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An up-to-date algorithm for solving the split feasibility problem for countable families of asymptotically strict pseudocontractions
is introduced in the framework of Hilbert spaces. Our results greatly improve and extend those of other authors whose related
research studies are restricted to the situation of at most finitely many such mappings.

1. Introduction

The split feasibility problem (SFP) in finite dimensional
spaces was first introduced by Censor and Elfving [1] for
modeling inverse problems which arise from phase retrievals
and inmedical image reconstruction [2]. Recently, it has been
found that the SFP can also be used in various disciplines such
as image restoration, computer tomograph, and radiation
therapy treatment planning [3–5].

The split feasibility problem in an infinite dimensional
Hilbert space can be found in [2, 4, 6–8].

Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces with inner

product ⟨⋅, ⋅⟩ and the corresponding norm‖ ⋅‖. Let𝐶 and𝑄 be
nonempty closed convex subsets of 𝐻

1
and 𝐻

2
, respectively.

The purpose of this paper is to introduce and study the
following multiple-set split feasibility problem for an infinite
family of asymptotically strict pseudocontractions (MSSFP)
in the framework of infinite-dimensionalHilbert spaces. Find
𝑥
∗
∈ 𝐶 such that

𝐴𝑥
∗
∈ 𝑄, (1)

where 𝐴 : 𝐻
1
→ 𝐻
2
is a bounded linear operator.

In the sequel, we use Γ to denote the set of solutions of the
problem (MSSFP), that is,

Γ = {𝑥 ∈ 𝐶, 𝐴𝑥 ∈ 𝑄} . (2)

2. Preliminaries

We first recall some definitions, notations, and conclusions
which will be needed in proving our main results.

Let 𝐸 be a Banach space. A mapping 𝑇 : 𝐸 → 𝐸 is said
to be demiclosed at origin, if for any sequence {𝑥

𝑛
} ⊂ 𝐸 with

𝑥
𝑛
⇀ 𝑥
∗ and ‖(𝐼 − 𝑇)𝑥

𝑛
‖ → 0, then 𝑥∗ = 𝑇𝑥

∗, where 𝑥
𝑛
⇀

𝑥
∗ denotes that {𝑥

𝑛
} converges weakly to 𝑥∗.

A Banach space 𝐸 is said to satisfy Opial’s condition, if for
any sequence {𝑥

𝑛
} in 𝐸, 𝑥

𝑛
⇀ 𝑥
∗ implies that

lim inf
𝑛→∞

𝑥𝑛 − 𝑥
∗ < lim inf

𝑛→∞

𝑥𝑛 − 𝑦
 , ∀𝑦 ∈ 𝐸

with 𝑦 ̸= 𝑥
∗
.

(3)

It is well known that every Hilbert space satisfies Opial’s
condition.

Definition 1. Let 𝐻 be a real Hilbert space, 𝑇 be a mapping
from 𝐻 into itself and the fixed point set 𝐹(𝑇) of 𝑇 be
nonempty.

(1) 𝑇 is called a (𝛾, {𝑘
𝑛
})-asymptotically strict pseudocon-

traction if there exists a constant 𝛾 ∈ [0, 1) and a
sequence {𝑘

𝑛
} ⊂ [1,∞) with 𝑘

𝑛
→ 1 such that

𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦


2

≤ 𝑘
𝑛

𝑥 − 𝑦


2

+ 𝛾
(𝐼 − 𝑇

𝑛
) 𝑥 − (𝐼 − 𝑇

𝑛
) 𝑦



2

,

∀𝑥, 𝑦 ∈ 𝐻.

(4)



2 Abstract and Applied Analysis

Especially, if 𝑘
𝑛
= 1 for each 𝑛 ≥ 1 in (4) and there

exists a 𝛾 ∈ [0, 1) such that

𝑇𝑥 − 𝑇𝑦


2

≤
𝑥 − 𝑦



2

+ 𝛾
(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦



2

,

∀𝑥, 𝑦 ∈ 𝐻,

(5)

then 𝑇 : 𝐻 → 𝐻 is called a 𝛾-strict pseudocontrac-
tion.

(2) 𝑇 is said to be uniformly L-Lipschitzian if there exists
a constant 𝐿 > 0 such that

𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦


2

≤ 𝐿
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐻, 𝑛 ≥ 1. (6)

(3) 𝑇 is said to be semicompact if for any bounded
sequence {𝑥

𝑛
} ⊂ 𝐻 with lim

𝑛→∞
‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0,

there exists a subsequence {𝑥
𝑛𝑖
} of {𝑥

𝑛
} such that {𝑥

𝑛𝑖
}

converges strongly to a point 𝑥∗ ∈ 𝐻.

Remark 2. (1) If we put 𝛾 = 0 in (4), then the mapping 𝑇 :

𝐻 → 𝐻 is asymptotically nonexpansive.
(2) If we put 𝛾 = 0 in (5), then the mapping 𝑇 : 𝐻 → 𝐻

is nonexpansive.
(3) Each (𝛾, {𝑘

𝑛
})-asymptotically strict pseudocontrac-

tion and each 𝛾-strict pseudocontraction both are demiclosed
at origin [9].

In 2011, Moudafi [10] proposed the following iterative
algorithm for solving split common fixed problem of quasi-
nonexpansive mappings: for arbitrarily chosen 𝑥

1
∈ 𝐻
1
,

𝑢
𝑛
= 𝑥
𝑛
+ 𝛾𝛽𝐴

∗
(𝑇 − 𝐼)𝐴𝑥

𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑈𝑢
𝑛
, 𝑛 ∈ N,

(7)

and proved that {𝑥
𝑛
} converges weakly to a split common

fixed point 𝑥∗ ∈ Γ, where 𝑈 : 𝐻
1
→ 𝐻
1
and 𝑇 : 𝐻

2
→ 𝐻
2

are two quasinonexpansive mappings, 𝐴 : 𝐻
1
→ 𝐻

2
is a

bounded linear operator, and 𝐴∗ denotes the adjoint of 𝐴.
Motivated and inspired by the studies of Moudafi [10, 11]

and Chang et al. [12], in this paper, we introduce an algorithm
for solving the split feasibility problems for countable families
of asymptotically strict pseudocontractions and prove some
strong and weak convergence theorems for such mappings in
Hilbert spaces. The results extend those of the authors [12]
whose related research studies are restricted to the situation
of at most finite families of such mappings.

By using the well-known inequality ⟨𝑥, 𝑦⟩ = (1/2)‖𝑥‖
2
+

(1/2)‖𝑦‖
2
− (1/2)‖𝑥 − 𝑦‖

2 in Hilbert spaces, we can easily
show the following proposition, whose proof is omitted.

Proposition 3 (see [12]). Let 𝑇 : 𝐻 → 𝐻 be a (𝛾, {𝑘
𝑛
})-

asymptotically strict pseudocontraction. If Γ ̸= 0, then for each

𝑝 ∈ 𝐹(𝑇) and 𝑥 ∈ 𝐻, the following inequalities hold and they
are equivalent:

𝑇
𝑛
𝑥 − 𝑝



2

≤ 𝑘
𝑛

𝑥 − 𝑝


2

+ 𝛾
𝑥 − 𝑇

𝑛
𝑥


2

; (8)

⟨𝑥 − 𝑇
𝑛
𝑥, 𝑥 − 𝑝⟩ ≥

1 − 𝛾

2

𝑥 − 𝑇
𝑛
𝑥


2

−
𝑘
𝑛
− 1

2

𝑥 − 𝑝


2

;

(9)

⟨𝑥 − 𝑇
𝑛
𝑥, 𝑝 − 𝑇

𝑛
𝑥⟩ ≤

1 + 𝛾

2

𝑥 − 𝑇
𝑛
𝑥


2

+
𝑘
𝑛
− 1

2

𝑥 − 𝑝


2

.

(10)

Lemma 4 (see [13]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝛿

𝑛
} be the sequences

of nonnegative real numbers satisfying

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
. (11)

If ∑∞
𝑛=1

𝛿
𝑛
< ∞ and ∑∞

𝑛=1
𝑏
𝑛
< ∞, then the lim

𝑛→∞
𝑎
𝑛
exists.

Lemma 5 (see [14]). Let K be a nonempty closed convex subset
of a real Hilbert space H and T a nonexpansive mapping from
K into itself. If T has a fixed point, then 𝐼 − 𝑇 is demiclosed at
zero, where I is the identity mapping of H.

Lemma 6 (see [15]). The unique solutions to the positive
integer equation

𝑛 = 𝑖 +
(𝑚 − 1)𝑚

2
, 𝑚 ≥ 𝑖, 𝑛 = 1, 2, 3, . . . (12)

are

𝑖 = 𝑛 −
(𝑚 − 1)𝑚

2
, 𝑚 = −[

1

2
− √2𝑛 +

1

4
] ,

𝑛 = 1, 2, 3, . . . ,

(13)

where [𝑥] denotes the maximal integer that is not larger than
𝑥.

3. Main Results

In the sequel, we assume that the following conditions are
satisfied:

(a) 𝐻
1
and 𝐻

2
are two real Hilbert spaces, 𝐴 : 𝐻

1
→

𝐻
2
is a bounded linear operator, and 𝐴∗ denotes the

adjoint of 𝐴;
(b) {𝑆

𝑖
} : 𝐻
1
→ 𝐻

1
is a sequence of uniformly 𝐿

1
-Lip-

schitzian and (𝛽
𝑖
, {𝑘
(𝑖)

1,𝑛
})-asymptotically strict pseudo-

contractions and {𝑇
𝑖
} : 𝐻

2
→ 𝐻

2
is a sequence of

uniformly 𝐿
2
-Lipschitzian and (𝜇

𝑖
, {𝑘
(𝑖)

2,𝑛
})-asymptot-

ically strict pseudocontractions satisfying the follow-
ing conditions:

(1) 𝐶 := ∩
∞

𝑖=1
𝐹(𝑆
𝑖
) ̸= 0, 𝑄 := ∩

∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0;

(2) 𝛽 := sup
𝑖≥1
{𝛽
𝑖
} < 1 and 𝜇 := sup

𝑖≥1
{𝜇
𝑖
} < 1;

(3) for each 𝑖 ≥ 1, 𝑘(𝑖)
𝑛

:= max{𝑘(𝑖)
1,𝑛
, 𝑘
(𝑖)

2,𝑛
}, and

∑
∞

𝑖=1
∑
∞

𝑛=1
(𝑘
(𝑖)

𝑛
− 1) < ∞.
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The multiple-set split feasibility problem for infinite fam-
ilies of nonlinear mappings {𝑆

𝑖
} and {𝑇

𝑖
} is to find a point

𝑞 ∈ 𝐶 such that 𝐴𝑞 ∈ 𝑄, (14)

whose set of solutions is denoted by Γ.

Lemma7. Let𝐻
1
, 𝐻
2
, 𝐴, {𝑆

𝑖
}, {𝑇
𝑖
}, 𝐶, 𝑄, 𝛽, 𝜇, 𝐿

1
, 𝐿
2
and {𝑘(𝑖)

𝑛
}

be the same as those mentioned above. Let {𝑥
𝑛
} be the following

sequence generated by an arbitrarily chosen 𝑥
1
∈ 𝐻
1

𝑢
𝑛
= 𝑥
𝑛
+ 𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
(𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
, 𝑛 ∈ N,

(15)

where 𝑇∗
𝑛
= 𝑇
𝑖𝑛
, 𝑆∗
𝑛
= 𝑆
𝑖𝑛
with 𝑖

𝑛
and 𝑚

𝑛
being the solutions to

the positive integer equation: 𝑛 = 𝑖 + (𝑚 − 1)𝑚/2 (𝑚 ≥ 𝑖, 𝑛 =

1, 2, . . .); that is, for each 𝑛 ≥ 1, there exist unique 𝑖
𝑛
and 𝑚

𝑛

such that

𝑖
1
= 1, 𝑖
2
= 1, 𝑖
3
= 2, 𝑖
4
= 1,

𝑖
5
= 2, 𝑖
6
= 3, 𝑖
7
= 1, 𝑖
8
= 2, . . . ;

𝑚
1
= 1, 𝑚

2
= 2, 𝑚

3
= 2, 𝑚

4
= 3, 𝑚

5
= 3,

𝑚
6
= 3, 𝑚

7
= 4, 𝑚

8
= 4, . . . ;

(16)

{𝛼
𝑛
} is a sequence in [0, 1], and 𝛾 is a constant satisfying the

following condition:

(4) : 𝛼
𝑛
∈ (𝛿, 1 −𝛽) for all 𝑛 ≥ 1 and 𝛾 ∈ (0, (1 −𝜇)/‖𝐴‖2),

where 𝛿 ∈ (0, 1 − 𝛽) is a positive constant. If Γ ̸= 0, for
any 𝑞 ∈ Γ, then

(I) lim
𝑛→∞

‖𝑥
𝑛
− 𝑞‖ and lim

𝑛→∞
‖𝑢
𝑛
− 𝑞‖ exist and

have the same values;
(II) for each 𝑖 ≥ 1, there exists a corresponding

subsequence {𝑥
𝑛
}
𝑛∈N𝑖

of {𝑥
𝑛
} such that

lim
N𝑖∋𝑛→∞

𝑢𝑛 − 𝑆𝑖𝑢𝑛
 =

𝐴𝑥𝑛 − 𝑇𝑖𝐴𝑥𝑛
 = 0, (17)

where N
𝑖
:= {𝑛 ∈ N : 𝑛 = 𝑖 + (𝑚 − 1)𝑚/2,𝑚 ≥ 𝑖,𝑚 ∈ N}.

Proof. (I) Taking 𝑞 ∈ Γ, that is, 𝑞 ∈ 𝐶 and 𝐴𝑞 ∈ 𝑄, and using
(15) and (9), we have

𝑥𝑛+1 − 𝑞


2

≤

𝑢
𝑛
− 𝑞 − 𝛼

𝑛
(𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
)


2

=
𝑢𝑛−𝑞



2

−2𝛼
𝑛
⟨𝑢
𝑛
−𝑞, 𝑢
𝑛
−(𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
⟩

+ 𝛼
2

𝑛


𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛



2

≤
𝑢𝑛 − 𝑞



2

− 𝛼
𝑛
[ (1 − 𝛽)


𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛



2

− (𝑘
(𝑖𝑛)

𝑚𝑛
− 1)

𝑢𝑛 − 𝑞


2

]

+ 𝛼
2

𝑛


𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛



2

= (1 + 𝛼
𝑛
(𝑘
(𝑖𝑛)

𝑚𝑛
− 1))

𝑢𝑛 − 𝑞


2

− 𝛼
𝑛
(1 − 𝛽 − 𝛼

𝑛
)

𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛



2

,

(18)

𝑢𝑛 − 𝑞


2

=

𝑥
𝑛
+ 𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
− 𝑞



2

=
𝑥𝑛 − 𝑞



2

+ 𝛾
2
𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+ 2𝛾 ⟨𝑥
𝑛
− 𝑞, 𝐴

∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

=
𝑥𝑛 − 𝑞



2

+𝛾
2
⟨((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
, 𝐴𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

+ 2𝛾 ⟨𝑥
𝑛
− 𝑞, 𝐴

∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩ ,

(19)

where

𝛾
2
⟨((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
, 𝐴𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

≤ ‖𝐴‖
2
𝛾
2
⟨((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
, ((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

≤ ‖𝐴‖
2
𝛾
2
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

,

(20)

2𝛾 ⟨𝑥
𝑛
− 𝑞, 𝐴

∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

= 2𝛾 ⟨𝐴 (𝑥
𝑛
− 𝑞) , ((𝑇

∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

= 2𝛾 ⟨𝐴 (𝑥
𝑛
− 𝑞) + ((𝑇

∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛

− ((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
, ((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

= 2𝛾 ( ⟨(𝑇
∗

𝑛
)
𝑚𝑛
𝐴𝑥
𝑛
− 𝐴𝑞, ((𝑇

∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

−

((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

) .

(21)

Further, letting 𝑥 = 𝐴𝑥
𝑛
, 𝑇𝑛 = (𝑇

∗

𝑛
)
𝑚𝑛 , 𝑝 = 𝐴𝑞, 𝛾 = 𝜇 in (10)

and noting 𝐴𝑞 ∈ 𝐹(𝑇∗
𝑛
), we have

⟨(𝑇
∗

𝑛
)
𝑚𝑛
𝐴𝑥
𝑛
− 𝐴𝑞, ((𝑇

∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

≤
1 + 𝜇

2


((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+

𝑘
(𝑖𝑛)

𝑚𝑛
− 1

2

𝐴𝑥𝑛 − 𝐴𝑞


2

≤
1 + 𝜇

2


((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+

(𝑘
(𝑖𝑛)

𝑚𝑛
− 1) ‖𝐴‖

2

2

𝑥𝑛 − 𝑞


2

.

(22)

Substituting (22) into (21) and simplifying it, we have

2𝛾 ⟨𝑥
𝑛
− 𝑞, 𝐴

∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
⟩

≤ 𝛾 (𝜇 − 1)

((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+ (𝑘
(𝑖𝑛)

𝑚𝑛
− 1) 𝛾‖𝐴‖

2𝑥𝑛 − 𝑞


2

.

(23)
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Substituting (20) and (23) into (19) and simplifying it, we have

𝑢𝑛 − 𝑞


2

≤
𝑥𝑛 − 𝑞



2

+ 𝛾
2
‖𝐴‖
2
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+ 𝛾 (𝜇 − 1)

((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+ (𝑘
(𝑖𝑛)

𝑚𝑛
− 1) 𝛾‖𝐴‖

2𝑥𝑛 − 𝑞


2

=
𝑥𝑛 − 𝑞



2

− 𝛾 (1 − 𝜇 − 𝛾‖𝐴‖
2
)

×

((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+ (𝑘
(𝑖𝑛)

𝑚𝑛
− 1) 𝛾‖𝐴‖

2𝑥𝑛 − 𝑞


2

.

(24)

Again, substituting (24) into (18) and simplifying it, we have

𝑥𝑛+1 − 𝑞


2

≤ (1 + 𝛼
𝑛
(𝑘
(𝑖𝑛)

𝑚𝑛
− 1))

× {
𝑥𝑛 − 𝑞



2

− 𝛾 (1 − 𝜇 − 𝛾‖𝐴‖
2
)

×

((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+ (𝑘
(𝑖𝑛)

𝑚𝑛
− 1) 𝛾‖𝐴‖

2𝑥𝑛 − 𝑞


2

}

− 𝛼
𝑛
(1 − 𝛽 − 𝛼

𝑛
)

𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛



2

≤ (1 + 𝛼
𝑛
(𝑘
(𝑖𝑛)

𝑚𝑛
− 1))

𝑥𝑛 − 𝑞


2

− 𝛾 (1 − 𝜇 − 𝛾‖𝐴‖
2
)

((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+ (1 + 𝛼
𝑛
(𝑘
(𝑖𝑛)

𝑚𝑛
− 1))(𝑘

(𝑖𝑛)

𝑚𝑛
− 1)𝛾‖𝐴‖

2𝑥𝑛 − 𝑞


2

− 𝛼
𝑛
(1 − 𝛽 − 𝛼

𝑛
)

𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛



2

.

(25)

By condition (4), we have

𝑥𝑛+1 − 𝑞


2

≤ (1 + 𝛼
𝑛
(𝑘
(𝑖𝑛)

𝑚𝑛
− 1))

𝑥𝑛 − 𝑞


2

+ (1 + 𝛼
𝑛
(𝑘
(𝑖𝑛)

𝑚𝑛
− 1)) (𝑘

(𝑖𝑛)

𝑚𝑛
− 1)

× 𝛾‖𝐴‖
2𝑥𝑛 − 𝑞



2

≤ (1 + 𝐾 (𝑘
(𝑖𝑛)

𝑚𝑛
− 1))

𝑥𝑛 − 𝑞


2

,

(26)

where

𝐾 = sup
𝑛≥1

{𝛼
𝑛
+ (1 + 𝛼

𝑛
(𝑘
(𝑖𝑛)

𝑚𝑛
− 1)) 𝛾‖𝐴‖

2
} < ∞. (27)

Note that ∑
∞

𝑛=1
(𝑘
(𝑖𝑛)

𝑚𝑛
− 1) = ∑

∞

𝑖=1
∑
∞

𝑛=𝑖
(𝑘
(𝑖)

𝑛
− 1) ≤

∑
∞

𝑖=1
∑
∞

𝑛=1
(𝑘
(𝑖)

𝑛
− 1) < ∞. Hence, from Lemma 4, we know

that the following limit exists:

lim
𝑛→∞

𝑥𝑛 − 𝑞
 . (28)

We now prove that for each 𝑞 ∈ Γ, the limit

lim
𝑛→∞

𝑢𝑛 − 𝑞
 (29)

exists. In fact, from (25) and (28), it follows that

𝛾 (1 − 𝜇 − 𝛾‖𝐴‖
2
)

((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



2

+ 𝛼
𝑛
(1 − 𝛽 − 𝛼

𝑛
)

𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛



2

≤
𝑥𝑛 − 𝑞



2

−
𝑥𝑛+1 − 𝑞



2

+ 𝐾 (𝑘
(𝑖𝑛)

𝑚𝑛
− 1)

𝑥𝑛 − 𝑞


2

→ 0 (𝑛 → ∞) .

(30)

This, combined with condition (4), implies that

lim
𝑛→∞


𝑢
𝑛
− (𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛


= 0, (31)

lim
𝑛→∞


((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛


= 0. (32)

Therefore, it follows from (19), (28), and (32) that
lim
𝑛→∞

‖𝑢
𝑛
− 𝑞‖ exists.

(II) We firstly prove that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0 and

lim
𝑛→∞

‖𝑢
𝑛+1

− 𝑢
𝑛
‖ = 0. As a matter of fact, it follows from

(15) that

𝑥𝑛+1 − 𝑥𝑛
 =


(1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
(𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
− 𝑥
𝑛



=

(1 − 𝛼

𝑛
) (𝑥
𝑛
+ 𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
)

+ 𝛼
𝑛
((𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
− 𝑥
𝑛
)


=

(1 − 𝛼

𝑛
) 𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛

+𝛼
𝑛
((𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
− 𝑥
𝑛
)


=

(1 − 𝛼

𝑛
) 𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛

+ 𝛼
𝑛
((𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
− 𝑢
𝑛
)

+𝛼
𝑛
(𝑢
𝑛
− 𝑥
𝑛
)


=

(1 − 𝛼

𝑛
) 𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛

+ 𝛼
𝑛
((𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
− 𝑢
𝑛
)

+𝛼
𝑛
𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛



=

𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛

+𝛼
𝑛
((𝑆
∗

𝑛
)
𝑚𝑛
𝑢
𝑛
− 𝑢
𝑛
)

.

(33)

In view of (31) and (32), we have that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = 0. (34)
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Similarly, it follows from (15), (32), and (34) that

𝑢𝑛+1 − 𝑢𝑛
 =


𝑥
𝑛+1

+ 𝛾𝐴
∗
((𝑇
∗

𝑛+1
)
𝑚𝑛+1

− 𝐼)𝐴𝑥
𝑛+1

− (𝑥
𝑛
+ 𝛾𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛
)


=
𝑥𝑛+1 − 𝑥𝑛

 + 𝛾

𝐴
∗
((𝑇
∗

𝑛+1
)
𝑚𝑛+1

− 𝐼)𝐴𝑥
𝑛+1



+ 𝛾

𝐴
∗
((𝑇
∗

𝑛
)
𝑚𝑛

− 𝐼)𝐴𝑥
𝑛


→0 (𝑛 → ∞) .

(35)

Next, for each 𝑖 ∈ N, we consider the corresponding
subsequence {𝑢

𝑛
}
𝑛∈N𝑖

of {𝑢
𝑛
}. For example, by Lemma 6 and

the definition of N
1
, we have N

1
= {1, 2, 4, 7, 11, 16, . . .} and

𝑖
1
= 𝑖
2
= 𝑖
4
= 𝑖
7
= 𝑖
11

= 𝑖
16

= ⋅ ⋅ ⋅ = 1. Note that
{𝑚
𝑛
}
𝑛∈N𝑖

= {𝑖, 𝑖 + 1, 𝑖 + 2, . . .}, that is, 𝑚
𝑛
− 1 = 𝑚

𝑛−1
, and

𝑆
∗

𝑛
= 𝑆
𝑖𝑛
= 𝑆
𝑖
whenever 𝑛 ∈ N

𝑖
. Set 𝜂

𝑛
:= ‖𝑢
𝑛
− 𝑆
𝑚𝑛

𝑖
𝑢
𝑛
‖. Since

{𝑆
𝑖
} are uniformly 𝐿

1
-Lipschitzian and 𝑚

𝑛
≥ 1 for 𝑛 ≥ 1, we

have, for each 𝑛 ∈ N
𝑖
and 𝑛 ≥ 2,

𝑢𝑛 − 𝑆𝑖𝑢𝑛
 ≤

𝑢𝑛 − 𝑆
𝑚𝑛

𝑖
𝑢
𝑛

 +
𝑆
𝑚𝑛

𝑖
𝑢
𝑛
− 𝑆
𝑖
𝑢
𝑛



≤ 𝜂
𝑛
+ 𝐿
1


𝑆
𝑚𝑛−1

𝑖
𝑢
𝑛
− 𝑢
𝑛



≤ 𝜂
𝑛
+ 𝐿
1
(

𝑆
𝑚𝑛−1

𝑖
𝑢
𝑛
− 𝑆
𝑚𝑛−1

𝑖
𝑢
𝑛−1



+

𝑆
𝑚𝑛−1

𝑖
𝑢
𝑛−1

− 𝑢
𝑛


)

≤ 𝜂
𝑛
+ 𝐿
1


𝑆
𝑚𝑛−1

𝑖
𝑢
𝑛
− 𝑆
𝑚𝑛−1

𝑖
𝑢
𝑛−1



+ 𝐿
1
(

𝑆
𝑚𝑛−1

𝑖
𝑢
𝑛−1

− 𝑢
𝑛−1



+
𝑢𝑛 − 𝑢𝑛−1

 )

≤ 𝜂
𝑛
+ 𝐿
2

1

𝑢𝑛 − 𝑢𝑛−1


+ 𝐿
1
(

𝑆
𝑚𝑛−1

𝑖
𝑢
𝑛−1

− 𝑢
𝑛−1


+
𝑢𝑛−1 − 𝑢𝑛

)

≤ 𝜂
𝑛
+ 𝐿
1
(1 + 𝐿

1
)
𝑢𝑛 − 𝑢𝑛−1

 + 𝐿1𝜂𝑛−1.

(36)

Thus, it follows from (31) and (35) that, for each 𝑖 ≥ 1,

lim
N𝑖∋𝑛→∞

𝑢𝑛 − 𝑆𝑖𝑢𝑛
 = 0. (37)

Similarly, we have, for each 𝑖 ≥ 1,

lim
N𝑖∋𝑛→∞

𝐴𝑥𝑛 − 𝑇𝑖𝐴𝑥𝑛
 = 0. (38)

This completes the proof.

Theorem 8. Let 𝐻
1
, 𝐻
2
, 𝐴, {𝑆

𝑖
}, {𝑇
𝑖
}, 𝐶, 𝑄, 𝛽, 𝜇, 𝐿

1
, 𝐿
2

and
{𝑘
(𝑖)

𝑛
} be the same as those in Lemma 7. Suppose that {𝑥

𝑛
} is

a sequence defined by (15). If Γ ̸= 0 and there exist mappings
𝑆
𝑖0
∈ {𝑆
𝑖
}
∞

𝑖=1
and 𝑇

𝑖0
∈ {𝑇
𝑖
}
∞

𝑖=1
and nondecreasing functions

𝑓, ℎ : [0,∞) → [0,∞)with𝑓(0) = ℎ(0) = 0 and𝑓(𝑟), ℎ(𝑟) >
0 for all 𝑟 ∈ (0,∞) such that 𝑓(𝑑(𝑥

𝑛
, Γ)) ≤ ‖𝑢

𝑛
− 𝑆
𝑖0
𝑢
𝑛
‖

and ℎ(𝑑(𝐴𝑥
𝑛
, 𝑄)) ≤ ‖𝐴𝑥

𝑛
− 𝑇
𝑖0
𝐴𝑥
𝑛
‖ for all 𝑛 ≥ 1, then {𝑥

𝑛
}

converges strongly to some member of Γ.

Proof. By Lemma 7, there exists a subsequence {𝑢
𝑛
}
𝑛∈N𝑖0

of
{𝑢
𝑛
} such that

lim
N𝑖0∋𝑛→∞


𝑢
𝑛
− 𝑆
𝑖0
𝑢
𝑛


= 0. (39)

Since for all 𝑛 ∈ N
𝑖0
,

𝑓 (𝑑 (𝑥
𝑛
, Γ)) ≤


𝑢
𝑛
− 𝑆
𝑖0
𝑢
𝑛


, (40)

by taking lim sup as N
𝑖0

∋ 𝑛 → ∞ on both sides in the
inequality above, we have

lim
N𝑖0∋𝑛→∞

𝑓 (𝑑 (𝑥
𝑛
, Γ)) = 0, (41)

which implies limN𝑖0∋𝑛→∞
𝑑(𝑥
𝑛
, Γ) = 0 by the definition of

the function 𝑓.
Now we will show that {𝑥

𝑛
}
𝑛∈N𝑖0

is a Cauchy sequence. By
Lemma 7, there exists a constant𝑀 > 0 such that ‖𝑥

𝑛
− 𝑞‖
2
≤

𝑀‖𝑥
𝑚
− 𝑞‖
2 for any 𝑞 ∈ Γ and all 𝑛 > 𝑚. And for any 𝜖 > 0,

there exists a positive integer 𝑁 such that 𝑑2(𝑥
𝑛
, Γ) < 𝜖/4𝑀

for all 𝑛 ≥ 𝑁 and 𝑛 ∈ N
𝑖0
. Then, for any 𝑞 ∈ Γ and 𝑛,𝑚 ≥ 𝑁

and 𝑛,𝑚 ∈ N
𝑖0
, we have

𝑥𝑛 − 𝑥𝑚


2

≤ 2 (
𝑥𝑛 − 𝑞



2

+
𝑥𝑚 − 𝑞



2

)

≤ 4𝑀
𝑥𝑁 − 𝑞



2

.

(42)

Taking the infimum in the above inequalities for all 𝑞 ∈ Γ

yields that

𝑥𝑛 − 𝑥𝑚


2

≤ 4𝑀𝑑
2
(𝑥
𝑁
, Γ) < 𝜖, (43)

which implies that {𝑥
𝑛
}
𝑛∈N𝑖0

is a Cauchy sequence. Therefore,
there exists a 𝑝 ∈ 𝐻

1
such that 𝑥

𝑛
→ 𝑝 as N

𝑖0
∋ 𝑛 →

∞ since 𝐻
1
is complete. Firstly, we show that 𝑝 ∈ 𝐶.

limN𝑖0∋𝑛→∞
𝑑(𝑥
𝑛
, Γ) = 0 shows that 𝑑(𝑝, Γ) = 0, which

implies that 𝑝 ∈ 𝐶 since Γ ⊂ 𝐶. Secondly, we show that
𝐴𝑝 ∈ 𝑄. Since {𝑥

𝑛
}
𝑛∈N𝑖0

converges to 𝑝 and ℎ(𝑑(𝐴𝑥
𝑛
, 𝑄)) ≤

‖𝐴𝑥
𝑛
−𝑇
𝑖0
𝐴𝑥
𝑛
‖ for all 𝑛 ∈ N

𝑖0
, then 𝑑(𝐴𝑝,𝑄) = 0.This implies

that 𝐴𝑝 ∈ 𝑄 because of the closedness of 𝑄, and so 𝑝 ∈ Γ.
It finally follows from the existence of lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ that

𝑥
𝑛
→ 𝑝 as 𝑛 → ∞. This completes the proof.

Example 9. Let𝐻
1
= 𝐻
2
= R1 with the standard norm ‖ ⋅ ‖ =

|⋅ | and𝐶 = [−1, 1]. Let {𝑆
𝑖
} = {𝑇

𝑖
} : 𝐶 → 𝐶 be two sequences

of mappings defined by

𝑆
𝑖
𝑥 =

{

{

{

𝑥

𝑖 + 1
, 𝑥 ∈ (0, 1] ,

𝑥, 𝑥 ∈ [−1, 0] .

(44)

It is easily shown that {𝑆
𝑖
} is uniformly 𝐿-Lipschitzian

and a sequence of (0, {𝑘
𝑛

= 1})-asymptotically strict
pseudocontractions. We now prove that the sequence {𝑥

𝑛
}

defined by (15) converges strongly to some member of Γ. Let
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𝐴𝑥 = 𝐴
∗
𝑥 = 𝑥/2 for all 𝑥 ∈ 𝐶 with ‖𝐴‖ = 1/2 and

𝛾 = 3 ∈ (0, 1/‖𝐴‖
2
). If {𝑥

𝑛
} ⊂ (0, 1], we then have

𝑢𝑛 − 𝑆1𝑢𝑛
 =

1

2

𝑢𝑛


=
1

2



𝑥
𝑛
+
3

2
[(

1

𝑖
𝑛
+ 1

)

𝑚𝑛 𝑥
𝑛

2
−
𝑥
𝑛

2
]



= 𝜅
𝑛

𝑥𝑛
 ,

(45)

where 𝜅
𝑛
:= (1/2)|1 + (3/4)[(1/(𝑖

𝑛
+ 1))
𝑚𝑛 − 1]| with 𝜅 :=

inf
𝑛≥1

𝜅
𝑛
> 0. Define a nondecreasing function 𝑓 : [0,∞) →

[0,∞) by 𝑓(𝑥) = 𝜅𝑥. Since Γ = [−1, 0], we then have

𝑓 (𝑑 (𝑥
𝑛
, Γ)) = 𝑓 (

𝑥𝑛
) = 𝜅

𝑥𝑛
 ≤

𝑢𝑛 − 𝑆1𝑢𝑛
 . (46)

Similarly, we also can define a nondecreasing function ℎ :

[0,∞) → [0,∞) with ℎ(0) = 0 such that

ℎ (𝑑 (𝐴𝑥
𝑛
, 𝑄)) ≤


𝐴𝑥
𝑛
− 𝑇
𝑖0
𝐴𝑥
𝑛


(47)

for some 𝑖
0

≥ 1, which implies that, by Lemma 7 and
Theorem 8, 𝑥

𝑛
→ 𝑥
∗
∈ Γ as 𝑛 → ∞.

Theorem 10. Let 𝐻
1
, 𝐻
2
, 𝐴, 𝐶 and 𝑄 be the same as those in

Lemma 7. Let {𝑆
𝑖
} : 𝐻
1
→ 𝐻

1
and {𝑇

𝑖
} : 𝐻
2
→ 𝐻

2
be two

sequences of nonexpansive mappings. Let {𝑥
𝑛
} be the following

sequence generated by an arbitrarily chosen 𝑥
1
∈ 𝐻
1

𝑢
𝑛
= 𝑥
𝑛
+ 𝛾𝐴
∗
(𝑇
∗

𝑛
− 𝐼)𝐴𝑥

𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑆
∗

𝑛
𝑢
𝑛
, 𝑛 ≥ 1,

(48)

where {𝛼
𝑛
} is a sequence in [𝛼, 1 − 𝛼] for some 𝛼 ∈ (0, 1); 𝛾 ∈

(0, 1/‖𝐴‖
2
); 𝑇∗
𝑛
= 𝑇
𝑖𝑛
, 𝑆∗
𝑛
= 𝑆
𝑖𝑛
with 𝑖

𝑛
satisfying the positive

integer equation: 𝑛 = 𝑖 + (𝑚 − 1)𝑚/2 (𝑚 ≥ 𝑖, 𝑛 = 1, 2, . . .).
Then {𝑥

𝑛
} converges weakly to an 𝑥∗ ∈ Γ.

Proof. It is clear that both {𝑆
𝑖
} and {𝑇

𝑖
} are asymptotically

strict pseudocontractions.Then, by the proof of Lemma 7, we
have

lim
𝑛→∞

𝑢𝑛 − 𝑆
∗

𝑛
𝑢
𝑛

 = 0, (49)

lim
𝑛→∞

(𝑇
∗

𝑛
− 𝐼)𝐴𝑥

𝑛

 = 0. (50)

In addition, we also have

lim
𝑛→∞

𝑢𝑛+1 − 𝑢𝑛
 =

𝑥𝑛+1 − 𝑥𝑛
 = 0, (51)

which implies that, by induction, for any nonnegative integer
𝑘,

lim
𝑛→∞

𝑢𝑛+𝑘 − 𝑢𝑛
 = lim
𝑛→∞

𝑥𝑛+𝑘 − 𝑥𝑛
 = 0. (52)

For each 𝑘 ≥ 1, since
𝑢𝑛 − 𝑆

∗

𝑛+𝑘
𝑢
𝑛

 ≤
𝑢𝑛 − 𝑢𝑛+𝑘

 +
𝑢𝑛+𝑘 − 𝑆

∗

𝑛+𝑘
𝑢
𝑛



≤
𝑢𝑛 − 𝑢𝑛+𝑘

 +
𝑢𝑛+𝑘 − 𝑆

∗

𝑛+𝑘
𝑢
𝑛+𝑘



+
𝑆
∗

𝑛+𝑘
𝑢
𝑛+𝑘

− 𝑆
∗

𝑛+𝑘
𝑢
𝑛



≤ 2
𝑢𝑛 − 𝑢𝑛+𝑘

 +
𝑢𝑛+𝑘 − 𝑆

∗

𝑛+𝑘
𝑢
𝑛+𝑘

 ,

(53)

it follows from (49) and (52) that

lim
𝑛→∞

𝑢𝑛 − 𝑆
∗

𝑛+𝑘
𝑢
𝑛

 = 0. (54)

Now, for each 𝑖 ≥ 1, we claim that

lim
𝑛→∞

𝑢𝑛 − 𝑆𝑖𝑢𝑛
 = 0. (55)

As a matter of fact, setting

𝑛 = 𝑁
𝑚
+ 𝑖, (56)

where𝑁
𝑚
= (𝑚 − 1)𝑚/2,𝑚 ≥ 𝑖, we obtain that

𝑢𝑛 − 𝑆𝑖𝑢𝑛
 ≤


𝑢
𝑛
− 𝑢
𝑁𝑚


+

𝑢
𝑁𝑚

− 𝑆
𝑖
𝑢
𝑛



≤

𝑢
𝑛
− 𝑢
𝑁𝑚


+

𝑢
𝑁𝑚

− 𝑆
∗

𝑁𝑚+𝑖
𝑢
𝑁𝑚



+

𝑆
∗

𝑁𝑚+𝑖
𝑢
𝑁𝑚

− 𝑆
𝑖
𝑢
𝑛



=

𝑢
𝑛
− 𝑢
𝑁𝑚


+

𝑢
𝑁𝑚

− 𝑆
∗

𝑁𝑚+𝑖
𝑢
𝑁𝑚



+

𝑆
𝑖
𝑢
𝑁𝑚

− 𝑆
𝑖
𝑢
𝑛



≤ 2

𝑢
𝑛
− 𝑢
𝑁𝑚


+

𝑢
𝑁𝑚

− 𝑆
∗

𝑁𝑚+𝑖
𝑢
𝑁𝑚



= 2
𝑢𝑛 − 𝑢𝑛−𝑖

 +

𝑢
𝑁𝑚

− 𝑆
∗

𝑁𝑚+𝑖
𝑢
𝑁𝑚


.

(57)

Then, since 𝑁
𝑚

→ ∞ as 𝑛 → ∞, it follows from (52) and
(54) that (55) holds obviously. Similarly, we have, for each 𝑖 ≥
1,

lim
𝑛→∞

𝐴𝑥𝑛 − 𝑇𝑖𝐴𝑥𝑛
 = 0. (58)

Next, since {𝑢
𝑛
} is bounded, there exists a subsequence {𝑢

𝑛𝑖
} ⊂

{𝑢
𝑛
} such that 𝑢

𝑛𝑖
⇀ 𝑥
∗ (some point in 𝐻

1
). From (55) we

have lim
𝑖→∞

‖𝑢
𝑛𝑖
− 𝑆
𝑗
𝑢
𝑛𝑖
‖ = 0 for each 𝑗 ≥ 1. By Lemma 5,

each 𝑆
𝑗
is demiclosed at zero, so we know that 𝑥∗ ∈ ∩∞

𝑗=1
𝐹(𝑆
𝑗
).

Moreover, it follows from (48) and (50) that

𝑥
𝑛𝑖
= 𝑢
𝑛𝑖
− 𝛾𝐴
∗
(𝑇
∗

𝑛𝑖
− 𝐼)𝐴𝑥

𝑛𝑖
⇀ 𝑥
∗

(𝑖 → ∞) . (59)

Since 𝐴 is a linear bounded operator, it yields that 𝐴𝑥
𝑛𝑖
⇀

𝐴𝑥
∗. In view of (58) we have

lim
𝑖→∞


𝐴𝑥
𝑛𝑖
− 𝑇
𝑗
𝐴𝑥
𝑛𝑖


= 0, ∀𝑗 ≥ 1. (60)

Again since each𝑇
𝑗
is demiclosed at zero, we know that𝐴𝑥∗ ∈

∩
∞

𝑗=1
𝐹(𝑇
𝑗
). This implies that 𝑥∗ ∈ Γ.

Note that each Hilbert space possesses Opial property,
which guarantees that the weakly subsequential limit of {𝑢

𝑛
}

is unique. Consequently, {𝑢
𝑛
} converges weakly to the point

𝑥
∗
∈ Γ. Since 𝑥

𝑛
= 𝑢
𝑛
− 𝛾𝐴
∗
(𝑇
∗

𝑛
− 𝐼)𝐴𝑥

𝑛
, we know that {𝑥

𝑛
}

converges weakly to 𝑥∗ ∈ Γ. The proof is completed.

Remark 11. Note that, from Remark 2(3), the class of
(𝛾, {𝑘
𝑛
})-asymptotically strict pseudocontractions is dem-

iclosed at zero. Then, together with nonexpansiveness re-
placed by Lipschitz continuity, the two sequences of nonex-
pansivemappings {𝑆

𝑖
} and {𝑇

𝑖
} inTheorem 10 can be extended

to (𝛾, {𝑘
𝑛
})-asymptotically strict pseudocontractions as in

Lemma 7.
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