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By using a linear operator with Hurwitz-Lerch-Zeta function, which is defined here by means of the Hadamard product (or
convolution), the author investigates interesting properties of certain subclasses of meromorphically univalent functions in the
punctured unit disk 𝑈∗.

1. Introduction

A meromorphic function is a single-valued function that is
analytic in all but possibly a discrete subset of its domain, and
at those singularities, it must go to infinity like a polynomial
(i.e., these exceptional points must be poles and not essential
singularities). A simpler definition states that a meromorphic
function 𝑓(𝑧) is a function of the form

𝑓 (𝑧) =
𝑔 (𝑧)

ℎ (𝑧)
, (1)

where 𝑔(𝑧) and ℎ(𝑧) are entire functions with ℎ(𝑧) ̸= 0 (see
[1, page 64]). A meromorphic function therefore may only
have finite-order, isolated poles and zeros and no essential
singularities in its domain. A meromorphic function with an
infinite number of poles is exemplified by csc(1/𝑧) on the
punctured disk 𝑈

∗

= {𝑧 : 0 < |𝑧| < 1}. An equivalent
definition of a meromorphic function is a complex analytic
map to the Riemann sphere. Another definition for a mero-
morphic function is the following (see [2]).

Definition 1. A function 𝑓 on an open set Ω is meromorphic
if there exists a discrete set of points 𝑆 = {𝑧 : 𝑧 ∈ Ω}

such that 𝑓 is holomorphic on Ω − 𝑆 and has poles at each
𝑧 ∈ 𝑆. Furthermore, 𝑓 is meromorphic in the extended
complex plane if 𝐹(𝑧) = 𝑓(1/𝑧) is either meromorphic or
holomorphic at 0. In this case, we say that 𝑓 has a pole or
is holomorphic at infinity.

Example 2. The Gamma function is meromorphic in the
whole complex plane.

Example 3. All rational functions such as

𝑓 (𝑧) =
𝑧
3

− 2𝑧 + 10

𝑧5 + 3𝑧 − 1

(2)

are meromorphic on the whole complex plane.

Example 4. The functions 𝑓
1
(𝑧) = 𝑒

𝑧

/𝑧 and 𝑓
2
(𝑧) = sin 𝑧/

(1 − 𝑧)
2 are meromorphic on the whole complex plane.

Example 5. The function 𝑓(𝑧) = 𝑒
1/𝑧 is defined in the whole

complex plane except for the origin 0. However, 0 is not a
pole of this function, rather an essential singularity.Thus, this
function is not meromorphic in the whole complex plane.

Example 6. The complex logarithm function 𝑓(𝑧) = ln 𝑧 is
not meromorphic on the whole complex plane, as it cannot
be defined on the whole complex plane except for an isolated
set of points.

The aim of this paper is to investigate interesting prop-
erties of certain subclasses of meromorphically univalent
functions with linear operator which are defined here by
means of the Hadamard product (or convolution) in the
punctured unit disk 𝑈∗.
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2. Preliminaries

Let Σ denote the class of meromorphic functions 𝑓(𝑧)

normalized by

𝑓 (𝑧) =
1

𝑧
+

∞

∑

𝑛=1

𝑎
𝑛
𝑧
𝑛

, (3)

which are analytic in the punctured unit disk 𝑈∗. For 0 ≤ 𝛽,
we denote by 𝑆∗(𝛽) and 𝑘(𝛽) the subclasses of Σ consisting of
all meromorphic functions which are, respectively, starlike of
order 𝛽 and convex of order 𝛽 in 𝑈

∗.
For functions 𝑓

𝑗
(𝑧) (𝑗 = 1; 2) defined by

𝑓
𝑗
(𝑧) =

1

𝑧
+

∞

∑

𝑛=1

𝑎
𝑛,𝑗
𝑧
𝑛

, (4)

we denote the Hadamard product (or convolution) of 𝑓
1
(𝑧)

and 𝑓
2
(𝑧) by

(𝑓
1
∗ 𝑓
2
) =

1

𝑧
+

∞

∑

𝑛=1

𝑎
𝑛,1
𝑎
𝑛,2
𝑧
𝑛

. (5)

Let us define the function 𝜙(𝛼, 𝛽; 𝑧) by

𝜙 (𝛼, 𝛽; 𝑧) =
1

𝑧
+

∞

∑

𝑛=0

(𝛼)
𝑛+1

(𝛽)
𝑛+1

𝑧
𝑛

, (6)

for 𝛽 ̸= 0, −1, −2, . . ., and 𝛼 ∈ C\{0}, where (𝜆)𝑛 = 𝜆(𝜆+1)
𝑛+1

is the Pochhammer symbol. We note that

𝜙 (𝛼, 𝛽; 𝑧) =
1

𝑧
2
𝐹
1
(1, 𝛼, 𝛽; 𝑧) , (7)

where

2
𝐹
1
(𝑏, 𝛼, 𝛽; 𝑧) =

∞

∑

𝑛=0

(𝑏)
𝑛
(𝛼)
𝑛

(𝛽)
𝑛

𝑧
𝑛

𝑛!
(8)

is the well-known Gaussian hypergeometric function.
We recall here a general Hurwitz-Lerch-Zeta function,

which is defined in [3, 4] by the following series:

Φ (𝑧, 𝑡, 𝑎) =
1

𝑎𝑡
+

∞

∑

𝑛=1

𝑧
𝑛

(𝑛 + 𝑎)
𝑡

(9)

(𝑎 ∈ C \ Z−
0
,Z−
0
= {0, −1, −2, . . .}; 𝑡 ∈ Cwhen 𝑧 ∈ 𝑈 = 𝑈

∗

⊂

{0}; R(𝑡) > 1when 𝑧 ∈ 𝜕𝑈).
Important special cases of the functionΦ(𝑧, 𝑡, 𝑎) include,

for example, the Riemann Zeta function 𝜁(𝑡) = Φ(1, 𝑡, 1),
the Hurwitz Zeta function 𝜁(𝑡, 𝑎) = Φ(1, 𝑡, 𝑎), the Lerch Zeta
function 𝑙

𝑡
(𝜁) = Φ(exp2𝜋𝑖𝜉, 𝑡, 1), (𝜉 ∈ R,R(𝑡) > 1), and the

polylogarithm 𝐿
𝑖

𝑡
(𝑧) = 𝑧Φ(𝑧, 𝑡, 𝑎). Recent results onΦ(𝑧, 𝑡, 𝑎)

can be found in the expositions [5, 6]. By making use of the
following normalized function we define

𝐺
𝑡,𝑎
(𝑧) = (1 + 𝑎)

𝑡

[Φ (𝑧, 𝑡, 𝑎) − 𝑎
𝑡

+
1

𝑧(1 + 𝑎)
𝑡
]

=
1

𝑧
+

∞

∑

𝑛=1

(
1 + 𝑎

𝑛 + 𝑎
)

𝑡

𝑧
𝑛

(10)

(𝑧 ∈ 𝑈
∗

).

Corresponding to the functions 𝐺
𝑡,𝑎
(𝑧) and using the

Hadamard product for 𝑓(𝑧) ∈ Σ, we define a new linear
operator 𝐿

𝑡,𝑎
(𝛼, 𝛽) on Σ by the following series:

𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧) = 𝜙 (𝛼, 𝛽; 𝑧) ∗ 𝐺

𝑡,𝑎
(𝑧)

=
1

𝑧
+

∞

∑

𝑛=1

(𝛼)
𝑛+1

(𝛽)
𝑛+1

(
1 + 𝑎

𝑛 + 𝑎
)

𝑡

𝑎
𝑛
𝑧
𝑛

(11)

(𝑧 ∈ 𝑈
∗

).
The meromorphic functions with the generalized hyper-

geometric functions were considered recently by many oth-
ers; see, for example, [7–12].

It follows from (11) that

𝑧(𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))



= 𝛼 (𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

− (𝛼 + 1) 𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧) .

(12)

We denote by the class Σ
𝑎,𝑡

𝛼,𝛽
(𝛾, 𝛿, 𝜇, 𝜆) of all functions

𝑓(𝑧) ∈ Σ such that

R{ (1 − 𝜆)(
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

)

𝜇

+𝜆(
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

) ⋅ (
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

)

𝜇−1

} > 𝛾,

(13)

where 𝑔(𝑧) ∈ Σ satisfies the following condition:

R{
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} > 𝛿 (0 ≤ 𝛿 < 1, 𝑧 ∈ 𝑈
∗

) , (14)

where 𝛾 and 𝜇 are real numbers such that 0 ≤ 𝛾 < 1, 𝜇 > 0,
and 𝜆 ∈ C withR{𝜆} > 0.

To establish our main results, we need the following
lemmas.

Lemma 7 (see [13]). LetΩ be a set in the complex planeC and
let the function Ψ : C2 → C satisfy the condition Ψ(𝑖𝑟

2
, 𝑠
1
) ∉

Ω for all real 𝑟
2
, 𝑠
1
≤ (1 + 𝑟

2

2
)/2. If 𝑞(𝑧) is analytic in 𝑈

∗ with
𝑞(0) = 1 and Ψ(𝑞(𝑧), 𝑧𝑞(𝑧)) ∈ Ω, 𝑧 ∈ 𝑈

∗, thenR{𝑞(𝑧)} > 0.

Lemma 8 (see [14]). If 𝑞(𝑧) is analytic in 𝑈
∗ with 𝑞(0) = 1,

and if 𝜆 ∈ C \ {0} withR{𝜆} > 0, thenR{𝑞(𝑧) + 𝜆𝑧𝑞


(𝑧)} > 𝛾,
(0 ≤ 𝛾 < 1) impliesR{𝑞(𝑧)} > 𝛾 + (1 − 𝛾)(2𝜀 − 1), where 𝜀 is
given by

𝜀 = 𝜀 (R𝜆) = ∫

1

0

(1 + 𝑡
R𝜆

)
−1

𝑑𝑡 (15)

which is increasing function of R{𝜆} and 1/2 ≤ 𝜀 < 1.
The estimate is sharp in the sense that the bound cannot be
improved.

For real or complex numbers 𝑎, 𝑏, 𝑐, (𝑐 ∉ 𝑧
−

0
), the Gauss

hypergeometric function is defined by

2
𝐹
1
(𝑎, 𝑏, 𝑐; 𝑧)

= 1 +
𝑎𝑏

𝑐

𝑧

1!
+
𝑎 (𝑎 + 1) 𝑏 (𝑏 + 1)

𝑐 (𝑐 + 1)

𝑧
2

2!
+ ⋅ ⋅ ⋅ .

(16)
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One notes that the above series converges absolutely for 𝑧 ∈ 𝑈
∗

and hence represents an analytic function in the unit disc 𝑈∗
(see, for details, [15, Chapter 14]).

Each of the identities (asserted by Lemma 9) is fairly well
known (cf., e.g., [15, Chapter 14]).

Lemma 9. For real or complex parameters 𝑎, 𝑏, 𝑐, (𝑐 ∉ 𝑧
−

0
),

then

∫

1

0

𝑡
𝑏−1

(1 − 𝑡)
𝑐−𝑏−1

(1 − 𝑡𝑧)
−𝑎

𝑑𝑡

=
Γ (𝑏) Γ (𝑐 − 𝑏)

Γ (𝑐)
2
𝐹
1
(𝑎, 𝑏, 𝑐; 𝑧)

(17)

(R(𝑐) > R(𝑏) > 0),

2
𝐹
1
(𝑎, 𝑏, 𝑐; 𝑧) = (1 − 𝑧)

−𝑎

2
𝐹
1
(𝑎, 𝑐 − 𝑏, 𝑐;

𝑧

𝑧 − 1
) ,

2
𝐹
1
(𝑎, 𝑏, 𝑐; 𝑧) =

2
𝐹
1
(𝑏, 𝑐, 𝑐; 𝑧) ,

2
𝐹
1
(1, 1, 2;

1

2
) = 2 ln 2.

(18)

3. Main Results

Theorem10. Let𝑓(𝑧) ∈ Σ
𝑎,𝑡

𝛼,𝛽
(𝛾, 𝛿, 𝜇, 𝜆),𝛼 ∈ R\{0} and𝜆 ≥ 0.

Then

R(
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

) ≥
2𝛼𝛾𝜇 + 𝛿𝜆

2𝛼𝜇 + 𝛿𝜆
, (19)

(0 ≤ 𝛾 < 1, 𝜇 > 0, 𝑧 ∈ 𝑈
∗

), where the function 𝑔(𝑧) ∈ Σ

satisfies condition (14).

Proof. Let 𝜉 = (2𝛼𝛾𝜇 + 𝛿𝜆)/(2𝛼𝜇 + 𝛿𝜆), and we define the
function 𝑞(𝑧) by

𝑞 (𝑧) =
1

(1 − 𝜉)
{(

𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

)

𝜇

− 𝜉} . (20)

Then 𝑞(𝑧) is analytic in 𝑈
∗ and 𝑞(0) = 1. If we set

ℎ (𝑧) =
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

, (21)

then by the hypothesisR{ℎ(𝑧)} > 𝛿. Differentiating (19) and
using the identity (12), we have

(1 − 𝜆) (
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

)

𝜇

+ 𝜆
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

(
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

)

𝜇−1

= [𝜉 + (1 − 𝜉) 𝑞 (𝑧)] +
𝜆 (1 − 𝜉)

𝛼𝜇
ℎ (𝑧) 𝑧𝑞



(𝑧) .

(22)

Let us define the function Ψ(𝑟, 𝑠) by

Ψ (𝑟, 𝑠) = 𝜉 + (1 − 𝜉) 𝑟 +
𝜆 (1 − 𝜉)

𝛼𝜇
ℎ (𝑧) 𝑠. (23)

Using (21) and the fact that 𝑓(𝑧) ∈ Σ
𝑎,𝑡

𝛼,𝛽
(𝛾, 𝛿, 𝜇, 𝜆), we obtain

{Ψ (𝑞 (𝑧) , 𝑧𝑞


(𝑧)) ; 𝑧 ∈ 𝑈
∗

} ⊂ Ω

= {𝑤 ∈ 𝐶 : R (𝑤) > 𝛾} .

(24)

Now for all real 𝑟
2
, 𝑠
1
≤ (1 + 𝑟

2

2
)/2, we have

R {Ψ (𝑖𝑟
2
, 𝑠
1
)} = 𝜉 +

𝜆 (1 − 𝜉)

𝛼𝜇
R {ℎ (𝑧)}

≤ 𝜉 −

𝜆𝛿 (1 − 𝜉) (1 + 𝑟
2

2
)

2𝛼𝜇

≤ 𝜉 −
𝜆𝛿 (1 − 𝜉)

2𝛼𝜇
= 𝛾.

(25)

Hence for each 𝑧 ∈ 𝑈
∗, Ψ(𝑖𝑟

2
, 𝑠
1
) ∉ Ω. Thus by Lemma 7, we

haveR{𝑞(𝑧)} > 0, and hence

R(
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓(𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔(𝑧)

)

𝜇

> 𝜉, 𝑧 ∈ 𝑈
∗

. (26)

This proves Theorem 10.

Corollary 11. Let the functions 𝑓(𝑧) and 𝑔(𝑧) be in Σ, and let
𝑔(𝑧) satisfy condition (14). If 𝛼 ∈ R \ {0}, 𝜆 ≥ 0, and

R{(1 − 𝜆)
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

+ 𝜆
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} > 𝛾,

(27)

0 ≤ 𝛾 < 1, 𝑧 ∈ 𝑈
∗, then

R{
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} > 𝜉 =
𝛾 (2𝛼 + 𝛿) + 𝛿 (𝜆 − 1)

2𝛼 + 𝜆𝛿
.

(28)

Proof. We have

𝜆
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

= [(1 − 𝜆)
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

+ 𝜆
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

]

+ (𝜆 − 1)
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

.

(29)

Since𝜆 > 1making use of (27) and (19) (for𝜇 = 1), we deduce
that

R{
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} > 𝜉 =
𝛾 (2𝛼 + 𝛿) + 𝛿 (𝜆 − 1)

2𝛼 + 𝜆𝛿
.

(30)
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Corollary 12. Let 𝜆 ∈ C \ {0} withR{𝜆} > 0 and 𝛼 ∈ R \ {0}.
If 𝑓(𝑧) ∈ Σ satisfies the following condition:

R { (1 − 𝜆) (𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

𝜇

+ 𝜆 (𝑧𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

⋅ (𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

𝜇−1

} > 𝛾

(31)

(0 ≤ 𝛾 < 1, 𝜇 > 0, 𝑧 ∈ 𝑈
∗

), then

R{𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓(𝑧)}

𝜇

>
2𝜇𝛼𝛾 +R {𝜆}

2𝜇𝛼 +R {𝜆}
. (32)

Further, if 𝜆 ≥ 1, 𝛼 ∈ R \ {0}, and 𝑓(𝑧) ∈ Σ satisfies

R {(1 − 𝜆) 𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧) + 𝜆 (𝑧𝐿

𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))} > 𝛾,

(33)

then

R {𝑧𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)} >

(2𝑎 + 1) 𝛾 + 𝜆 − 1

2𝑎 + 𝜆

(0 ≤ 𝛾 < 1, 𝑧 ∈ 𝑈
∗

) .

(34)

Proof. The results (19) and (20) follow by putting 𝑔(𝑧) = 1/𝑧

in Theorem 10 and Corollary 11, respectively.

Remark 13. (i) Putting 𝜆 = 1 and 𝛼, 𝛽 > 0 in Corollary 12, we
have that

R {𝑧𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧) ⋅ (𝑧𝐿

𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

𝜇−1

} > 𝛾 (35)

implies

R{𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)}

𝜇

>
2𝛼𝛾 +R {𝜆}

2𝛼 +R {𝜆}
, 𝑧 ∈ 𝑈

∗

. (36)

(ii) For 𝜆 ∈ C \ {0} withR{𝜆} > 0, 𝜇 = 1, and 𝛼, 𝛽 > 0 in
Corollary 12, we have that

R {(1 − 𝜆) 𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

+ 𝜆 (𝑧𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))} > 𝛾

(37)

(0 ≤ 𝛾 < 1) implies

R {𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)} >

2𝛼𝛾 +R {𝜆}

2𝛼 +R {𝜆}
, 𝑧 ∈ 𝑈

∗

. (38)

Choosing 𝑡 = 0 and 𝛼 = 𝛽 = 1 appropriately in
Corollary 12, we obtain the following results.

(iii) For 𝜆 = 1, 𝑡 = 0, and 𝛼 = 𝛽 = 1 in Corollary 12, we
have that

R{
𝑧𝑓


(𝑧)

𝑓 (𝑧)
(𝑧𝑓 (𝑧))

𝜇

} > 𝛾,

(0 ≤ 𝛾 < 1, 𝜇 > 0)

(39)

implies

R{𝑧𝑓 (𝑧)}
𝜇

>
2𝛾𝜇 + 1

2𝜇 + 1
, 𝑧 ∈ 𝑈

∗

. (40)

(iv) For 𝜆 ∈ C \ {0} with R{𝜆} > 0, 𝜇 = 1, 𝑡 = 0, and
𝛼 = 𝛽 = 1 in Corollary 12, we have that

R {(1 − 𝜆) 𝑧𝑓 (𝑧) + 𝜆 (𝑧
2

𝑓


(𝑧))} > 𝛾 (41)

(0 ≤ 𝛾 < 1, 𝜇 > 0) implies

R {𝑧𝑓 (𝑧)} >
2𝛾 +R {𝜆}

2 +R {𝜆}
, 𝑧 ∈ 𝑈

∗

. (42)

(v) Replacing 𝑓(𝑧) by −𝑧𝑓


(𝑧) in the result (ii), we have
that

−R {(1 − 𝜆) 𝑧
2

𝑓 (𝑧) + 𝜆 (𝑧
3

𝑓


(𝑧))} > 𝛾 (43)

implies

−R {𝑧
2

𝑓


(𝑧)} >
2𝛾 +R {𝜆}

2 +R {𝜆}
, 𝑧 ∈ 𝑈

∗

. (44)

(vi) For 𝜆 ∈ R with 𝜆 ≥ 1, 𝜇 = 1, 𝑡 = 0, and 𝛼 = 𝛽 = 1 in
Corollary 12, we have that

R {(1 − 𝜆) 𝑧𝑓 (𝑧) + 𝜆 (𝑧
2

𝑓


(𝑧))} > 𝛾 (45)

implies

R {𝑧𝑓 (𝑧)} >
3𝛾 + 𝜆 − 1

2 + 𝜆
. (46)

Theorem 14. Let 𝜆 ∈ C \ {0} withR{𝜆} > 0 and 𝛼 ∈ R \ {0}.
If 𝑓(𝑧) ∈ Σ satisfies the following condition:

R { (1 − 𝜆) (𝑧 𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

𝜇

+ 𝜆 (𝑧𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)) ⋅(𝑧𝐿

𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

𝜇−1

} > 𝛾

(0 ≤ 𝛾 < 1, 𝜇 > 0, 𝑧 ∈ 𝑈
∗

) ,

(47)

then

R{𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓(𝑧)}

𝜇

> 𝛾 + (1 − 𝛾) (2𝜌 − 1) , (48)

where

𝜌 =
1

2
2
𝐹
1
(1, 1,

𝜇𝑎

R {𝜆}
,
1

2
) , 𝑧 ∈ 𝑈

∗

. (49)

Proof. Let

𝑞 (𝑧) = (𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

𝜇

. (50)
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Then 𝑞(𝑧) is analytic in𝑈∗ with 𝑞(0) = 1. Differentiating 𝑞(𝑧)
with respect to 𝑧 and using the identity (12), we obtain

(1 − 𝜆) (𝑧 𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

𝜇

+ 𝜆 (𝑧 𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))

⋅ (𝑧 𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

𝜇−1

= 𝑞 (𝑧) +
𝜆𝑧𝑞


(𝑧)

𝜇𝑎
,

(51)

so that by the hypothesis (47), we have

R{𝑞 (𝑧) +
𝜆𝑧𝑞


(𝑧)

𝜇𝑎
} > 𝛾. (52)

In view Lemma 8, this implies that

R {𝑞 (𝑧)} > 𝛾 + (1 − 𝛾) (2𝜌 − 1) , (53)

where

𝜌 = 𝜌 (R {𝜆}) = ∫

1

0

(1 + 𝑡
R{𝜆}/𝜇𝑎

)
−1

𝑑𝑡. (54)

PuttingR{𝜆} = 𝜆
1
> 0, we have

𝜌 = ∫

1

0

(1 + 𝑡
R{𝜆}/𝜇𝛼

)
−1

𝑑𝑡 =
𝜇𝛼

𝜆
1

∫

1

0

𝑢
(𝜇𝛼/𝜆

1
) −1

(1 + 𝑢)
−1

𝑑𝑢.

(55)

Using (17)-(18), we obtain

𝜌 =
2
𝐹
1
(1,

𝜇𝛼

𝜆
1

;
𝜇𝛼

𝜆
1

+ 1; −1) 𝜌
∗

=
1

2
2
𝐹
1
(1, 1,

𝛼

𝜆
+ 1,

1

2
) .

(56)

Thus the proof of Theorem 14 is complete.

Corollary 15. Let 𝜆 ∈ R, 𝜇 = 1 with 𝜆 > 1. If 𝑓(𝑧) ∈ Σ

satisfies

R {(1 − 𝜆) (𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧))

+𝜆 (𝑧𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))} > 𝛾

(57)

(0 ≤ 𝛾 < 1, 𝛼 ∈ R \ {0}, 𝑧 ∈ 𝑈
∗

), then

R {(𝑧𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))}

> 𝛾 + (1 − 𝛾) (2𝜌
∗

− 1) (1 − 𝜆
−1

) ,

(58)

where

𝜌
∗

=
1

2
2
𝐹
1
(1, 1,

𝛼

𝜆
+ 1,

1

2
) . (59)

Proof. The result follows by using the identity

𝜆𝑧𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

= [(1 − 𝜆) (𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)) + 𝜆 (𝑧𝐿

𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧))]

+ (𝜆 − 1) (𝑧𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)) .

(60)

Remark 16. (i)We note that if 𝜆, 𝜇 > 0, 𝛼 = 𝛽 = 1, and 𝑡 = 0

in Corollary 15, that is,

R {(1 − 𝜆) (𝑧𝑓 (𝑧))
𝜆

+ 𝜆𝑧
2

𝑓


(𝑧) (𝑧𝑓 (𝑧))
𝜆−1

} > 𝛾, (61)

then (32) implies that

R{𝑧𝑓 (𝑧)}
𝜆

>
2𝛾 + 1

2 + 1
(𝑧 ∈ 𝑈

∗

) (62)

whereas if 𝑓(𝑧) ∈ Σ satisfies condition (61); then, by using
Theorem 14, we have

R{𝑧𝑓 (𝑧)}
𝜆

> 2 (1 − ln 2) 𝛾 + (2 ln 2 − 1) (63)

which is better than (61).
(ii)We observe that if 𝜆 ∈ R satisfying 𝜆 ≥ 0 and

𝑘 (𝑧) =
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

+ (
1

𝜆
− 1)

𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

.

(64)

Then, fromTheorem 10 (for 𝜇 = 1), we have that

R {𝑘 (𝑧)} >
𝛾

𝜆
(65)

implies

R{
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

} >
2𝛼𝛾 + 𝜆𝛿

2𝛼 + 𝜆𝛿
, (66)

whenever

R{
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} > 𝛿, 0 ≤ 𝛿 < 1. (67)

Let 𝜆 → +∞; then, from (66), we have that R{𝑘(𝑧)} > 0

implies

R{
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} > 1, 𝑧 ∈ 𝑈
∗

, (68)

whenever

R{
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} > 𝛿 (0 ≤ 𝛿 < 1, 𝑧 ∈ 𝑈
∗

) . (69)

In the following theorem, we will extend the above results
as follows.

Theorem 17. Suppose that the functions 𝑓(𝑧) and 𝑔(𝑧) are in
Σ, and suppose that 𝑔(𝑧) satisfies condition (14). If

R{
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

−
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

} >
(1 − 𝛾) 𝛿

2𝛼

(70)

(0 ≤ 𝛾 < 1, 𝛼 ∈ R \ {0}, 0 ≤ 𝛿 < 1, 𝑧 ∈ 𝑈
∗

), then

R{
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} > 𝛾, (71)

R{
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

} >
(2𝛼 + 1 + 𝛿) 𝛾 − 𝛿

2𝛼
. (72)
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Proof. Let

𝑞 (𝑧) =
1

(1 − 𝛾)
{
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

− 𝛾} . (73)

Then 𝑞(𝑧) is analytic in 𝑈
∗ with 𝑞(0) = 1. Putting

Φ (𝑧) =
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

, (74)

we observe that by hypothesisR{Φ(𝑧)} > 𝛿, in 𝑈
∗. A simple

computation shows that

(1 − 𝛾) 𝑧𝑞


(𝑧)R {Φ}

𝛼

=
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

−
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

= Ψ (𝑞 (𝑧) , 𝑧𝑞


(𝑧)) ,

(75)

where

Ψ (𝑟, 𝑠) =
(1 − 𝛾)Φ (𝑧) 𝑠

𝛼
, 𝛼 ∈ R \ {0} . (76)

Using the hypothesis (70), we obtain

Ψ(𝑞 (𝑧) , 𝑧𝑞


(𝑧) ; 𝑧 ∈ 𝑈
∗

) ⊂ Ω

= {𝑤 ∈ C : R (𝑤) > −
𝛿 (1 − 𝛾)

2𝛼
} .

(77)

Now, for all real 𝑟
2
, 𝑠
1
≤ −((1 + 𝑟

2

2
)/2), we have

R {Ψ (𝑖𝑟
2
, 𝑠
1
)} =

𝑠
1
(1 − 𝛾)R {Φ}

𝛼

≤ −

𝛿 (1 − 𝛾) (1 − 𝑟
2

2
)

2𝛼

≤ −
𝛿 (1 − 𝛾)

2𝛼
.

(78)

This shows thatR{Ψ(𝑖𝑟
2
, 𝑠
1
)} ∉ Ω for each 𝑧 ∈ 𝑈

∗.
Hence by Lemma 7, we have that this proves (71). The

proof of (72) follows by using (71) and (72) in the identity:

R{
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

}

= {
𝐿
𝑡

𝑎
(𝛼 + 1, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼 + 1, 𝛽) 𝑔 (𝑧)

−
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

}

+
𝐿
𝑡

𝑎
(𝛼, 𝛽) 𝑓 (𝑧)

𝐿𝑡
𝑎
(𝛼, 𝛽) 𝑔 (𝑧)

.

(79)

This completes the proof of Theorem 17.

Remark 18. (i) Putting 𝛼 = 𝛽 = 1, 𝑡 = 0, and 𝑔(𝑧) = 1/𝑧 in
Theorem 17 for all 𝑧 ∈ 𝑈

∗, we obtain that

R {𝑧𝑓 (𝑧) + 𝑧
2

𝑓


(𝑧)} > −
𝛿 (1 − 𝛾)

2

(80)

impliesR{𝑧 𝑓(𝑧)} > 𝛾 and

R {2𝑧 𝑓 (𝑧) + 𝑧
2

𝑓


(𝑧)} >
(2 + 𝛿) 𝛾 − 𝛿

2
. (81)

(ii) For 𝛼 = 2, 𝛽 = 1, 𝑡 = 0, and 𝑔(𝑧) = 1/𝑧 inTheorem 17
for all 𝑧 ∈ 𝑈

∗, we have that

R {𝑧𝐿
𝑡

𝑎
(3, 1) 𝑓 (𝑧) − 𝑧𝐿

𝑡

𝑎
(2, 1) 𝑓 (𝑧)} > −

(1 − 𝛾) 𝛿

4

(82)

(0 ≤ 𝛾 < 1, 0 ≤ 𝛿 < 1) implies

R {𝑧𝐿
𝑡

𝑎
(2, 1) 𝑓 (𝑧)} > 𝛾,

R {𝑧𝐿
𝑡

𝑎
(3, 1) 𝑓 (𝑧)} >

(4 + 𝛿) 𝛾 − 𝛿

4
.

(83)
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