
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 694940, 4 pages
http://dx.doi.org/10.1155/2013/694940

Research Article
A Generalization of the SMW Formula of Operator
𝐴+ 𝑌𝐺𝑍

∗ to the {2}-Inverse Case

Yingtao Duan

College of Mathematics and Computation Science, Zhanjiang Normal University, Zhanjiang 524048, China

Correspondence should be addressed to Yingtao Duan; dyt029@163.com

Received 1 August 2013; Accepted 3 September 2013

Academic Editor: Pavel Kurasov

Copyright © 2013 Yingtao Duan.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The classical Sherman-Morrison-Woodbury (for short SMW) formula (𝐴 + 𝑌𝐺𝑍∗)−1 = 𝐴−1 − 𝐴−1𝑌(𝐺−1 + 𝑍∗𝐴−1𝑌)−1𝑍∗𝐴−1 is
generalized to the {2}-inverse case. Some sufficient conditions under which the SMW formula can be represented as (𝐴 + 𝑌𝐺𝑍∗)− =
𝐴
−

− 𝐴
−

𝑌(𝐺
−

+ 𝑍
∗

𝐴
−

𝑌)

−

𝑍
∗

𝐴
− are obtained.

1. Introduction

There are numerous applications of the SMW formula in
various fields (see [1–6, 12]). An excellent review by Hager
[3] described some of the applications to statistics networks,
structural analysis, asymptotic analysis, optimization, and
partial differential equations. In this note, we consider the
SMW formula in which the inverse is replaced by the {2}-
inverse. As we know, the inverse, the group inverse, the
Moore-Penrose inverse, and the Drazin inverse all belong
to the {2}-inverse. Hence, the classical SMW formula is
generalized.

Let H and K be complex Hilbert spaces. We denote the
set of all bounded linear operators fromH toK byB(H,K)
and by B(H) when H = K. For 𝑇 ∈ B(H,K), let 𝑇∗, let
R(𝑇), and let N(𝑇) be the adjoint, the range, and the null
space of𝑇, respectively. If𝐴 ∈B(H) and𝐺 ∈B(K) both are
invertible, and 𝑌,𝑍 ∈B(K,H), then 𝐴+𝑌𝐺𝑍∗ is invertible
if and only if 𝐺−1 + 𝑍∗𝐴−1𝑌 is invertible. In this case,

(𝐴 + 𝑌𝐺𝑍
∗

)

−1

= 𝐴
−1

− 𝐴
−1

𝑌(𝐺
−1

+ 𝑍
∗

𝐴
−1

𝑌)

−1

𝑍
∗

𝐴
−1

.

(1)

The original SMW [1, 5, 6] formula (1) is only valid when
𝐴 is invertible. In particular, the SMW formula (1) implies
that (𝐼 − 𝐴∗𝐴)−1 = 𝐼 + 𝐴∗(𝐼 − 𝐴𝐴∗)−1𝐴. An operator 𝑇
is called generalized invertible if there is an operator 𝑆 such
that (I) 𝑇𝑆𝑇 = 𝑇. The operator 𝑆 is not unique in general.

In order to force its uniqueness, further conditions have to
be imposed.Themost likely convenient additional conditions
are

(II) 𝑆𝑇𝑆 = 𝑆, (III) (𝑇𝑆)∗ = 𝑇𝑆,

(IV) (𝑆𝑇)∗ = 𝑆𝑇, (V) 𝑇𝑆 = 𝑆𝑇.
(2)

One also considers (𝐼
𝑘
) 𝑇
𝑘

𝑆𝑇 = 𝑇
𝑘 with some 𝑘 ∈ Z+.

Clearly, (I) = (I
1
). Elements 𝑆 ∈ B(H) satisfying (II) are

called {2}-inverse of 𝑇, denoted by 𝑆 = 𝑇−. Similarly, (I, II,
and V)-inverses are called group inverses, denoted by 𝑆 = 𝑇#.
(I, II, III, and IV)-inverses are Moore-Penrose inverses (for
short MP inverses), denoted by 𝑆 = 𝑇+. It is well known that
𝑇 has theMP inverse if and only ifR(𝑇) is closed. And (I

𝑘
, II,

andV)-inverses are calledDrazin inverses, denoted by 𝑆 = 𝑇𝑑
(see [7]), where 𝑘 is the Drazin index of 𝑇. In general, the
{2}-inverse of 𝑇 is not unique. It is clear that 𝑇𝑇−, 𝑇−𝑇 are
idempotents and 𝑇+ = 𝑇𝑑 = 𝑇# = 𝑇− = 𝑇−1 if 𝑇 ∈ B(H) is
invertible (see [8, 9]).

2. Main Results

The following lemmas are used to prove our main results.

Lemma 1. If 𝐴 ∈B(H) and 𝑃 = 𝑃2 ∈B(H), then

(i) 𝑃𝐴 = 𝐴 ⇔R(𝐴) ⊂R(𝑃),
(ii) 𝐴𝑃 = 𝐴 ⇔N(𝑃) ⊂N(𝐴).
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It is well known that R(𝐴) ⊂ R(𝐵) if and only if there
exists an operator 𝐶 such that 𝐴 = 𝐵𝐶 (see [10, 11]). So, we
have the following result.

Lemma 2. Let𝐴 ∈B(H,K). Then,R(𝐴−𝐴) =R(𝐴−), and
N(𝐴𝐴−) =N(𝐴−).

Proof. Since 𝐴− = 𝐴−𝐴𝐴−,

R (𝐴
−

) =R (𝐴
−

𝐴𝐴
−

) ⊂R (𝐴
−

𝐴) ⊂R (𝐴
−

) . (3)

So,R(𝐴−) =R(𝐴−𝐴). Similarly, from

N (𝐴
−

) ⊂N (𝐴𝐴
−

) ⊂N (𝐴
−

𝐴𝐴
−

) =N (𝐴
−

) , (4)

there comesN(𝐴𝐴−) =N(𝐴−).

Now, the first main result of this paper is given as follows,
which generalizes the main results [2, Theorems 2.1–2.4] and
[12, Theorem 1] with very short proof.

Theorem 3. Let 𝐴 ∈ B(H), let 𝐺 ∈ B(K), and let 𝑌,𝑍 ∈
B(K,H). Let also 𝐵 = 𝐴+𝑌𝐺𝑍∗, and let 𝑇 = 𝐺− +𝑍∗𝐴−𝑌.
If

R (𝐴
−

) ⊂R (𝐵
−

) , N (𝐴
−

) ⊂N (𝐵
−

) ,

N (𝐺
−

) ⊂N (𝑌) , N (𝑇
−

) ⊂N (𝐺) ,
(5)

then

(𝐴 + 𝑌𝐺𝑍
∗

)

−

= 𝐴
−

− 𝐴
−

𝑌(𝐺
−

+ 𝑍
∗

𝐴
−

𝑌)

−

𝑍
∗

𝐴
−

. (6)

Proof. Let the conditions in (5) hold. By Lemma 2, we have

R (𝐴
−

) ⊂R (𝐵
−

) =R (𝐵
−

𝐵) ,

N (𝐴𝐴
−

) =N (𝐴
−

) ⊂N (𝐵
−

) .

(7)

By Lemma 1, we get that 𝐵−𝐵𝐴− = 𝐴− and 𝐵−𝐴𝐴− = 𝐵−.
Hence,𝐵−𝑌+𝐵−(𝐵−𝐴)𝐴−𝑌 = 𝐴−𝑌. Similarly, fromN(𝐺−) ⊂
N(𝑌), we get that 𝑌𝐺𝐺− = 𝑌 and

𝐵
−

𝑌𝐺𝑇 = 𝐵
−

𝑌𝐺𝐺
−

+ 𝐵
−

𝑌𝐺𝑍
∗

𝐴
−

𝑌

= 𝐵
−

𝑌 + 𝐵
−

(𝐵 − 𝐴)𝐴
−

𝑌

= 𝐴
−

𝑌.

(8)

So, the condition N(𝑇−) ⊂ N(𝐺) implies that 𝐵−𝑌𝐺 =
𝐵
−

𝑌𝐺𝑇𝑇
−

= 𝐴
−

𝑌𝑇
−. From 𝐵 = 𝐴 + 𝑌𝐺𝑍∗, we deduce that

𝐵
−

𝐵𝐴
−

= 𝐵
−

𝐴𝐴
−

+ 𝐵
−

𝑌𝐺𝑍
∗

𝐴
−. Hence,

𝐵
−

= 𝐵
−

𝐴𝐴
−

= 𝐵
−

𝐵𝐴
−

− 𝐵
−

𝑌𝐺𝑍
∗

𝐴
−

= 𝐴
−

− 𝐴
−

𝑌𝑇
−

𝑍
∗

𝐴
−

.

(9)

For 𝑇 ∈ B(H), let 𝑇⨀ denote any kind of standard
inverse 𝑇−1, group inverse 𝑇#, MP inverse 𝑇+, and Drazin
inverse, respectively. Since 𝑇⨀ belongs to {2}-inverse, we get
the following corollary.

Corollary 4. Let 𝐴 ∈ B(H), let 𝐺 ∈ B(K), and let 𝑌,𝑍 ∈
B(K,H) such that𝐴⨀ and𝐺⨀ exist. Let also𝐵 = 𝐴+𝑌𝐺𝑍∗,
and let 𝑇 = 𝐺⨀ + 𝑍∗𝐴⨀𝑌 such that 𝐵⨀ and 𝑇⨀ exist. If

R (𝐴
⨀

) ⊂R (𝐵
⨀

) , N (𝐴
⨀

) ⊂N (𝐵
⨀

) ,

N (𝐺
⨀

) ⊂N (𝑌) , N (𝑇
⨀

) ⊂N (𝐺) ,

(10)

then

(𝐴 + 𝑌𝐺𝑍
∗

)

⨀

= 𝐴
⨀

− 𝐴
⨀

𝑌(𝐺
⨀

+ 𝑍
∗

𝐴
⨀

𝑌)

⨀

𝑍
∗

𝐴
⨀

.

(11)

The following is our second main result.

Theorem 5. Let 𝐴 ∈ B(H), let 𝐺 ∈ B(K), and let 𝑌,𝑍 ∈
B(K,H). Let also 𝐵 = 𝐴 + 𝑌𝐺𝑍∗, and let 𝑇 = 𝐺− + 𝑍∗𝐴−𝑌.
If any of the following items holds:

(𝑖) N (𝐴
−

𝐴) ⊂N (𝑍
∗

) , R (𝑍
∗

) ⊂R (𝐺
−

) ,

N (𝑇
−

𝑇) ⊂N (𝑌) ,

(𝑖𝑖) N (𝐺
−

) ⊂N (𝑌) , R (𝑍
∗

) ⊂R (𝑇𝑇
−

) ,

R (𝑌) ⊂R (𝐴𝐴
−

) ,

(12)

then (𝐴 + 𝑌𝐺𝑍∗)− = 𝐴− − 𝐴−𝑌(𝐺− + 𝑍∗𝐴−𝑌)−𝑍∗𝐴−.

Proof. Define 𝑋 = 𝐴− − 𝐴−𝑌𝑇−𝑍∗𝐴−. We will prove that
𝑋𝐵𝑋 = 𝑋.

(i) Since N(𝐴−𝐴) ⊂ N(𝑍∗), N(𝑇−𝑇) ⊂ N(𝑌), and
R(𝑍∗) ⊂R(𝐺−), by Lemma 1, we have𝑍∗(𝐼−𝐴−𝐴) =
0, 𝑌(𝐼 − 𝑇−𝑇) = 0, and (𝐼 − 𝐺−𝐺)𝑍∗ = 0. Hence,

𝑋𝐵 = (𝐴
−

− 𝐴
−

𝑌𝑇
−

𝑍
∗

𝐴
−

) (𝐴 + 𝑌𝐺𝑍
∗

)

= 𝐴
−

𝐴 + 𝐴
−

𝑌𝐺𝑍
∗

− 𝐴
−

𝑌𝑇
−

𝑍
∗

𝐴
−

𝐴

− 𝐴
−

𝑌𝑇
−

𝑍
∗

𝐴
−

𝑌𝐺𝑍
∗

= 𝐴
−

𝐴 + 𝐴
−

𝑌𝐺𝑍
∗

− 𝐴
−

𝑌𝑇
−

𝑍
∗

− 𝐴
−

𝑌𝑇
−

(𝑇 − 𝐺
−

) 𝐺𝑍
∗

= 𝐴
−

𝐴 + 𝐴
−

𝑌 (𝐼 − 𝑇
−

𝑇)𝐺𝑍
∗

− 𝐴
−

𝑌𝑇
−

(𝐼 − 𝐺
−

𝐺)𝑍
∗

= 𝐴
−

𝐴,

(13)

and𝑋𝐵𝑋 = 𝐴−𝐴𝑋 = 𝑋.
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(ii) If N(𝐺−) ⊂ N(𝑌), R(𝑍∗) ⊂ R(𝑇𝑇−), and R(𝑌) ⊂
R(𝐴𝐴−), then 𝑌(𝐼 −𝐺𝐺−) = 0, (𝐼 −𝑇𝑇−)𝑍∗ = 0, and
(𝐼 − 𝐴𝐴

−

)𝑌 = 0. We have

𝐵𝑋 = (𝐴 + 𝑌𝐺𝑍
∗

) (𝐴
−

− 𝐴
−

𝑌𝑇
−

𝑍
∗

𝐴
−

)

= 𝐴𝐴
−

+ 𝑌𝐺𝑍
∗

𝐴
−

− 𝐴𝐴
−

𝑌𝑇
−

𝑍
∗

𝐴
−

− 𝑌𝐺𝑍
∗

𝐴
−

𝑌𝑇
−

𝑍
∗

𝐴
−

= 𝐴𝐴
−

+ 𝑌𝐺𝑍
∗

𝐴
−

− 𝑌𝑇
−

𝑍
∗

𝐴
−

− 𝑌𝐺 (𝑇 − 𝐺
−

) 𝑇
−

𝑍
∗

𝐴
−

= 𝐴𝐴
−

+ 𝑌𝐺 (𝐼 − 𝑇𝑇
−

) 𝑍
∗

𝐴
−

− 𝑌 (𝐼 − 𝐺𝐺
−

) 𝑇
−

𝑍
∗

𝐴
−

= 𝐴𝐴
−

(14)

and𝑋𝐵𝑋 = 𝑋𝐴𝐴− = 𝑋.

From Theorem 5, we get the following corollary which
generalizes some recent results (e.g., see [2,Theorem 2.1] and
[12, Theorem 1]).

Corollary 6. Let 𝐴 ∈ B(H), let 𝐺 ∈ B(K), and let 𝑌,𝑍 ∈
B(K,H) such that𝐴⨀ and𝐺⨀ exist. Let also𝐵 = 𝐴+𝑌𝐺𝑍∗,
and let 𝑇 = 𝐺⨀ + 𝑍∗𝐴⨀𝑌 such that 𝐵⨀ and 𝑇⨀ exist. If

N (𝐴
⨀

𝐴) ⊂N (𝑍
∗

) , R (𝑍
∗

) ⊂R (𝐺
⨀

) ,

N (𝑇
⨀

𝑇) ⊂N (𝑌) , N (𝐺
⨀

) ⊂N (𝑌) ,

R (𝑍
∗

) ⊂R (𝑇𝑇
⨀

) , R (𝑌) ⊂R (𝐴𝐴
⨀

) ,

(15)

then

(𝐴 + 𝑌𝐺𝑍
∗

)

⨀

= 𝐴
⨀

− 𝐴
⨀

𝑌(𝐺
⨀

+ 𝑍
∗

𝐴
⨀

𝑌)

⨀

𝑍
∗

𝐴
⨀

.

(16)

Proof. Firstly, if ⨀ denotes the standard inverse, then (15)
holds automatically, and the result (SMW formula) follows
immediately by the proof of Theorem 5.

Secondly, if⨀ denotes the MP inverse, by the proof of
Theorem 5, 𝑋 = 𝐴+ − 𝐴+𝑌𝑇+𝑍∗𝐴+ satisfies 𝑋𝐵 = 𝐴+𝐴 and
𝐵𝑋 = 𝐴𝐴

+. Thus, (𝑋𝐵)∗ = 𝑋𝐵, and (𝐵𝑋)∗ = 𝐵𝑋. Moreover,
we have 𝐵𝑋𝐵 = 𝐴𝐴+(𝐴 + 𝑌𝐺𝑍∗) = 𝐴 + 𝐴𝐴+𝑌𝐺𝑍∗ = 𝐵 and
𝑋𝐵𝑋 = 𝐴

+

𝐴(𝐴
+

− 𝐴
+

𝑌𝑇
+

𝑍
∗

𝐴
+

) = 𝑋. By the definition of
MP inverse, we know that (𝐴 + 𝑌𝐺𝑍∗)+ = 𝐴+ − 𝐴+𝑌(𝐺+ +
𝑍
∗

𝐴
+

𝑌)
+

𝑍
∗

𝐴
+.

Lastly, if ⨀ denotes the Drazin inverse (resp., group
inverse), by the proof of Theorem 5, 𝑋 = 𝐴𝑑 − 𝐴𝑑𝑌𝑇𝑑𝑍∗𝐴𝑑

satisfies 𝑋𝐵 = 𝐵𝑋 = 𝐴𝐴𝑑 = 𝐴𝑑𝐴. Moreover, 𝑋𝐵𝑋 =
𝐴
𝑑

𝐴𝑋 = 𝐴
𝑑

𝐴(𝐴
𝑑

−𝐴
𝑑

𝑌𝑇
𝑑

𝑍
∗

𝐴
𝑑

) = 𝑋, and 𝐵−𝐵2𝑋 = 𝐵(𝐼−
𝐵𝑋) = (𝐴+𝑌𝐺𝑍

∗

)(𝐼−𝐴𝐴
𝑑

) = 𝐴(𝐼−𝐴𝐴
𝑑

) is quasi-nilpotent
(resp., 𝐵 − 𝐵2𝑋 = 0 for the group inverse case). So, by the
definition of Drazin inverse, we have (𝐴 + 𝑌𝐺𝑍∗)𝑑 = 𝐴𝑑 −
𝐴
𝑑

𝑌𝑇
𝑑

𝑍
∗

𝐴
𝑑 (resp. (𝐴 + 𝑌𝐺𝑍∗)# = 𝐴# − 𝐴#𝑌𝑇#𝑍∗𝐴#).

3. Concluding Remark

In this note, we mainly extend the SMW formula to the form
(𝐴 + 𝑌𝐺𝑍

∗

)
−

= 𝐴
−

− 𝐴
−

𝑌(𝐺
−

+ 𝑍
∗

𝐴
−

𝑌)
−

𝑍
∗

𝐴
− under some

sufficient conditions. If 𝐴,𝐺, 𝑇, and 𝐵 in Theorem 3 are
invertible, then (5) and (6) hold automatically. Hence, Theo-
rem 3 generalizes the classical SMW formula. In [2, Theorem
2.1], when 𝐴 is MP-invertible and 𝐺−1 + 𝑍∗𝐴+𝑌 is invertible,
the sufficient conditions under which the SMW formula can
be represented as

(𝐴 + 𝑌𝐺𝑍
∗

)

+

= 𝐴
+

− 𝐴
+

𝑌(𝐺
−1

+ 𝑍
∗

𝐴
−

𝑌)

−1

𝑍
∗

𝐴
+ (17)

are given. It is obvious that Theorem 3 also generalizes [2,
Theorem 2.3] greatly.

Under weaker assumptions than those used in the liter-
ature, our results are new and robust to the classical SMW
formula even for the finite dimensional case. It is natural to
ask if we can extend our results for the various inverses of
𝐴 + 𝑌𝐺𝑍

∗ in some weaker assumptions, which will be our
future research topic.
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