑









𝑟

𝑑𝜉)

1/𝑟

+ 𝐶𝜌 [1 + (









𝑢

0









+









𝑝

0









)

𝑟−1

]

≤ 𝐶‖𝑢‖

𝐻𝑊
1,2
(𝐵𝜌(𝜉0))

(∮

𝐵𝜌(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝑑𝜉)

+ 𝐶𝜌

2𝑟

+ 𝐶𝜌

2

[1 + (









𝑢

0









+









𝑝

0









)

𝑟−1

]

≤ 𝐶

2
Φ(𝜉

0
, 𝜌, 𝑝

0
) + 𝐶𝜌

2

(1 +









𝑢

0









+









𝑝

0









)

𝑟−1

≤ 𝐶

2
Φ(𝜉

0
, 𝜌, 𝑝

0
) + 𝐶𝜅 (⋅) (1 +









𝑢

0









+









𝑝

0









)

2

√
𝜂 (𝜌

2

) ,

(48)

where we have used the assumption (𝜂4) and the fact that 𝑟 =
2𝑄/(𝑄 − 2) = (2𝑛 + 4)/2𝑛 ≤ 3 and 𝐶

2
= 𝐶‖𝑢‖

𝐻𝑊
1,2
(𝐵𝜌(𝜉0))

≥

1. Combining these estimates, we obtain the conclusion with
𝐶

1
= (1 + 𝐶

2
+ 2𝐶

𝑝
) ≥ 1.

Lemma 5. Assume that the conditions of Lemma 2 and the
following smallness conditions hold:

𝜔 (











𝑢

𝜉0,𝜌











+











(𝑋𝑢)

𝜉0,𝜌











, Φ (𝜉

0
, 𝜌, (𝑋𝑢)

𝜉0,𝜌
))

+ Φ

1/2

(𝜉

0
, 𝜌, (𝑋𝑢)

𝜉0,𝜌
) ≤

𝛿

2

,

(49)

𝐶

3
𝐾

2

1
(











𝑢

𝜉0,𝜌











,











(𝑋𝑢)

𝜉0,𝜌











) 𝜂 (𝜌

2

) ≤ 𝛿

2 (50)

with 𝐶
3
= 8𝐶

2

1
𝐶

5
, together with

𝜌 ≤ 𝜌

1
(1 +











𝑢

𝜉0,𝜌











, 1 +











(𝑋𝑢)

𝜉0,𝜌











) . (51)

Then, the following growth condition holds for 𝜏 ∈ [𝛾, 1)

Φ (𝜉

0
, 𝜃𝜌) ≤ 𝜃

2𝜏

Φ(𝜉

0
, 𝜌)

+ 𝐾

∗

(











𝑢

𝜉0,2𝜃𝜌











,











(𝑋𝑢)

𝜉0,2𝜃𝜌











) 𝜂 (𝜌

2

) ,

(52)

where one abbreviates Φ(𝜉
0
, 𝑟) = Φ(𝜉

0
, 𝑟, (𝑋𝑢)

𝜉0,𝑟
) and

𝐾

∗

(𝑠, 𝑡) = 𝐾(𝑠, 𝑡) + (2 + 𝑠 + 𝑡)

2(𝑟−1) with 𝐾(𝑠, 𝑡) = (4𝛿

−2

+

2

𝑄

𝐶

𝑐
)𝐾

2

1
(1 + 𝑠, 1 + 𝑡).

Proof. We define 𝑤 = [𝑢 − 𝑢
𝜉0,𝜌

− 𝑝

0
(𝜉

1

− 𝜉

1

0
)]𝜎

−1, where

𝜎 = 𝐶

1
√

Φ(𝜉

0
, 𝜌, 𝑝

0
) + 4𝛿

−2
𝐾

2

1
(









𝑢

0









,









𝑝

0









) 𝜂 (𝜌

2
).

(53)
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Then, we have 𝑋𝑤 = 𝜎

−1

(𝑋𝑢 − 𝑝

0
). Now, we consider

𝐵

𝜌
(𝜉

0
) ⊂⊂ Ω such that 𝜌 ≤ 𝜌

1
(|𝑢

0
|, |𝑝

0
|). Applying Lemma 4

on 𝐵
𝜌
(𝜉

0
) to 𝑢, we have for any 𝜑 ∈ 𝐶∞

0
(𝐵

𝜌
(𝜉

0
),R𝑁),

∮

𝐵𝜌(𝜉0)

|𝑋𝑤|

2

𝑑𝜉 = 𝜎

−2

Φ(𝜉

0
, 𝜌, 𝑝

0
) ≤

1

𝐶

2

1

≤ 1, (54)

∮

𝐵𝜌(𝜉0)

𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉

0
, 𝑢

0
, 𝑝

0
)𝑋𝑤𝑋𝜑𝑑𝜉

≤ [Φ

1/2

(𝜉

0
, 𝜌, 𝑝

0
)

+𝜔 (









𝑢

0









+









𝑝

0









, Φ (𝜉

0
, 𝜌, 𝑝

0
)) +

𝛿

2

] sup
𝐵𝜌(𝜉0)









𝑋𝜑









.

(55)

In consideration of the small condition (49), we see that
(54) and (55) imply conditions (26) in Lemma 2. Also note
that (H1) and (H3) imply condition (25). So, there exists an
𝐴

𝛼

𝑖,𝑝
𝑗

𝛽

(𝜉

0
, 𝑢

0
, 𝑝

0
)-harmonic function ℎ ∈ 𝐻𝑊1,2(𝐵

𝜌
(𝜉

0
),R𝑁)

such that

∮

𝐵𝜌(𝜉0)

|𝑋ℎ|

2

𝑑𝜉 ≤ 1, 𝜌

−2

∮

𝐵𝜌(𝜉0)

|𝑤 − ℎ|

2

𝑑𝜉 ≤ 𝜀. (56)

Taking 𝑢
0
= 𝑢

𝜉0,2𝜃𝜌
, 𝜃 ∈ (0, 1/4] and replacing 𝑝

0
by 𝑝
0
+

𝜎(𝑋ℎ)

𝜉0 ,2𝜃𝜌
, we use Lemma 3 to obtain

∫

𝐵𝜃𝜌(𝜉0)











𝑋𝑢 − 𝑝

0
− 𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌











2

𝑑𝜉

≤ 𝐶

𝑐
[

1

(𝜃𝜌)

2
∫

𝐵2𝜃𝜌(𝜉0)











𝑢 − 𝑢

𝜉0,2𝜃𝜌

− (𝑝

0
+ 𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌
)

× (𝜉

1

− 𝜉

1

0
)











2

𝑑𝜉 + 𝐹] ,

(57)

where

𝐹 = 𝜔

𝑛
(2𝜃𝜌)

𝑄

𝐾

1
(











𝑢

𝜉0,2𝜃𝜌











,











𝑝

0
+ 𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌











) 𝜂 ((2𝜃𝜌)

2

)

+ [∫

𝐵2𝜃𝜌(𝜉0)

(1 + 𝑢

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉]

2(1−1/𝑟)

.

(58)

Using the fact that 𝑢 − (𝑝
0
+ 𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌
)(𝜉

1

− 𝜉

1

0
) has mean

value 𝑢
𝜉0,2𝜃𝜌

on the ball 𝐵
2𝜃𝜌
(𝜉

0
), the definition of𝑤, and (19),

we have

1

(𝜃𝜌)

2
∮

𝐵2𝜃𝜌(𝜉0)











𝑢 − 𝑢

𝜉0 ,2𝜃𝜌
− (𝑝

0
+ 𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌
) (𝜉

1

− 𝜉

1

0
)











2

𝑑𝜉

≤

4𝜎

2

(2𝜃𝜌)

2
∮

𝐵2𝜃𝜌(𝜉0)











𝑤 − ℎ

𝜉0 ,2𝜃𝜌

−(𝑋ℎ)

𝜉0,2𝜃𝜌
(𝜉

1

− 𝜉

1

0
)











2

𝑑𝜉

≤

4𝜎

2

(2𝜃𝜌)

2
[∮

𝐵2𝜃𝜌(𝜉0)

|𝑤 − ℎ|

2

𝑑𝜉

+ ∮

𝐵2𝜃𝜌(𝜉0)











ℎ − ℎ

𝜉0 ,2𝜃𝜌

−(𝑋ℎ)

𝜉0,2𝜃𝜌
(𝜉

1

− 𝜉

1

0
)











2

𝑑𝜉]

≤ 4𝜎

2

[(2𝜃)

−𝑄−2

𝜀 + 𝐶

𝑝
∮

𝐵2𝜃𝜌(𝜉0)











𝑋ℎ − (𝑋ℎ)

𝜉0,2𝜃𝜌











2

𝑑𝜉]

≤ 4𝜎

2

[(2𝜃)

−𝑄−2

𝜀 + 𝐶

2

𝑝
(2𝜃𝜌)

2

∮

𝐵2𝜃𝜌(𝜉0)











𝑋

2

ℎ











2

𝑑𝜉]

≤ 4𝜎

2

[(2𝜃)

−𝑄−2

𝜀 + 𝐶

2

𝑝
(2𝜃)

2

𝐶

0
]

≤ 𝐶

4
(𝜃

−𝑄−2

𝜀 + 𝜃

2

) [Φ (𝜉

0
, 𝜌, 𝑝

0
)

+ 4𝛿

−2

𝐾

2

1
(











𝑢

𝜉0,2𝜃𝜌











,









𝑝

0









) 𝜂 (𝜌

2

)] ,

(59)

where 𝐶
4
:= 𝐶

4
(𝑄, 𝜆, 𝐿) ≥ 1. Note that in the second last

inequality we have used the fact that

∮

𝐵2𝜃𝜌(𝜉0)











𝑋

2

ℎ











𝑑𝜉 ≤ sup
𝐵𝜌(𝜉0)











𝑋

2

ℎ











≤ 𝐶

0
𝜌

−2

∮

𝐵𝜌(𝜉0)

|𝑋ℎ|

2

𝑑𝜉 ≤ 𝐶

0
𝜌

−2

.

(60)

In consideration of the fact that 𝑟 = 2𝑄/(𝑄 − 2) > 2, 𝑄 ≥ 4

and the assumptions 𝜃 ∈ (0, 1/4] and Φ ≤ 1, it follows that

[∮

𝐵2𝜃𝜌(𝜉0)

(1 + 𝑢

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉]

2(1−1/𝑟)

≤ 𝐶[∮

𝐵2𝜃𝜌(𝜉0)









𝑋𝑢 − 𝑝

0









2

𝑑𝜉]

2(1−1/𝑟)

+ 𝐶(∮

𝐵2𝜃𝜌(𝜉0)

|𝑋𝑢|

2

𝑑𝜉)

𝑟−1

+ (1 +









𝑝

0









4(1−1/𝑟)

)
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≤ 𝐶 [(2𝜃)

−2𝑄(1−1/𝑟)

Φ(𝜉

0
, 𝜌, 𝑝

0
)

2(1−1/𝑟)

+(2𝜃)

−𝑄(𝑟−1)

Φ(𝜉

0
, 𝜌, 𝑝

0
)

𝑟−1

]

+ (1 +









𝑝

0









2(1−1/𝑟)

+









𝑝

0









4(1−1/𝑟)

)

≤ 𝐶(2𝜃)

−𝑄(𝑟−1)

Φ(𝜉

0
, 𝜌, 𝑝

0
)

2(1−1/𝑟)

+ (1 +









𝑝

0









2(1−1/𝑟)

)

2

.

(61)

Let 𝑃 = 𝑝
0
+𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌
with 𝑝

0
= (𝑋𝑢)

𝜉0,2𝜃𝜌
. Combining

these estimates (57)–(61) and considering the small condition
(51) (it implies 𝜌 ≤ 𝜌

1
(|𝑢

𝜉0,2𝜃𝜌
|, |𝑃|); see (64) and (65)), we

deduce that

Φ(𝜉

0
, 𝜃𝜌) ≤











𝐵

𝜃𝜌
(𝜉

0
)











−1

H𝑛
∫

𝐵2𝜃𝜌(𝜉0)

|𝑋𝑢 − 𝑃|

2

𝑑𝜉

≤ 𝐶

𝑐

2

𝑄

(𝜃𝜌)

2
∮

𝐵2𝜃𝜌(𝜉0)











𝑢 − 𝑢

𝜉0,2𝜃𝜌

− (𝑝

0
+ 𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌
)

× (𝜉

1

− 𝜉

1

0
)











2

𝑑𝜉

+ 2

𝑄

𝐶

𝑐
𝐾

1
(











𝑢

𝜉0,2𝜃𝜌











,











𝑝

0
+ 𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌











) 𝜂 (𝜌

2

)

+ 𝐶

𝑐

(2𝜃𝜌)

2𝑄(1−1/𝑟)

(𝜃𝜌)

𝑄

×[∮

𝐵2𝜃𝜌(𝜉0)

(1 + 𝑢

𝑟

+ |𝑋𝑢|

2

) 𝑑𝜉]

2(1−1/𝑟)

≤ 2

𝑄

𝐶

4
𝐶

𝑐
(𝜃

−𝑄−2

𝜀 + 𝜃

2

)

× [Φ (𝜉

0
, 𝜌) + 4𝛿

−2

𝐾

2

1

× (











𝑢

𝜉0,2𝜃𝜌











,











(𝑋𝑢)

𝜉0,2𝜃𝜌











) 𝜂 (𝜌

2

) ]

+ 2

𝑄

𝐶

𝑐
𝐾

1
(











𝑢

𝜉0,2𝜃𝜌











,











(𝑋𝑢)

𝜉0,2𝜃𝜌

+𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌











) 𝜂 (𝜌

2

)

+ [2

𝑄

𝐶

𝑐
(2𝜃)

2−𝑄(𝑟−1)

Φ(𝜉

0
, 𝜌)

2(1−1/𝑟)

+(1 +











(𝑋𝑢)

𝜉0,2𝜃𝜌











2(1−1/𝑟)

)

2

] 𝜌

2

.

(62)

Wenow specify 𝜀 = 𝜃𝑄+4, 𝜃 ∈ (0, 1/4] such that 2𝑄+1𝐶
4
𝐶

𝑐
𝜃

2

≤

𝜃

2𝜏. Note that the small condition (50) implies 𝜎2𝐶
5
≤ 1 with

𝐶

5
= max{𝐶

0
, 𝐶

𝑐
2

𝑄

(2𝜃)

−(𝑄
2
+4)/(𝑄−2)

}, and it yields

2

𝑄

𝐶

𝑐
(2𝜃)

2−𝑄(𝑟−1)

Φ(𝜉

0
, 𝜌)

2(1−1/𝑟)

≤ 1,

(63)










𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌











≤ 𝜎 sup
𝐵2𝜃𝜌(𝜉0)

|𝑋ℎ|

≤ 𝜎
√
𝐶

0
(∮

𝐵𝜌(𝜉0)

|𝑋ℎ|

2

𝑑𝜉) ≤ 𝜎
√
𝐶

0
≤ 1,

(64)

where we have used the a priori estimate (28) for the A-
harmonic function ℎ. Furthermore, using (19) and recalling
the definition of 𝜎 and 𝐶

1
, we have











𝑢

𝜉0,2𝜃𝜌











≤











𝑢

𝜉0,𝜌











+











𝑢

𝜉0,2𝜃𝜌
− 𝑢

𝜉0,𝜌











≤











𝑢

𝜉0,𝜌











+ (2𝜃)

−𝑄/2

× (∮

𝐵𝜌(𝜉0)











𝑢 − (𝑋𝑢)

𝜉0,𝜌
(𝜉

1

− 𝜉

1

0
) − 𝑢

𝜉0,𝜌











2

𝑑𝜉)

1/2

≤











𝑢

𝜉0,𝜌











+ (2𝜃)

−𝑄/2

𝜌
√
𝐶

𝑝
Φ

1/2

(𝜉

0
, 𝜌)

≤











𝑢

𝜉0,𝜌











+

𝜎

√

𝐶

𝑝

𝐶

1
(2𝜃)

𝑄/2

≤











𝑢

𝜉0,𝜌











+ 𝜎
√
𝐶

5
≤











𝑢

𝜉0,𝜌











+ 1.

(65)

Combining these estimates with (62), we have

Φ(𝜉

0
, 𝜃𝜌) ≤ 𝜃

2𝜏

Φ(𝜉

0
, 𝜌)

+ [4𝛿

−2

𝐾

2

1
(











𝑢

𝜉0,2𝜃𝜌











,











(𝑋𝑢)

𝜉0,2𝜃𝜌











)

+ 2

𝑄

𝐶

𝑐
𝐾

1
(











𝑢

𝜉0,2𝜃𝜌











,











(𝑋𝑢)

𝜉0,2𝜃𝜌

+𝜎(𝑋ℎ)

𝜉0,2𝜃𝜌











)] 𝜂 (𝜌

2

)

+ [1 + (1 +











(𝑋𝑢)

𝜉0 ,2𝜃𝜌











2(1−1/𝑟)

)

2

] 𝜂 (𝜌

2

)

≤ 𝜃

2𝜏

Φ(𝜉

0
, 𝜌) + 𝐾 (











𝑢

𝜉0,2𝜃𝜌











,











(𝑋𝑢)

𝜉0,2𝜃𝜌











) 𝜂 (𝜌

2

)

+ (2 +











𝑢

𝜉0,2𝜃𝜌











+











(𝑋𝑢)

𝜉0,2𝜃𝜌











)

2(𝑟−1)

𝜂 (𝜌

2

)

≤ 𝜃

2𝜏

Φ(𝜉

0
, 𝜌) + 𝐾

∗

(











𝑢

𝜉0,2𝜃𝜌











,











(𝑋𝑢)

𝜉0,2𝜃𝜌











) 𝜂 (𝜌

2

) .

(66)

Then, the proof of Lemma 5 is complete.
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For 𝑇 > 0, we find Φ
0
(𝑇) > 0 (depending on 𝑄,𝑁, 𝜆, 𝐿,

𝜏, and 𝜔) such that

𝜔

2

(2𝑇, 2Φ

0
(𝑇)) + 2Φ

0
(𝑇) ≤

1

2

𝛿

2

,

𝐶

1
Φ

0
(𝑇) ≤ 𝜃

𝑄

(1 − 𝜃

𝜏

)

2

𝑇

2

.

(67)

With Φ
0
(𝑇) from (67), we choose 𝜌

0
(𝑇) ∈ (0, 1] (depending

on 𝑄,𝑁, 𝜆, 𝐿, 𝜏, 𝜔, 𝜂, and 𝜅) such that

𝜌

0
(𝑇) ≤ 𝜌

1
(1 + 2𝑇, 1 + 2𝑇) ,

𝐶

3
𝐾

2

1
(2𝑇, 2𝑇) 𝜂 (𝜌

0
(𝑇)

2

) ≤ 𝛿

2

,

𝐾

0
(𝑇) 𝜂 (𝜌

0
(𝑇)

2

) ≤ (𝜃

2𝛾

− 𝜃

2𝜏

)Φ

0
(𝑇) ,

2 (1 + 𝐶

𝑝
)𝐾

0
(𝑇)𝐻 (𝜌

0
(𝑇)

2

) ≤ 𝜃

𝑄

(1 − 𝜃

𝛾

)

2

(𝜃

2𝛾

− 𝜃

2𝜏

) 𝑇

2

,

(68)

where𝐾
0
(𝑇) := 𝐾

∗

(2𝑇, 2𝑇).
By the proof method of of Lemma 5.1 in [12] and

conditions (67)-(68), Lemma 6 can be proved. As is well
known, it is sufficient to complete the proof ofTheorem 1 once
we obtain Lemma 6.

Lemma 6. Assume that for some 𝑇
0
> 0 and 𝐵

𝜌
(𝜉

0
) ⊂⊂ Ω one

has

(1) |𝑢
𝜉0,𝜌
| + |(𝑋𝑢)

𝜉0,𝜌
| ≤ 𝑇

0
,

(2) 𝜌 ≤ 𝜌
0
(𝑇

0
),

(3) Φ(𝜉
0
, 𝜌) ≤ Φ

0
(𝑇

0
).

Then, the small conditions (49)–(51) are satisfied on the balls
𝐵

𝜃
𝑗
𝜌
(𝜉

0
) for 𝑗 ∈ 𝑁 ∪ {0}. Moreover, the limit Λ

𝜉0
=

lim
𝑗→∞

(𝑋𝑢)

𝜉0,𝜃
𝑗
𝜌
exists, and the inequality

∮

𝐵𝜌(𝜉0)











𝑋𝑢 − Λ

𝜉0











2

𝑑𝜉 ≤ 𝐶

6
((

𝑟

𝜌

)

2𝜏

Φ(𝜉

0
, 𝜌) + 𝐻 (𝑟

2

))

(69)

is valid for 0 < 𝑟 ≤ 𝜌 with a constant 𝐶
6
= 𝐶

6
(𝑄, 𝑁, 𝜆, 𝐿,

𝜏, 𝑎𝑛𝑑 𝑇

0
).

Proof. The proof is very similar to the proof of Lemma 5.1 in
[12]. We omit it here.
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[27] A. Föglein, “Partial regularity results for subelliptic systems
in the Heisenberg group,” Calculus of Variations and Partial
Differential Equations, vol. 32, no. 1, pp. 25–51, 2008.
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