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Kang et al. claimed that they obtained a new iteration formulation for nonlinear algebraic equations; however the “new” formulation

was first derived in 2007 by the variational iteration method.

Recently Kang et al. studied the following algebraic equation:

x=g(x) €Y

and obtained the following iteration formulation [1, Equation

(13)]:
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Kang et al. claimed that this was a new iteration formu-
lation [1]; however, a more general iteration formulation has
appeared in 2007 [2].

Consider a nonlinear algebraic equation

f () =o0. (3)

By the variational iteration method [2], the following
iteration formulation was obtained [2, Equation (7)]:
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where h(x) is an auxiliary function.
Choosing h(x) = 1 and f(x) = x — g(x) in (4), we have
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This is exactly (2).

Using the basic idea of the variational iteration method
as illustrated in [2] (see (1)-(8) in [2]), we can construct an
iteration formulation for (1) in the form

Xne1 = 9 ('xn) +A (g ('xn) - xn) > (6)

where A is a Lagrange multiplier. To identify the multiplier,
we set (see [2, Equation (4)])
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from which the multiplier can be identified, which is
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This results in
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Remark 1. Equation (9) is exactly (2) or (4) when h(x) = 1
and f(x) = x — g(x).

Remark 2. Equation (7) is exactly equivalent to gé(x) =0in

(1].



Remark 3. 0 in [1] is exactly equivalent to the Lagrange
multiplier in (7).

Remark 4. The derivation process is the same as that given in

[2].

It can be concluded that the so-called new iteration
method is a special case of He 2007 formulation; various
modifications of Newton iteration formulations are available
in [2-7].
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