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The purpose of this paper is to propose an iterative algorithm for equilibrium problem and a class of strictly pseudononspreading
mappings which is more general than the class of nonspreading mappings studied recently in Kurokawa and Takahashi (2010).
We explored an auxiliary mapping in our theorems and proofs and under suitable conditions, some weak and strong convergence
theorems are proved. The results presented in the paper extend and improve some recent results announced by some authors.

1. Introduction and Preliminaries

Throughout this paper, we assume that 𝐻 is a real Hilbert
space and 𝐶 is a nonempty and closed convex subset of 𝐻.
In the sequel, we denote by “𝑥

𝑛
→ 𝑥” and “𝑥

𝑛
⇀ 𝑥” the

strong and weak convergence of {𝑥
𝑛
}, respectively. Denote by

𝐹(𝑇) the set of fixed points of a mapping 𝑇.

Definition 1. Let 𝑇 : 𝐶 → 𝐶 be a mapping.

(1) 𝑇 is said to be nonexpansive, if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖,
∀𝑥, 𝑦 ∈ 𝐶.

(2) 𝑇 is said to be quasinonexpansive, if𝐹(𝑇) is nonempty
and
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩 , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) . (1)

(3) 𝑇 is said to be nonspreading [1, 2], if

2
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑇𝑦 − 𝑥

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (2)

It is easy to prove that𝑇 : 𝐶 → 𝐶 is nonspreading if and only
if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ ∀𝑥, 𝑦 ∈ 𝐶.

(3)

(4) 𝑇 : 𝐶 → 𝐻 is said to be 𝑘-strictly pseudononspreading
in the terminology of Browder-Petryshyn [3], if there
exists 𝑘 ∈ [0, 1) such that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑇𝑥 − (𝑦 − 𝑇𝑦)

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ ∀𝑥, 𝑦 ∈ 𝐶.

(4)

Remark 2. (1) If 𝑇 : 𝐶 → 𝐶 is a nonspreading mapping with
𝐹(𝑇) ̸= 0, then 𝑇 is quasinonexpansive and 𝐹(𝑇) is closed and
convex.

(2) Clearly every nonspreading mapping is 𝑘-strictly
pseudononspreading with 𝑘 = 0, but the inverse is not true.
This can be seen from the following example.

Example 3. Let R denote the set of all real numbers. Let 𝑇 :

R → R be a mapping defined by

𝑇𝑥 = {
𝑥, 𝑥 ∈ (−∞, 0) ,

−2𝑥, 𝑥 ∈ [0,∞) .
(5)

It is easy to see that 𝑇 is a 𝑘-strictly pseudononspreading
mapping with 𝑘 ∈ [0, 1), but it is not nonspreading (see, [4]).
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Definition 4. (1) Let𝑇 : 𝐻 → 𝐻 be amapping. 𝐼−𝑇 is said to
be demiclosed at 0, if for any sequence {𝑥

𝑛
} ⊂ 𝐻with𝑥

𝑛
⇀ 𝑥
∗

and ‖(𝐼 − 𝑇)𝑥
𝑛
‖ → 0, we have 𝑥∗ = 𝑇𝑥∗.

(2) A Banach space 𝐸 is said to haveOpial’s property, if for
any sequence {𝑥

𝑛
} ⊂ 𝐸 with 𝑥

𝑛
⇀ 𝑥
∗, we have

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 < lim inf

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐸 with 𝑦 ̸= 𝑥

∗

.

(6)

It is well known that each Hilbert space processes opial
property.

(3) Amapping 𝑆 : 𝐶 → 𝐶 is said to be semicompact, if for
any bounded sequence {𝑥

𝑛
} ⊂ 𝐶with lim

𝑛→∞
‖𝑥
𝑛
−𝑆𝑥
𝑛
‖ = 0,

then there exists a subsequence {𝑥
𝑛𝑖
} ⊂ {𝑥

𝑛
} such that {𝑥

𝑛𝑖
}

converges strongly to some point 𝑥∗ ∈ 𝐶.

Lemma 5 (see [5]). Let 𝐸 be a uniformly convex Banach space
and let 𝐵

𝑟
(0) := {𝑥 ∈ 𝐸 : ‖𝑥‖ ≤ 𝑟} be a closed ball with center 0

and radius 𝑟 > 0. For any given sequence {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, . . .} ⊂

𝐵
𝑟
(0) and any given number sequence {𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
, . . .}with

𝜆
𝑖
≥ 0,∑∞

𝑖=1
𝜆
𝑖
= 1, there exists a continuous strictly increasing

and convex function 𝑔 : [0, 2𝑟) → [0,∞) with 𝑔(0) = 0 such
that for any 𝑖, 𝑗 ∈ N, 𝑖 < 𝑗 the following holds:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑛=1

𝜆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

∞

∑

𝑛=1

𝜆
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2

− 𝜆
𝑖
𝜆
𝑗
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩
) . (7)

Lemma 6. Let𝐻 be a real Hilbert space,𝐶 be a nonempty and
closed convex subset of 𝐻, and let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strictly
pseudononspreading mapping.

(i) If 𝐹(𝑇) ̸= 0, then it is closed and convex.
(ii) (𝐼 − 𝑇) is demiclosed at origin.

Lemma 7. Let 𝑇 : 𝐶 → 𝐶 be a 𝑘-strictly pseudononspreading
mapping with 𝑘 ∈ [0, 1). Denote by 𝑇

𝛽
:= 𝛽𝐼+ (1−𝛽)𝑇, where

𝛽 ∈ [𝑘, 1), then

(i) 𝐹(𝑇) = 𝐹(𝑇
𝛽
);

(ii) the following inequality holds:

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛽
𝑥 − 𝑇
𝛽
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+
2

1 − 𝛽
⟨𝑥 − 𝑇

𝛽
𝑥, 𝑦 − 𝑇

𝛽
𝑦⟩ ,

∀𝑥, 𝑦 ∈ 𝐶;

(8)

(iii) 𝑇
𝛽
is a quasinonexpansive mapping, that is,

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛽
𝑥 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩

2

, ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) . (9)

Proof. The conclusion (i) is obvious. Now we prove the
conclusion (ii). Since 𝑇 is 𝑘-strictly pseudononspreading, for
any 𝑥, 𝑦 ∈ 𝐶 we have

󵄩󵄩󵄩󵄩󵄩
𝑇
𝛽
𝑥 − 𝑇
𝛽
𝑦
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽 (𝑥 − 𝑦) + (1 − 𝛽) (𝑇𝑥 − 𝑇𝑦)

󵄩󵄩󵄩󵄩

2

= 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2

− 𝛽 (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑥 − 𝑇𝑥 − (𝑦 − 𝑇𝑦)

󵄩󵄩󵄩󵄩

2

≤ 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽)

× {
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑇𝑥 − (𝑦 − 𝑇𝑦)

󵄩󵄩󵄩󵄩

2

+2 ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩ }

− 𝛽 (1 − 𝛽)
󵄩󵄩󵄩󵄩𝑥 − 𝑇𝑥 − (𝑦 − 𝑇𝑦)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛽) ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩

− (1 − 𝛽) (𝛽 − 𝑘)
󵄩󵄩󵄩󵄩𝑥 − 𝑇𝑥 − (𝑦 − 𝑇𝑦)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛽) ⟨𝑥 − 𝑇𝑥, 𝑦 − 𝑇𝑦⟩

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+
2

(1 − 𝛽)
⟨𝑥 − 𝑇

𝛽
𝑥, 𝑦 − 𝑇

𝛽
𝑦⟩ .

(10)

Take 𝑦 ∈ 𝐹(𝑇) in (8), then 𝑦 ∈ 𝐹(𝑇
𝛽
). Hence, conclusion

(iii) is proved.
This completes the proof.

In the sequel, we assume that 𝜙 : 𝐶 × 𝐶 → R is a
bifunction satisfying the following conditions:
(A1) 𝜙(𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝐶;
(A2) 𝜙 ismonotone, that is,𝜙(𝑥, 𝑦)+𝜙(𝑦, 𝑥) ≤ 0, ∀𝑥, 𝑦 ∈ 𝐶;
(A3) lim

𝑡↓0
𝜙(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤ 𝜙(𝑥, 𝑦), ∀𝑥, 𝑦, 𝑧 ∈ 𝐶;

(A4) for each 𝑥 ∈ 𝐶, 𝑦 󳨃→ 𝜙(𝑥, 𝑦) is convex and lower
semicontinuous.

Recalled that the “so-called” equilibrium problem for a
bifunction function 𝜙 is to find a point 𝑥∗ ∈ 𝐶, such that

𝜙 (𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (11)

Lemma 8 (see [6, 7]). Let 𝐶 be a nonempty and closed convex
subset of a Hilbert space 𝐻 and let 𝜙 : 𝐶 × 𝐶 → R be a
bi-function satisfying conditions: (A1), (A2), (A3), and (A4).
Then, for any 𝑟 > 0 and 𝑥 ∈ 𝐶, there exists 𝑧 ∈ 𝐶 such that

𝜙 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (12)

Furthermore, if for given 𝑟 > 0, we define a mapping 𝑇
𝑟
: 𝐶 →

𝐶 by

𝑇
𝑟
𝑥 := {𝑧 ∈ 𝐶 : 𝜙 (𝑧, 𝑦)+

1

𝑟
⟨𝑦 − 𝑧, 𝑧−𝑥⟩≥0, ∀𝑦 ∈ 𝐶} ,

(13)

then the following hold:
(1) 𝑇
𝑟
is single-valued;

(2) 𝑇
𝑟
is firmly nonexpansive, that is, ‖𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦‖
2

≤

⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑥 − 𝑦⟩;

(3) 𝐹(𝑇
𝑟
) = Ω, where Ω is the set of solutions of the

equilibrium problem (11);
(4) Ω is a closed and convex subset of 𝐶.
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Concerning the weak and strong convergence problem
for some kinds of iterative algorithms for nonspreadingmap-
pings, 𝑘-strictly pseudononspreading mappings and other
kind of nonlinear mappings have been considered in Osilike
and Isiogugu [4], Igarashi et al. [8], Iemoto andTakahashi [9],
Kurokawa and Takahashi [10], and Kim [11–28]. The purpose
of this paper is to propose an iterative algorithm for an
infinite family of strictly pseudononspreading mappings and
equilibrium problem. Under suitable conditions, some weak
and strong convergence theorems are proved. The results
presented in the paper extend and improve the corresponding
results in [4, 8–11].

2. Main Results

Throughout this section, we assume that the following condi-
tions are satisfied.

(1) 𝐻 is a real Hilbert spaces, 𝐶 is a nonempty and close
convex subset of𝐻.

(2) For each 𝑆
𝑖
: 𝐶 → 𝐶, 𝑖 = 1, 2, . . . is a 𝑘

𝑖
-strictly

pseudononspreading mapping with 𝑘 := sup
𝑖≥1
𝑘
𝑖
∈

(0, 1). For given 𝛽 ∈ [𝑘, 1), denoted by 𝑆
𝑖,𝛽

:= 𝛽𝐼 +

(1 − 𝛽)𝑆
𝑖
, for each 𝑖 = 1, 2, . . ., it follows from (8) that

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑖,𝛽
𝑥 − 𝑆
𝑖,𝛽
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+
2

1 − 𝛽
⟨𝑥 − 𝑆

𝑖,𝛽
𝑥, 𝑦 − 𝑆

𝑖,𝛽
𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐶.

(14)

(3) 𝜙 : 𝐶 × 𝐶 → R is a bifunction satisfying the condi-
tions (A1)–(A4). Then it follows from Lemma 8 that
the mapping 𝑇

𝑟
defined by (13) is single valued, 𝑧 =

𝑇
𝑟
𝑥, 𝐹(𝑇

𝑟
) = Ω (where Ω is the solution set of

the equilibrium problem (11)), and Ω is a closed and
convex subset of 𝐶.

We are now in a position to give the following result.

Theorem9. Let𝐻,𝐶, {𝑆
𝑖
}, 𝑘, 𝛽, {𝑆

𝑖,𝛽
},𝜙,𝑇

𝑟
, andΩ be the same

as above. Let {𝑥
𝑛
} and {𝑢

𝑛
} be the sequences defined by

{{{{{{

{{{{{{

{

𝑥
1
∈ 𝐶 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝜙 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
0,𝑛
𝑢
𝑛
+

∞

∑

𝑖=1

𝛼
𝑖,𝑛
𝑆
𝑖,𝛽
𝑢
𝑛
,

(15)

where {𝛼
𝑖,𝑛
} ⊂ (0, 1) and {𝑟

𝑛
} satisfy the following conditions:

(a) ∑∞
𝑖=0

𝛼
𝑖,𝑛
= 1, for each 𝑛 ≥ 1;

(b) for each 𝑖 ≥ 1, lim inf
𝑛→∞

𝛼
0,𝑛
𝛼
𝑖,𝑛
> 0;

(c) {𝑟
𝑛
} ⊂ (0,∞) and lim inf

𝑛→∞
𝑟
𝑛
> 0.

(I) If F := (⋂
∞

𝑖=1
𝐹(𝑆
𝑖
))⋂Ω ̸= 0, then both {𝑥

𝑛
} and {𝑢

𝑛
}

converge weakly to some point 𝑥∗ ∈ F;

(II) in addition, if there exists some positive integer𝑚 such
that 𝑆
𝑚
is semicompact, then both {𝑥

𝑛
} and {𝑢

𝑛
} conve-

rge strongly to 𝑥∗ ∈ F;

Proof. First, we prove the conclusion (I).The proof is divided
into three steps.

Step 1. We prove that the sequences {𝑥
𝑛
}, {𝑢
𝑛
}, {𝑆
𝑖,𝛽
𝑢
𝑛
}, and

{𝑆
𝑖,𝛽
𝑥
𝑛
}, 𝑖 ≥ 1 all are bounded, and for each 𝑝 ∈ F the limits

lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖, lim

𝑛→∞
‖𝑢
𝑛
− 𝑝‖ exist and

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (16)

In fact, it follows from Lemma 8 that 𝑢
𝑛
= 𝑇
𝑟𝑛
𝑥
𝑛
, 𝑝 =

𝑇
𝑟𝑛
𝑝, and
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟𝑛
𝑥
𝑛
− 𝑇
𝑟𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 1. (17)

Since 𝑝 ∈ F, by Lemma 7(i), 𝑝 ∈ ⋂
∞

𝑖=1
𝐹(𝑆
𝑖,𝛽
). Hence, it

follows from (17) and (9) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
0,𝑛
𝑢
𝑛
+

∞

∑

𝑖=1

𝛼
𝑖,𝑛
𝑆
𝑖,𝛽
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
0,𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

∞

∑

𝑖=1

𝛼
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑖,𝛽
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ 𝛼
0,𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 +

∞

∑

𝑖=1

𝛼
𝑖,𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 1.

(18)

This implies that for each 𝑝 ∈ F, the limits lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖

and lim
𝑛→∞

‖𝑢
𝑛
−𝑝‖ exist. And so {𝑥

𝑛
} and {𝑢

𝑛
} are bounded

and (16) holds.
Furthermore, by (9), it is easy to see that for each 𝑖 ≥ 1,

{𝑆
𝑖,𝛽
𝑢
𝑛
} and {𝑆

𝑖,𝛽
𝑥
𝑛
} are also bounded.

Step 2. Next we prove that for each 𝑖 ≥ 1 the following holds:

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑖𝑥𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑆𝑖𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (19)

In fact, by Lemma 5 for any positive integer 𝑖 ≥ 1 and 𝑝 ∈ F,
we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
0,𝑛
(𝑢
𝑛
− 𝑝) +

∞

∑

𝑖=1

𝛼
𝑖,𝑛
(𝑆
𝑖,𝛽
𝑢
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
0,𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛼
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑖,𝛽
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

− 𝛼
0,𝑛
𝛼
𝑖,𝑛
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛼
0,𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+

∞

∑

𝑖=1

𝛼
𝑖,𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛼
0,𝑛
𝛼
𝑖,𝑛
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
0,𝑛
𝛼
𝑖,𝑛
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
0,𝑛
𝛼
𝑖,𝑛
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
) .

(20)
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This shows that
𝛼
0,𝑛
𝛼
𝑖,𝑛
𝑔 (

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

󳨀→ 0 (as 𝑛 󳨀→ ∞) .

(21)

Since 𝑔 is a continuous and strictly increasing function with
𝑔(0) = 0. By condition (b), it yields that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (22)

Therefore, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑆𝑖𝑢𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

1

1 − 𝛽

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (23)

On the other hand, it follows from Lemma 8 that 𝑢
𝑛
= 𝑇
𝑟𝑛
𝑥
𝑛

and for each 𝑝 ∈ F

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟𝑛
𝑥
𝑛
− 𝑇
𝑟𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑇
𝑟𝑛
𝑥
𝑛
− 𝑇
𝑟𝑛
𝑝, 𝑥
𝑛
− 𝑝⟩

= ⟨𝑢
𝑛
− 𝑝, 𝑥

𝑛
− 𝑝⟩

=
1

2
{
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

} .

(24)

This shows that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

. (25)

In view of (20) and (25)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

, (26)

that is,
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

󳨀→ 0 (as 𝑛 󳨀→ ∞) .

(27)

In view of (27), (22), (14), and noting that {𝑥
𝑛
− 𝑆
𝑖,𝛽
𝑥
𝑛
} is

bounded, we have
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑆
𝑖,𝛽
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑖,𝛽
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+ {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

2

+
2

1 − 𝛽

󵄨󵄨󵄨󵄨󵄨
⟨𝑢
𝑛
− 𝑆
𝑖,𝛽
𝑢
𝑛
, 𝑥
𝑛
− 𝑆
𝑖,𝛽
𝑥
𝑛
⟩
󵄨󵄨󵄨󵄨󵄨
}

1/2

󳨀→ 0 (as 𝑛 󳨀→ ∞) .

(28)

Therefore, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑖𝑥𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

1

1 − 𝛽

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑆
𝑖,𝛽
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (29)

The conclusion is proved.

Step 3. Next we prove that the weak-accumulation point set
𝑊
𝜔
(𝑥
𝑛
) of the sequence {𝑥

𝑛
} is a singleton and𝑊

𝜔
(𝑥
𝑛
) ⊂ F.

In fact, for any 𝑤 ∈ 𝑊
𝜔
(𝑥
𝑛
), their exists a subsequence

{𝑥
𝑛𝑖
} ⊂ {𝑥

𝑛
} such that 𝑥

𝑛𝑖
⇀ 𝑤. It follows from (27) that

𝑢
𝑛𝑖
⇀ 𝑤. Since 𝑢

𝑛
= 𝑇
𝑟𝑛
𝑥
𝑛
, from (15) and condition (A2) we

have

⟨𝑦 − 𝑢
𝑛𝑖
,
1

𝑟
𝑛𝑖

(𝑢
𝑛𝑖
− 𝑥
𝑛𝑖
)⟩ ≥ 𝜙 (𝑦, 𝑢

𝑛𝑖
) , ∀𝑦 ∈ 𝐶. (30)

Since (1/𝑟
𝑛𝑖
)(𝑢
𝑛𝑖
− 𝑥
𝑛𝑖
) → 0 (as 𝑛

𝑖
→ ∞) and 𝑢

𝑛𝑖
⇀ 𝑤, it

follows from condition (A4) that

𝜙 (𝑦, 𝑤) ≤ 0, ∀𝑦 ∈ 𝐶. (31)

For any 𝑡 ∈ (0, 1), 𝑦 ∈ 𝐶, letting𝑦
𝑡
= 𝑡𝑦+(1−𝑡)𝑤, then𝑦

𝑡
∈ 𝐶.

By condition (A1) and (A4), we have

0 = 𝜙 (𝑦
𝑡
, 𝑦
𝑡
) ≤ 𝑡𝜙 (𝑦

𝑡
, 𝑦) + (1 − 𝑡) 𝜙 (𝑦

𝑡
, 𝑤) ≤ 𝑡𝜙 (𝑦

𝑡
, 𝑦) .

(32)

This implies that 𝜙(𝑦
𝑡
, 𝑦) ≥ 0. Letting 𝑡 → 0, by condition

(A3) we have

𝜙 (𝑤, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (33)

This shows that 𝑤 ∈ 𝐶 is a solution to the equilibrium (11),
that is, 𝑤 ∈ Ω.

On the other hand, by Lemma 6, for each 𝑖 ≥ 1, 𝐼 − 𝑆
𝑖
is

demiclosed at 0. In view of (19), we know that𝑤 ∈ F. Due to
the arbitrariness of 𝑤 ∈ 𝑊

𝜔
(𝑥
𝑛
), we have𝑊

𝜔
(𝑥
𝑛
) ⊂ F.

Now we prove that 𝑊
𝜔
(𝑥
𝑛
) is a singleton. Suppose to

the contrary that there exist 𝑥∗, 𝑦∗ ∈ 𝑊
𝜔
(𝑥
𝑛
) with 𝑥∗ ̸= 𝑦

∗.
Therefore, there exist subsequences {𝑥

𝑛𝑖
} and {𝑥

𝑛𝑗
} in {𝑥

𝑛
}

such that 𝑥
𝑛𝑖
⇀ 𝑥
∗ and 𝑥

𝑛𝑗
⇀ 𝑦
∗. Since 𝑥∗, 𝑦∗ ∈ F, by

(16), the limits lim
𝑛→∞

‖𝑥
𝑛
−𝑥
∗

‖ and lim
𝑛→∞

‖𝑥
𝑛
−𝑦
∗

‖ exist.
By using the opial property of𝐻, we have

lim inf
𝑛𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑖
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
< lim inf
𝑛𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑖
− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩

= lim
𝑛𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗
− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩󵄩
< lim inf
𝑛𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = lim inf

𝑛𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑖
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩
.

(34)

This is a contradiction. Therefore, 𝑊
𝜔
(𝑥
𝑛
) is a singleton.

Without loss of generality, we can assume that𝑊
𝜔
(𝑥
𝑛
) = {𝑥

∗

}

and 𝑥
𝑛
⇀ 𝑥
∗. By using (15) and (19), we have 𝑢

𝑛
⇀ 𝑥
∗.

This completes the proof of the conclusion (I).
Next we prove the conclusion (II).
Without loss of generality, we can assume that 𝑆

1
is semi-

compact. From (19) we have that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆1𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 (as 𝑛 󳨀→ ∞) . (35)

Therefore, there exists a subsequence of {𝑥
𝑛𝑖
} ⊂ {𝑥

𝑛
} such that

𝑥
𝑛𝑖

→ 𝑢
∗

∈ 𝐶. Since 𝑥
𝑛𝑖
⇀ 𝑥
∗, we have 𝑥∗ = 𝑢

∗ and so
𝑥
𝑛𝑖
→ 𝑥
∗

∈ F. By virtue of (16), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = 0, (36)

This completes the proof of Theorem 9.
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Taking 𝜙 ≡ 0 and 𝑟
𝑛
= 1, for all 𝑛 ≥ 1 in Theorem 9, we

have 𝑥
𝑛
= 𝑢
𝑛
, for all 𝑛 ≥ 1, Therefore, the following theorem

can be obtained fromTheorem 9 immediately.

Theorem 10. Let 𝐻,𝐶, {𝑆
𝑖
}, 𝑘, 𝛽 and {𝑆

𝑖,𝛽
} be the same as in

Theorem 9. Let {𝑥
𝑛
} be the sequences defined by

{{

{{

{

𝑥
1
∈ 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑥
𝑛+1

= 𝛼
0,𝑛
𝑥
𝑛
+

∞

∑

𝑖=1

𝛼
𝑖,𝑛
𝑆
𝑖,𝛽
𝑥
𝑛
,

(37)

where {𝛼
𝑖,𝑛
} ⊂ (0, 1) satisfies the following conditions:

(a) ∑∞
𝑖=0

𝛼
𝑖,𝑛
= 1, for each 𝑛 ≥ 1;

(b) for each 𝑖 ≥ 1, lim inf
𝑛→∞

𝛼
0,𝑛
𝛼
𝑖,𝑛
> 0.

(I) If F := (⋂
∞

𝑖=1
𝐹(𝑆
𝑖
)) ̸= 0, then both {𝑥

𝑛
} converge

weakly to some point 𝑥∗ ∈ F;
(II) in addition, if there exists some positive integer𝑚 such

that 𝑆
𝑚
is semicompact, then {𝑥

𝑛
} converge strongly to

𝑥
∗

∈ F.

Remark 11. Theorems 9 and 10 improve and extend the
corresponding recent results of [4, 8–11].
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