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By means of the method of quasi-lower and quasi-upper solutions and monotone iterative technique, we consider the nonlinear
boundary value problems with Caputo fractional derivative and introduce two well-defined monotone sequences of quasi-lower
and quasi-upper solutions which converge uniformly to the actual solution of the problem, and then the existence results of the
solution for the problems are established. A numerical iterative scheme is introduced to obtain an accurate approximate solution
and to give one example to demonstrate the accuracy and efficiency of the new approach.

1. Introduction

We are interested in the existence and uniqueness of solution
of the following nonlinear boundary value problem of frac-
tional order

𝐷
𝜇
𝑢 (𝑡) + 𝐹 (𝑡, 𝑢) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝛼, 𝑢 (1) = 𝛽,

(1)

where 1 < 𝜇 ≤ 2, 𝐹(𝑡, 𝑢) = 𝑓0(𝑡, 𝑢) + 𝑓1(𝑡, 𝑢) + 𝑓2(𝑡, 𝑢), and
𝑓𝑖 : [0, 1] × 𝑅 → 𝑅 (𝑖 = 0, 1, 2) are a continuous function,
𝛼, 𝛽 ∈ 𝑅, and 𝐷𝜇 is the Caputo fractional derivative of order
𝜇.

It is well known that the differential equations with
fractional order are generalization of ordinary differential
equations to noninteger order, they occur more frequently
in different research areas and engineering, such as physics,
control of dynamical systems, chemistry and so forth. We
also remark that several kinds of fractional derivatives were
introduced to investigate the fractional differential equation,
see, for example, [1, 2], and references therein.

Roughly speaking, it is a difficult task to give exact
solutions for fractional differential equations. Recently, there
are a number of numerical and analytical techniques to
concerned with such problems, for instance, the homotopy
analysis method, the Adomian decomposition method and
the critical point theory have been discussed the fractional

differential equations, such as [3–9]. On the other hand, very
recently, the monotone iterative technique, combined with
the method of lower and upper solutions were introduced
to study the problems [10–13]. In [10, 11], the authors used
the method of lower and upper solutions to investigate the
existence of solutions for a class of fractional initial value
problems. In [12] the authors considered fractional boundary
value problem and proved the existence of solution. In [13],
the author discussed the Monotone iterative technique for
boundary value problems of a nonlinear fractional differen-
tial equation with deviating arguments. Specially, here it is
worth mentioning, that Al-Refai and Ali Hajji [14] introduce
two well-defined monotone sequences of lower and upper
solutions which converge uniformly to the actual solution of
the problem. However, the existence results in [14] mainly
depend upon a restrictive condition; that is,

𝐹 (𝑡, 𝑢) is strictly decreasing with respect to 𝑢. (2)

It is a critical condition in order to discuss the monotone
iterative sequences. It is, therefore, natural to ask how to
discuss the problem (1), if 𝐹(𝑡, 𝑢) is not necessary decreasing
with respect to 𝑢. So, being directly inspired by [14], the
purpose of this paper is to study the nonlinear boundary
value problems of fractional order with Dirichlet boundary
conditions. We introduce a method based on quasi-lower
and quasi-upper solutions to prove the existence of a unique
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solution with no claim on the strictwe monotone. And also
give an algorithm to construct two monotone sequences
of quasi-lower and quasi-upper solutions. Moreover, the
constructed sequences are proved to converge uniformly to
the unique solution of the problem.

The paper is organized as follows. Preliminaries are in
Section 2. Then in Section 3, we construct the monotone
sequences of quasi-lower and quasi-upper solutions and
prove their uniform convergence to the unique solution of
the problem. Finally, in Section 4, we establish the numerical
approach employed to obtain accurate numerical solution,
and give one example to demonstrate the accuracy and
efficiency of the new approach.

2. Preliminaries

In this sections, we present the definition of a pair of quasi-
lower and quasi-upper solutions and some lemmaswhichwill
be needed in the next section.

For 𝜃 > 0, 𝑚 − 1 < 𝜃 ≤ 𝑚, 𝑚 ∈ 𝑁, the Caputo derivative
(see [1, 2]) is defined by

𝐷
𝜃
ℎ (𝑡) =

1

Γ (𝑚 − 𝜃)
∫

𝑡

0

(𝑡 − 𝑠)
𝑚−1−𝜃

ℎ
(𝑚)

(𝑠) 𝑑𝑠. (3)

The Caputo derivative defined in (3) is related to the
Riemann-Liuville fractional integral 𝐼𝜃 of 𝜃 ∈ 𝑅+ by

𝐷
𝜃
ℎ (𝑡) = 𝐼

𝑚−𝜃
ℎ
(𝑚)

(𝑡) , (4)

where for any 𝛿 > 0

𝐼
𝛿
ℎ (𝑡) =

1

Γ (𝛿)
∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

ℎ (𝑠) 𝑑𝑠. (5)

Moreover,

𝐼
𝜃
𝐷
𝜃
ℎ (𝑡) = ℎ (𝑡) −

𝑚−1

∑

𝑘=0

𝑐𝑘𝑡
𝑘
,

𝐷
𝜃
𝐼
𝜃
ℎ (𝑡) = ℎ (𝑡) ,

(6)

where 𝑐𝑘 = ℎ
(𝑘)
(0
+
)/𝑘!, 1 ≤ 𝑘 ≤ 𝑚 − 1.

Definition 1. The functions V(0), 𝑤(0) ∈ 𝐶
2
([0, 1], 𝑅) are

called a pair of quasi-lower and quasi-upper solutions of the
problem (1), if it satisfies

𝐷
𝜇V(0) (𝑡) + 𝑓0 (𝑡, V

(0)
) + 𝑓1 (𝑡, V

(0)
) + 𝑓2 (𝑡, 𝑤

(0)
) ≥ 0,

V(0) (0) ≤ 𝛼, V(0) (1) ≤ 𝛽,

𝐷
𝜇
𝑤
(0)
(𝑡) + 𝑓

(0)
(𝑡, 𝑤
(0)
) + 𝑓1 (𝑡, 𝑤

(0)
) + 𝑓2 (𝑡, V

(0)
) ≤ 0,

𝑤
(0)
(0) ≥ 𝛼, 𝑤

(0)
(1) ≥ 𝛽.

(7)

If the above inequalities are equalities, we call V(0) and 𝑤(0) a
pair of quasi-solutions of the problem (1).

Lemma 2 (see [14]). Let 𝑝 ∈ 𝐶
2
([0, 1], 𝑅) and 𝐶 > 0 is a

constant. If 𝑝(𝑡) satisfies the relations

𝐷
𝜇
𝑝 (𝑡) − 𝐶𝑝 (𝑡) ≤ 0, 𝑡 ∈ (0, 1) ,

𝑝 (0) , 𝑝 (1) ≥ 0,

(8)

then 𝑝(𝑡) ≥ 0 for 𝑡 ∈ [0, 1].

Lemma 3 (see [14]). A function 𝑢(𝑡) is a solution of the linear
fractional BVP problems

𝐷
𝜇
𝑢 (𝑡) − 𝐶𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝛼, 𝑢 (1) = 𝛽,

(9)

if and only if it is a solution of integral equation

𝑢 (𝑡) = 𝛼 + (𝛽 − 𝛼) 𝑡 − ∫

1

0

𝐺 (𝑠, 𝑡) (𝐶𝑢 (𝑠) + ℎ (𝑠)) 𝑑𝑠, (10)

where

𝐺 (𝑠, 𝑡) =
1

Γ (𝜇)
{
𝑡(1 − 𝑠)

𝜇−1
− (𝑡 − 𝑠)

𝜇−1
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡(1 − 𝑠)
𝜇−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(11)

Lemma 4. For all 𝑡 ∈ [0, 1], we have

0 ≤ ∫

1

0

𝐺 (𝑠, 𝑡) 𝑑𝑠 ≤
1

ΛΓ (𝜇)
, (12)

where

Λ = 𝜇
𝜇/(𝜇−1)

⋅
𝜇

𝜇 − 1
. (13)

Proof. The proof of this lemma is easy, so we omit it.
In the rest of the paper, for convenience sake, we define

the set

[𝑥, 𝑦] = {𝑧 ∈ 𝐶
2
([0, 1] , 𝑅) : 𝑥 (𝑡) ≤ 𝑧 (𝑡) ≤ 𝑦 (𝑡) , 𝑡 ∈ [0, 1]} ,

(14)

let

‖𝑥‖ = sup
𝑡∈[0,1]

|𝑥 (𝑡)| , (15)

and list some conditions.

(𝐶1) V
(0), 𝑤(0) is a pair of quasi-lower and quasi-upper
solutions of the problem (1) and V(0)(𝑡) ≤ 𝑤

(0)
(𝑡),

𝑡 ∈ [0, 1].
(𝐶2) The function 𝑓1(𝑡, 𝑢) is increasing with respect to 𝑢,

and𝑓2 is decreasingwith respect to𝑢. And there exists
a constant𝑀 ∈ (0, ΛΓ(𝜇)) such that

𝑓0 (𝑡, 𝑢) − 𝑓0 (𝑡, 𝑢) ≥ −𝑀 (𝑢 − 𝑢) , ∀V(0) ≤ 𝑢 ≤ 𝑢 ≤ 𝑤(0).
(16)
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Lemma 5. Let (𝐶1) and (𝐶2) hold; then for any fixed 𝜂1, 𝜂2 ∈
[V(0), 𝑤(0)], the linear problems

𝐷
𝜇
𝑢 (𝑡) = 𝑀(𝑢 (𝑡) − 𝜂1 (𝑡)) − 𝑓0 (𝑡, 𝜂1 (𝑡))

− 𝑓1 (𝑡, 𝜂1 (𝑡)) − 𝑓2 (𝑡, 𝜂2 (𝑡)) , 𝑡 ∈ (0, 1)

𝑢 (0) = 𝛼, 𝑢 (1) = 𝛽,

(17)

have a unique solution 𝑢𝜂
1
,𝜂
2

∈ [V(0), 𝑤(0)], 𝑡 ∈ [0, 1].

Proof. Firstly, we prove that if 𝑢𝜂
1
,𝜂
2

is a solution of (17), then
𝑢𝜂
1
,𝜂
2

∈ [V(0), 𝑤(0)]. From (𝐶1), (𝐶2) and if V
(0) is a quasi-lower

solution of the problem (1), then we have

𝐷
𝜇V(0) (𝑡) ≥ −𝑓0 (𝑡, V

(0)
) − 𝑓1 (𝑡, V

(0)
) − 𝑓2 (𝑡, 𝑤

(0)
)

≥ 𝑀(V(0) (𝑡) − 𝜂1 (𝑡)) − 𝑓0 (𝑡, 𝜂1 (𝑡))

− 𝑓1 (𝑡, 𝜂1 (𝑡)) − 𝑓2 (𝑡, 𝜂2 (𝑡)) ,

V(0) (0) ≤ 𝛼, V(0) (1) ≤ 𝛽.

(18)

Thus from (18) and if 𝑢𝜂
1
,𝜂
2

is a solution of (17), set 𝑝(𝑡) =
𝑢𝜂
1
,𝜂
2

(𝑡) − V(0)(𝑡); then

𝐷
𝜇
𝑝 (𝑡) − 𝑀𝑝 (𝑡) ≤ 0, 𝑡 ∈ (0, 1)

𝑝 (0) , 𝑝 (1) ≥ 0.

(19)

By Lemma 2, we have that

𝑝 (𝑡) ≥ 0, 𝑡 ∈ [0, 1] . (20)

That is, 𝑢𝜂
1
,𝜂
2

≥ V(0). Similarly, we show 𝑢𝜂
1
,𝜂
2

≤ 𝑤
(0).

Therefore, 𝑢𝜂
1
,𝜂
2

∈ [V(0), 𝑤(0)].
Next, we show that (17) has a unique solution.
From Lemma 3, the problems (17) are equivalent to the

following integral equation

𝑢 (𝑡) = 𝛼 + (𝛽 − 𝛼) 𝑡 − ∫

1

0

𝐺 (𝑠, 𝑡) (𝑀𝑢 (𝑠) − ℎ𝜂
1
,𝜂
2
(𝑠)) 𝑑𝑠,

(21)

where ℎ𝜂
1
,𝜂
2

(𝑡) = 𝑓0(𝑡, 𝜂1(𝑡)) + 𝑓1(𝑡, 𝜂1(𝑡)) + 𝑓2(𝑡, 𝜂2(𝑡)) +

𝑀𝜂1(𝑡).
Let

A𝑢 (𝑡) = 𝛼 + (𝛽 − 𝛼) 𝑡 − ∫
1

0

𝐺 (𝑠, 𝑡) (𝑀𝑢 (𝑠) − ℎ𝜂
1
,𝜂
2
(𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] .

(22)

For any 𝑢, 𝑢 ∈ 𝐶2([0, 1], 𝑅), by Lemma 4 and condition (𝐶2),
we have

|A𝑢 (𝑡) −A𝑢 (𝑡)| ≤ 𝑀∫

1

0

𝐺 (𝑠, 𝑡) |𝑢 (𝑠) − 𝑢 (𝑠)| 𝑑𝑠

≤ 𝑀∫

1

0

𝐺 (𝑠, 𝑡) 𝑑𝑠 ‖𝑢 − 𝑢‖

≤
𝑀

ΛΓ (𝜇)
‖𝑢 − 𝑢‖ < ‖𝑢 − 𝑢‖ .

(23)

So
‖A𝑢 −A𝑢‖ < ‖𝑢 − 𝑢‖ . (24)

By the Banach fixed point theorem, the operator A has a
unique point. This shows that (17) has a unique solution 𝑢 ∈
[V(0), 𝑤(0)], 𝑡 ∈ [0, 1].

3. Monotone Sequences of Quasi-Lower and
Quasi-Upper Solutions

In this sections we construct the monotone sequences of
quasi-lower and quasi-upper solutions and prove their uni-
form convergence to the unique solution of the problem.

Theorem 6. Let (𝐶1) and (𝐶2) hold, and assume that
(𝐶3)V
(𝑘)
, 𝑤
(𝑘)
, 𝑘 ≥ 1 is a pair of solutions of

𝐷
𝜇V(𝑘) = 𝑀(V(𝑘) −𝑀V(𝑘−1)) − 𝑓0 (𝑡, V

(𝑘−1)
)

− 𝑓1 (𝑡, V
(𝑘−1)

) − 𝑓2 (𝑡, 𝑤
(𝑘−1)

) , 𝑡 ∈ (0, 1) ,

V(𝑘) (0) = 𝛼, V(𝑘) (1) = 𝛽,

𝐷
𝜇
𝑤
(𝑘)

= 𝑀(𝑤
(𝑘)
−𝑀𝑤

(𝑘−1)
) − 𝑓0 (𝑡, 𝑤

(𝑘−1)
)

− 𝑓1 (𝑡, 𝑤
(𝑘−1)

) − 𝑓2 (𝑡, V
(𝑘−1)

) , 𝑡 ∈ (0, 1) ,

𝑤
(𝑘)
(0) = 𝛼, 𝑤

(𝑘)
(1) = 𝛽.

(25)

Then one has the following.

(i) The sequence V(𝑘), 𝑤(𝑘) is a pair of quasi-lower and
quasi-upper solutions of (1). Moreover,

V(0) ≤ V(1) ≤ ⋅ ⋅ ⋅ ≤ V(𝑘) ≤ ⋅ ⋅ ⋅ ≤ 𝑤(𝑘) ≤ ⋅ ⋅ ⋅ ≤ 𝑤(1) ≤ 𝑤(0).
(26)

(ii) The sequence V(𝑘), 𝑤(𝑘) converges uniformly to V∗ and
𝑤
∗, respectively, with V(0) ≤ V∗ ≤ 𝑤

∗
≤ 𝑤
(0).

Moreover, V∗ and 𝑤∗ are a pair of minimal-maximal
quasi-solutions of (1) in [V(0), 𝑤(0)].

(iii) Suppose further that there exist constants 𝐿 𝑖 > 0 (𝑖 =

0, 1, 2) such that 𝐿1 + 𝐿2 < 𝐿0 ≤ 𝑀, and

𝑓0 (𝑡, 𝑢) − 𝑓0 (𝑡, 𝑢) ≤ −𝐿0 (𝑢 − 𝑢) ,

𝑓1 (𝑡, 𝑢) − 𝑓1 (𝑡, 𝑢) ≤ 𝐿1 (𝑢 − 𝑢) ,

∀V(0) ≤ 𝑢 ≤ 𝑢 ≤ 𝑤(0),

𝑓2 (𝑡, 𝑢) − 𝑓2 (𝑡, 𝑢) ≥ −𝐿2 (𝑢 − 𝑢) .

(27)

Then V∗ = 𝑤∗ is the actual solution of (1) in [V(0), 𝑤(0)].
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Proof. (i) For any fixed 𝜂1, 𝜂2 ∈ [V(0), 𝑤(0)], consider the linear
problems

𝐷
𝜇
𝑢 (𝑡) = 𝑀(𝑢 (𝑡) − 𝜂1 (𝑡)) − 𝑓0 (𝑡, 𝜂1 (𝑡))

− 𝑓1 (𝑡, 𝜂1 (𝑡)) − 𝑓2 (𝑡, 𝜂2 (𝑡)) , 𝑡 ∈ (0, 1)

𝑢 (0) = 𝛼, 𝑢 (1) = 𝛽.

(28)

By Lemma 5, the linear problems (28) have a unique solution
𝑢𝜂
1
,𝜂
2

∈ [V(0), 𝑤(0)]. Define operator B : [V(0), 𝑤(0)] ×

[V(0), 𝑤(0)] → [V(0), 𝑤(0)] as follows:

B [𝜂1, 𝜂2] = 𝑢𝜂
1
,𝜂
2

. (29)

Again, it is easy that to prove that 𝜂1, 𝜂2 are a pair of quasi-
solutions of the problem (1) if and only if

𝜂1 = B [𝜂1, 𝜂2] ,

𝜂2 = B [𝜂2, 𝜂1] .

(30)

Furthermore, from (28) and condition (𝐶2), we can prove
B[𝜂1, 𝜂2] is increasing with respect to 𝜂1, and is decreasing
with respect to 𝜂2; that is,

∀𝜂, 𝜂1, 𝜂2 ∈ [V
(0)
, 𝑤
(0)
] ,

𝜂1 ≤ 𝜂2 ⇒ {
B [𝜂1, 𝜂] ≤ B [𝜂2, 𝜂] ,

B [𝜂, 𝜂1] ≥ B [𝜂, 𝜂2] .

(31)

In fact, setting 𝑢1 = B[𝜂1, 𝜂], 𝑢2 = B[𝜂2, 𝜂], by (28) and
condition (𝐶2), we have

𝐷
𝜇
𝑢1 (𝑡) − 𝑀𝑢1 (𝑡)

= −𝑀𝜂1 (𝑡) − 𝑓0 (𝑡, 𝜂1 (𝑡)) − 𝑓1 (𝑡, 𝜂1 (𝑡)) − 𝑓2 (𝑡, 𝜂 (𝑡))

≥ −𝑀𝜂2 (𝑡) − 𝑓0 (𝑡, 𝜂2 (𝑡)) − 𝑓1 (𝑡, 𝜂2 (𝑡)) − 𝑓2 (𝑡, 𝜂 (𝑡))

= 𝐷
𝜇
𝑢2 (𝑡) − 𝑀𝑢2 (𝑡) ,

𝑢1 (0) = 𝛼 = 𝑢2 (0) , 𝑢1 (1) = 𝛽 = 𝑢2 (1) .

(32)

Thus, by setting 𝑝(𝑡) = 𝑢2(𝑡) − 𝑢1(𝑡), then

𝐷
𝜇
𝑝 (𝑡) − 𝑀𝑝 (𝑡) ≤ 0,

𝑝 (0) , 𝑝 (1) = 0.

(33)

By Lemma 2, we have that

𝑝 (𝑡) ≥ 0, 𝑡 ∈ [0, 1] . (34)

That is, 𝑢2 ≥ V1, or the first inequality holds in (31). Similarly,
the second inequality holds in (31) too.

Again, similar to the previous argument, we can show that

V(0) ≤ B [V(0), 𝑤(0)] , B [𝑤
(0)
, V(0)] ≤ 𝑤(0). (35)

Now, let

V(𝑘) = B [V(𝑘−1), 𝑤(𝑘−1)] , 𝑤
(𝑘)

= B [𝑤
(𝑘−1)

, V(𝑘−1)] ,

𝑘 = 1, 2, . . . .

(36)

Thus, from (31), (35), and (36), we have

V(0) ≤ V(1) ≤ ⋅ ⋅ ⋅ ≤ V(𝑘) ≤ ⋅ ⋅ ⋅ ≤ 𝑤(𝑘) ≤ ⋅ ⋅ ⋅ ≤ 𝑤(1) ≤ 𝑤(0).
(37)

Moreover, it is clear that V(𝑘), 𝑤(𝑘) satisfy (36) if and only if
V(𝑘), 𝑤(𝑘) are a pair of solutions of (25).

To prove (𝑖), we only need to show that V(𝑘),𝑤(𝑘) are a pair
of quasi-lower and quasi-upper solutions of (1). In fact, from
(25) and condition (𝐶2), we can obtain

𝐷
𝜇V(𝑘) + 𝑓0 (𝑡, V

(𝑘)
) + 𝑓1 (𝑡, V

(𝑘)
) + 𝑓2 (𝑡, 𝑤

(𝑘)
)

= 𝑀(V(𝑘) − V(𝑘−1)) + 𝑓0 (𝑡, V
(𝑘)
) − 𝑓0 (𝑡, V

(𝑘−1)
)

+ 𝑓1 (𝑡, V
(𝑘)
) − 𝑓1 (𝑡, V

(𝑘−1)
)

+ 𝑓2 (𝑡, 𝑤
(𝑘)
) − 𝑓2 (𝑡, 𝑤

(𝑘−1)
) ≥ 0,

V(𝑘) (0) = 𝛼, V(𝑘) (1) = 𝛽,

𝐷
𝜇
𝑤
(𝑘)
+ 𝑓0 (𝑡, 𝑤

(𝑘)
) + 𝑓1 (𝑡, 𝑤

(𝑘)
) + 𝑓2 (𝑡, V

(𝑘)
)

= 𝑀(𝑤
(𝑘)
− 𝑤
(𝑘−1)

) + 𝑓0 (𝑡, 𝑤
(𝑘)
) − 𝑓0 (𝑡, 𝑤

(𝑘−1)
)

+ 𝑓1 (𝑡, 𝑤
(𝑘)
) − 𝑓1 (𝑡, 𝑤

(𝑘−1)
)

+ 𝑓2 (𝑡, V
(𝑘)
) − 𝑓2 (𝑡, V

(𝑘−1)
) ≤ 0,

V(𝑘) (0) = 𝛼, V(𝑘) (1) = 𝛽.
(38)

Hence, V(𝑘), 𝑤(𝑘) is a pair of quasi-lower and quasi-upper
solutions of (1). This proves (i).

(ii) Since the sequence V(𝑘) is monotone nondecreasing
and is bounded from above mention, the sequence 𝑤

(𝑘)

is monotone nonincreasing and is bounded from below,
therefore the pointwise limits exist and these limits are
denoted by V∗ and𝑤

∗.The sequence V(𝑘),𝑤(𝑘) are sequences of
continuous functions defined on the compact set [0, 1], hence
By Dini’s theorem [15], the convergence is uniform. This is

V(0) ≤ V∗ = lim
𝑘→∞

V(𝑘) ≤ lim
𝑘→∞

𝑤
(𝑘)

= 𝑤
∗
≤ 𝑤
(0) (39)

uniformly on 𝑡 ∈ [0, 1].
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Moveover, from (25), we have

𝐷
𝜇V∗ = −𝑓0 (𝑡, V∗) − 𝑓1 (𝑡, V∗) − 𝑓2 (𝑡, 𝑤

∗
) , 𝑡 ∈ (0, 1) ,

V∗ (0) = 𝛼, V∗ (1) = 𝛽,

𝐷
𝜇
𝑤
∗
= −𝑓0 (𝑡, 𝑤

∗
) − 𝑓1 (𝑡, 𝑤

∗
) − 𝑓2 (𝑡, V∗) , 𝑡 ∈ (0, 1) ,

𝑤
∗
(0) = 𝛼, 𝑤

∗
(1) = 𝛽.

(40)

This show that V∗, 𝑤
∗ are a pair of quasi-solutions of the

problem (1).
Now, we prove that V∗ and 𝑤

∗ are a pair of minimal-
maximal quasi-solutions of (1).

Let V, 𝑤 ∈ [V(0), 𝑤(0)] be a pair of quasi-solutions of the
problem (1), in the following, we show this using induction
arguments. In fact, we have

V(0) ≤ V, 𝑤 ≤ 𝑤
(0)
. (41)

Assume that

V(𝑘−1) ≤ V, 𝑤 ≤ 𝑤
(𝑘−1) (42)

is true. Thus from (31) and (36), we can obtain

V(𝑘) = B [V(𝑘−1), 𝑤(𝑘−1)] ≤ B [V, 𝑤] = V,

V(𝑘) = B [V(𝑘−1), 𝑤(𝑘−1)] ≤ B [𝑤, V] = 𝑤,

𝑤
(𝑘)

= B [𝑤
(𝑘−1)

, V(𝑘−1)] ≥ B [V, 𝑤] = V,

𝑤
(𝑘)

= B [𝑤
(𝑘−1)

, V(𝑘−1)] ≥ B [𝑤, V] = 𝑤.

(43)

Therefore,

V(𝑘) ≤ V, 𝑤 ≤ 𝑤
(𝑘)
, 𝑘 = 0, 1, 2, . . . . (44)

Thus, taking limit in (44) as 𝑘 → ∞, we have

V∗ ≤ V, 𝑤 ≤ 𝑤
∗
. (45)

That is, V∗ and 𝑤
∗ are a pair of minimal-maximal quasi-

solutions of (1) in [V(0), 𝑤(0)].
(iii) Since V∗(𝑡) ≤ 𝑤

∗
(𝑡), 𝑡 ∈ [0, 1], it is sufficient to

prove that V∗(𝑡) ≥ 𝑤
∗
(𝑡), 𝑡 ∈ (0, 1). In fact, from (40) and

supposition (iii), we have (notice that V∗ ≤ 𝑤
∗)

𝐷
𝜇
(V∗ − 𝑤

∗
)

= 𝑓0 (𝑡, 𝑤
∗
) − 𝑓0 (𝑡, V∗) + 𝑓1 (𝑡, 𝑤

∗
)

− 𝑓1 (𝑡, V∗) + 𝑓2 (𝑡, V∗) − 𝑓2 (𝑡, 𝑤
∗
)

≤ −𝐿0 (𝑤
∗
− V∗) + 𝐿1 (𝑤

∗
− V∗) + 𝐿2 (𝑤

∗
− V∗)

= − (𝐿0 − 𝐿1 − 𝐿2) (𝑤
∗
− V∗) ,

V∗ (0) − 𝑤
∗
(0) = 0, V∗ (1) − 𝑤

∗
(1) = 0.

(46)

Thus, by setting 𝑝(𝑡) = V∗ − 𝑤
∗, from (46), we obtain

𝐷
𝜇
𝑝 (𝑡) − (𝐿0 − 𝐿1 − 𝐿2) 𝑝 (𝑡) ≤ 0,

𝑝 (0) , 𝑝 (1) = 0.

(47)

By Lemma 2 (notice that 𝐿0 − 𝐿1 − 𝐿2 > 0), we have that

𝑝 (𝑡) ≥ 0, 𝑡 ∈ [0, 1] . (48)

Therefore, V∗ ≥ 𝑤
∗, 𝑡 ∈ [0, 1]. Hence V∗ = 𝑤

∗ is the actual
solution of (1) in [V(0), 𝑤(0)]. Thus, we complete this proof.

4. Numerical Implementation

In this section, the numerical procedures are introduced to
obtain an approximate solution of (1).

For the problem (25), from Lemma 3, we have

V(𝑘) (𝑡)

= 𝛼 + (𝛽 − 𝛼) 𝑡

− ∫

1

0

𝐺 (𝑠, 𝑡) [𝑀V(𝑘) (𝑠) − 𝑀V(𝑘−1) (𝑠)

− 𝑓0 (𝑠, V
(𝑘−1)

(𝑠)) − 𝑓1 (𝑠, V
(𝑘−1)(𝑠)

)

−𝑓2 (𝑠, 𝑤
(𝑘−1)

(𝑠)) ] 𝑑𝑠,

𝑤
(𝑘)
(𝑡)

= 𝛼 + (𝛽 − 𝛼) 𝑡

− ∫

1

0

𝐺 (𝑠, 𝑡) [𝑀𝑤
(𝑘)
(𝑠) − 𝑀𝑤

(𝑘−1)
(𝑠)

− 𝑓0 (𝑠, 𝑤
(𝑘−1)

(𝑠)) − 𝑓1 (𝑠, 𝑤
(𝑘−1)

(𝑠))

−𝑓2 (𝑠, V
(𝑘−1)

(𝑠)) ] 𝑑𝑠.

(49)

Thus by Theorem 6, the unique solution to problem (1) is
given by

lim
𝑘→∞

V(𝑘) (𝑡) = V∗ (𝑡) = 𝑤
∗
(𝑡) = lim
𝑘→∞

𝑤
(𝑘)
(𝑡) . (50)
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Setting

Φ (𝑠, 𝑡) = 𝐺 (𝑠, 𝑡) [𝑀V(𝑘) (𝑠) − 𝑀V(𝑘−1) (𝑠)

− 𝑓0 (𝑠, V
(𝑘−1)

(𝑠)) − 𝑓1 (𝑠, V
(𝑘−1)(𝑠)

)

−𝑓2 (𝑠, 𝑤
(𝑘−1)

(𝑠)) ] ,

Ψ (𝑠, 𝑡) = 𝐺 (𝑠, 𝑡) [𝑀𝑤
(𝑘)
(𝑠) − 𝑀𝑤

(𝑘−1)
(𝑠)

− 𝑓0 (𝑠, 𝑤
(𝑘−1)

(𝑠)) − 𝑓1 (𝑠, 𝑤
(𝑘−1)

(𝑠))

−𝑓2 (𝑠, V
(𝑘−1)

(𝑠)) ] .

(51)

Discretize the interval [0, 1] with the nodes ℎ = 1/𝑁, 𝑡𝑖 = 𝑖ℎ,
𝑠𝑗 = 𝑗ℎ. Using Simpson’s quadrature rule, we can obtain
the function 𝑆Φ(𝑡), and Ψ(𝑡), to approximate the integral
∫
1

0
Φ(𝑠, 𝑡)𝑑𝑠 and ∫

1

0
Ψ(𝑠, 𝑡)𝑑𝑠 on the right hand sid of (49),

where

𝑆Φ (𝑡) =
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗Φ(𝑠𝑗, 𝑡) ,

𝑆Ψ (𝑡) =
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗Ψ(𝑠𝑗, 𝑡) ,

(52)

where {𝑑𝑗} are the coefficients in composite Simpson’s
quadrature rule: 𝑑0 = 𝑑𝑁 = 1, 𝑑2𝑗−1 = 4, 𝑑2𝑗 = 2, 1 ≤ 𝑗 ≤

𝑁/2.
Now, let V(𝑘)

𝑖
≈ V(𝑘)(𝑡𝑖), 𝑤

(𝑘)

𝑖
≈ 𝑤
(𝑘)
(𝑡𝑖), from (49) and

the above; we obtain the following linear system of equations
mentioned

V(𝑘)
𝑖

= V(𝑘) (𝑡𝑖)

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖 − 𝑆Φ (𝑡𝑖)

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖 −
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗Φ(𝑠𝑗, 𝑡𝑖)

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖 −
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖)𝑀V(𝑘)
𝑗

+
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖)

× [𝑀V(𝑘−1)
𝑗

+ 𝑓0 (𝑠𝑗, V
(𝑘−1)

𝑗
) + 𝑓1 (𝑠𝑗, V

(𝑘−1)

𝑗
)]

+
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖) 𝑓2 (𝑠𝑗, 𝑤
(𝑘−1)

𝑗
) ,

𝑤
(𝑘)

𝑖
= 𝑤
(𝑘)
(𝑡𝑖)

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖 − 𝑆Ψ (𝑡𝑖)

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖 −
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗Ψ(𝑠𝑗, 𝑡𝑖)

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖 −
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖)𝑀𝑤
(𝑘)

𝑗

+
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖)

× [𝑀𝑤
(𝑘−1)

𝑗
+ 𝑓0 (𝑠𝑗, 𝑤

(𝑘−1)

𝑗
) + 𝑓1 (𝑠𝑗, 𝑤

(𝑘−1)

𝑗
)]

+
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖) 𝑓2 (𝑠𝑗, V
(𝑘−1)

𝑗
) .

(53)

or

V(𝑘)
𝑖
+
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖)𝑀V(𝑘)
𝑗

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖 +
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖)

× [𝑀V(𝑘−1)
𝑗

+ 𝑓0 (𝑠𝑗, V
(𝑘−1)

𝑗
) + 𝑓1 (𝑠𝑗, V

(𝑘−1)

𝑗
)]

+
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖) 𝑓2 (𝑠𝑗, 𝑤
(𝑘−1)

𝑗
) ,

𝑤
(𝑘)

𝑖
+
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖)𝑀𝑤
(𝑘)

𝑗

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖 +
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖)

× [𝑀𝑤
(𝑘−1)

𝑗
+ 𝑓0 (𝑠𝑗, 𝑤

(𝑘−1)

𝑗
) + 𝑓1 (𝑠𝑗, 𝑤

(𝑘−1)

𝑗
)]

+
ℎ

3

𝑁

∑

𝑗=0

𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖) 𝑓2 (𝑠𝑗, V
(𝑘−1)

𝑗
) .

(54)

Setting

𝐺𝑖𝑗 =
ℎ

3
𝑑𝑗𝐺(𝑠𝑗, 𝑡𝑖) , G = (𝐺𝑖𝑗)(𝑁+1)×(𝑁+1)

A𝑖 (V
(𝑘−1)

)

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖

+

𝑁

∑

𝑗=0

𝐺𝑖𝑗 [𝑀V(𝑘−1)
𝑗

+ 𝑓0 (𝑠𝑗, V
(𝑘−1)

𝑗
) + 𝑓1 (𝑠𝑗, V

(𝑘−1)

𝑗
)] ,
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Figure 1: Graph of V(𝑘) and 𝑤(𝑘).

B𝑖 (𝑤
(𝑘−1)

)

= 𝛼 + (𝛽 − 𝛼) 𝑡𝑖

+

𝑁

∑

𝑗=0

𝐺𝑖𝑗 [𝑀𝑤
(𝑘−1)

𝑗
+ 𝑓0 (𝑠𝑗, 𝑤

(𝑘−1)

𝑗
) + 𝑓1 (𝑠𝑗, 𝑤

(𝑘−1)

𝑗
)] ,

V
(𝑘)

= (V(𝑘)
0
, V(𝑘)
1
, . . . , V(𝑘)

𝑁
)
𝑇

,

W
(𝑘)

= (𝑤
(𝑘)

0
, 𝑤
(𝑘)

1
, . . . , 𝑤

(𝑘)

𝑁
)
𝑇

,

A (V(𝑘−1))

= (A0 (V
(𝑘−1)

) ,A1 (V
(𝑘−1)

) , . . . ,A𝑁 (V
(𝑘−1)

))
𝑇

,

B (𝑤
(𝑘−1)

)

= (B0 (𝑤
(𝑘−1)

) ,B1 (𝑤
(𝑘−1)

) , . . . ,B𝑁 (𝑤
(𝑘−1)

))
𝑇

,

P (𝑤
(𝑘−1)

)

= (𝑓2 (𝑠0, 𝑤
(𝑘−1)

0
) , 𝑓2 (𝑠1, 𝑤

(𝑘−1)

1
) , . . . , 𝑓2 (𝑠𝑁, 𝑤

(𝑘−1)

𝑁
))
𝑇

,

Q (V(𝑘−1))

= (𝑓2 (𝑠0, V
(𝑘−1)

0
) , 𝑓2 (𝑠1, V

(𝑘−1)

1
) , . . . , 𝑓2 (𝑠𝑁, V

(𝑘−1)

𝑁
))
𝑇

.

(55)

Thus system (54) can be written as a matrix-vector equation

(I +𝑀G)V
(𝑘)

= A (V(𝑘−1)) +GP (𝑤
(𝑘−1)

) ,

(I +𝑀G)W
(𝑘)

= B (𝑤
(𝑘−1)

) +GQ (V(𝑘−1)) ,

(56)

whereI is the identity matrix.



8 Abstract and Applied Analysis

Table 1: 𝐸(𝑘) : 𝑘 = 2𝑖, 𝑖 = 0, 1, 2, 3, 4, 5.

𝑘 0 2 4 6 8 10
𝐸(𝑘) 1.000 1.117 × 10

−2
1.302 × 10

−4
1.259 × 10

−6
1.048 × 10

−8
7.632 × 10

−11

Remark 7. Applying the above numerical scheme, we can
solve iteratively for V(𝑘) and 𝑤

(𝑘) up to some large enough
𝑘 = 𝐾. For a given accuracy 𝜀, we take V(𝑘) and 𝑤

(𝑘) as 𝜀-
accurate approximations of V∗ and 𝑤

∗, respectively. And we
use

𝐸 (𝑘) =

𝑤
(𝑘)
− V(𝑘)

2
= (∫

1

0

(𝑤
(𝑘)
(𝑡) − V(𝑘) (𝑡))

2

𝑑𝑡)

1/2

(57)

to describe the error.

Example 8. Consider the fractional BVP

𝐷
3/2
𝑢 − 4𝑢 + 𝑢

2
+ 𝑒
−𝑢
= 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢 (1) = 1.

(58)

Let

𝜇 =
3

2
, 𝛼 = 0, 𝛽 = 1, 𝑓0 (𝑡, 𝑢) = −4𝑢,

𝑓1 (𝑡, 𝑢) = 𝑢
2
, 𝑓2 (𝑡, 𝑢) = 𝑒

−𝑢
.

(59)

It can be easily verified that

V(0) (𝑡) = 0, 𝑤
(0)
(𝑡) = 1 (60)

are a pair of ordered quasi-lower and quasi-upper solutions
of (58). Moreover,

𝑀 = 𝐿0 = 4, 𝐿1 = 2, 𝐿2 = 1, Λ =
81

8
. (61)

Thus

𝑀 < Γ (𝜇)Λ, 𝐿1 + Ł2 < 𝐿0 ≤ 𝑀. (62)

Hence for this example, we found that, for 𝜀 = 10
−10, it has

𝐾 = 10 iterations for 𝐸(𝑘) < 𝜀. the graph of V(𝑘) and 𝑤(𝑘), for
some values of 𝑘, is in Figure 1. Table 1 displays 𝐸(𝑘) versus 𝑘
for selected values of 𝑘.
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