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The BK-space of all sequences is given as 𝑥 = (𝑥𝑘) such that Σ
∞

𝑘=1
𝑘|𝑥𝑘 −𝑥𝑘+1| converges and 𝑥𝑘 is a null sequence which is called the

Hahn sequence space and is denoted by h. Hahn (1922) defined the h space and gave some general properties. G. Goes and S. Goes
(1970) studied the functional analytic properties of this space. The study of Hahn sequence space was initiated by Chandrasekhara
Rao (1990) with certain specific purpose in the Banach space theory. In this paper, the matrix domain of the Hahn sequence space
determined by the Cesáromean first order, denoted byC, is obtained, and some inclusion relations and some topological properties
of this space are investigated. Also dual spaces of this space are computed and, matrix transformations are characterized.

1. Introduction

By a sequence space, we understand a linear subspace of the
space 𝜔 = CN of all complex sequences which contains 𝜙,
the set of all finitely nonzero sequences, where C denotes
the complex field and N = {0, 1, 2, . . .}. We write ℓ∞, 𝑐, and
𝑐0 for the classical spaces of all bounded, convergent, and
null sequences, respectively. Also by 𝑏𝑠, 𝑐𝑠, ℓ1, and ℓ𝑝, we
denote the space of all bounded, convergent, absolutely, and
𝑝-absolutely convergent series, respectively. Additionally, the
spaces 𝑏V, 𝑏V(𝐶), 𝜎∞, ∫ 𝜆, and ℓ1(𝐶) are defined by

𝑏V = {𝑥 = (𝑥𝑘) ∈ 𝜔 :

∞

∑

𝑘=1





𝑥𝑘 − 𝑥𝑘−1





< ∞} ,

𝑏V (𝐶)

=

{

{

{

𝑥 = (𝑥𝑘) ∈ 𝜔 :

∞

∑

𝑘=1













𝑥𝑘

𝑘 + 1

−

1

𝑘. (𝑘 + 1)

𝑘−1

∑

𝑗=0

𝑥𝑗













< ∞

}

}

}

,

𝜎∞ = {𝑥 = (𝑥𝑘) ∈ 𝜔 : sup
𝑛

𝑛
−1












𝑛

∑

𝑘=1

𝑥𝑘












< ∞} ,

∫𝜆 = {𝑥 = (𝑥𝑘) ∈ 𝜔 : (𝑘𝑥𝑘) ∈ 𝜆} ,

ℓ1 (𝐶) =

{

{

{

𝑥 = (𝑥𝑘) ∈ 𝜔 :

∞

∑

𝑘=1













1

𝑘 + 1

𝑘

∑

𝑗=0

𝑥𝑗













< ∞

}

}

}

.

(1)

A coordinate space (or a 𝐾-space) is a vector space of
numerical sequences, where addition and scalar multiplica-
tion are defined pointwise. That is, a sequence space 𝜆 with a
linear topology is called a 𝐾-space provided that each of the
maps 𝑝𝑖 : 𝜆 → C defined by 𝑝𝑖(𝑥) = 𝑥𝑖 is continuous for
all 𝑖 ∈ N. A 𝐵𝐾-space is a 𝐾-space, which is also a Banach
space with continuous coordinate functionals 𝑓𝑘(𝑥) = 𝑥𝑘, for
all 𝑘 ∈ N. If a normed sequence space 𝜆 contains a sequence
(𝑏𝑛) with the property that for every 𝑥 ∈ 𝜆 there is a unique
sequence of scalars (𝛼𝑛) such that

lim
𝑛→∞





𝑥 − (𝛼0𝑏0 + 𝛼1𝑏1 + ⋅ ⋅ ⋅ + 𝛼𝑛𝑏𝑛)





= 0, (2)

then (𝑏𝑛) is called the Schauder basis (or briefly basis) for
𝜆. The series ∑𝛼𝑘𝑏𝑘 which has the sum 𝑥 is then called
the expansion of 𝑥 with respect to (𝑏𝑛), and it is written as
𝑥 = ∑𝛼𝑘𝑏𝑘. An 𝐹𝐾-space 𝜆 is said to have 𝐴𝐾 property, if
𝜙 ⊂ 𝜆 and {𝑒

𝑘
} is a basis for 𝜆, where 𝑒

𝑘 is a sequence whose
only nonzero term is 1 in the 𝑘th place for each 𝑘 ∈ N and
𝜙 = span{𝑒𝑘}, the set of all finitely nonzero sequences. If 𝜙 is
dense in 𝜆, then 𝜆 is called an 𝐴𝐷-space; thus, 𝐴𝐾 implies
𝐴𝐷.
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Let 𝜆 and 𝜇 be two sequence spaces, and let 𝐴 = (𝑎𝑛𝑘) be
an infinite matrix of the complex numbers 𝑎𝑛𝑘, where 𝑘, 𝑛 ∈

N. Then, we say that 𝐴 defines a matrix mapping from 𝜆 into
𝜇, and we denote it by writing 𝐴 : 𝜆 → 𝜇 if 𝐴𝑥 exists and
belongs to 𝜇 for every sequence 𝑥 = (𝑥𝑘) ∈ 𝜆, where 𝐴𝑥 =

{(𝐴𝑥)𝑛}, the 𝐴-transform of 𝑥 with

(𝐴𝑥)𝑛 = ∑

𝑘

𝑎𝑛𝑘𝑥𝑘 for each 𝑛 ∈ N. (3)

For simplicity in notation, here and in what follows, the
summation without limits runs from 1 to ∞. By (𝜆 : 𝜇), we
denote the class of all matrices 𝐴 such that 𝐴 : 𝜆 → 𝜇. Thus,
𝐴 ∈ (𝜆 : 𝜇) if and only if the series on the right side of (3)
converges for each 𝑛 ∈ N and each 𝑥 ∈ 𝜆, and we have 𝐴𝑥 =

{(𝐴𝑥)𝑛}𝑛∈N ∈ 𝜇 for all 𝑥 ∈ 𝜆. A sequence 𝑥 is said to be 𝐴-
summable to 𝑙 if𝐴𝑥 converges to 𝑙which is called the𝐴-limit
of 𝑥.

The matrix domain 𝜆𝐴 of an infinite matrix 𝐴 in a
sequence space 𝜆 is defined by

𝜆𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝜔 : 𝐴𝑥 ∈ 𝜆} (4)

which is a sequence space. If 𝐴 = (𝑎𝑛𝑘) is triangle, that is,
𝑎𝑛𝑛 ̸= 0 and 𝑎𝑛𝑘 = 0 for all 𝑘 > 𝑛, then one can easily observe
that the sequence spaces 𝜆𝐴 and 𝜆 are linearly isomorphic;
that is, 𝜆𝐴 ≅ 𝜆. There are several examples of the matrix
domain 𝜆𝐴 of an infinite matrix 𝐴 in a sequence space 𝜆 in
Chapter 4 in [1]. By F, we will denote the collection of all
finite subsets of N.

Hahn [2] introduced the space ℎ = {𝑥 : ∑
𝑘
𝑘|𝑥𝑘 − 𝑥𝑘+1| <

∞ and lim𝑘→∞𝑥𝑘 = 0} and proved that the following
statements hold:

(i) ℎ is a Banach space with the norm ‖𝑥‖ℎ = ∑
𝑘
𝑘|𝑥𝑘 −

𝑥𝑘+1| + sup
𝑘∈N|𝑥𝑘|,

(ii) ℎ ⊂ ℓ1 ∩ ∫ 𝑐0,

(iii) ℎ
𝛽
= 𝜎∞.

2. The New Hahn Sequence Space

Following Hahn [2], we introduce the sequence space ℎ(𝐶) as
follows:

ℎ (𝐶) =

{

{

{

𝑥 = (𝑥𝑘) ∈ 𝑤 : ∑

𝑘

𝑘













1

(𝑘 + 1) (𝑘 + 2)

𝑘

∑

𝑗=0

𝑥𝑗 −

𝑥𝑘+1

𝑘 + 2













< ∞,

1

𝑘 + 1

𝑘

∑

𝑗=0

𝑥𝑗 → 0 (𝑘 → ∞)

}

}

}

.

(5)

With the notation of (4), we may redefine the space ℎ(𝐶) as
follows:

ℎ (𝐶) = (ℎ)𝐶. (6)

We define a sequence 𝑦 = (𝑦𝑘) as the 𝐶-transform of a
sequence 𝑥 = (𝑥𝑘); that is,

𝑦𝑘 =

1

𝑛 + 1

𝑛

∑

𝑘=0

𝑥𝑘 ∀𝑛 ∈ N. (7)

Hahn [2] proved that ℎ ⊂ ℓ1. Now, we give some inclusion
relations.

Theorem 1. The following inclusions are strict:

(a) ℎ(𝐶) ⊂ ℓ1(𝐶),
(b) ℎ ⊂ 𝑏V,
(c) ℎ(𝐶) ⊂ 𝑏V(𝐶).

Proof. (a) It is clear that ℎ(𝐶) ⊂ ℓ1(𝐶) from ℎ ⊂ ℓ1 [2].
Now, we show that this inclusion is strict. Let us consider the
sequence 𝑥 = (𝑥𝑘), 𝑥0 = 1, and 𝑥𝑘 = (−1)

𝑘
(2𝑘 + 1)/𝑘(𝑘 +

1) (𝑘 ≥ 1). Then, 𝑦 = 𝐶𝑥 = {(−1)
𝑘
/(𝑘 + 1)

2
}. Since the

sequence 𝑦 is in ℓ1 but not in ℎ, then 𝑥 ∈ ℓ1(𝐶) \ ℎ(𝐶).
(b) Since ℎ ⊂ ℓ1 [2] and ℓ1 ⊂ 𝑏V, then ℎ ⊂ 𝑏V.
(c) We choose the sequence (𝑥𝑘) = 𝑒 = (1, 1, . . .). Since

lim𝑘→∞(1/(𝑘 + 1))∑
𝑘

𝑗=0
𝑥𝑗 = 1, then 𝑥 = 𝑒 is not in ℎ(𝐶), but

it is in 𝑏V(𝐶). Thus, we see that ℎ(𝐶) ⊂ 𝑏V(𝐶) is strict.

Theorem 2. The sequence space ℎ(𝐶) is a 𝐵𝐾-space with the
norm

‖𝑥‖ℎ(𝐶) = ∑

𝑘

𝑘













1

𝑘 + 1

𝑘

∑

𝑗=0

𝑥𝑗 −

1

𝑘 + 2

𝑘+1

∑

𝑗=0

𝑥𝑗













+ sup
𝑘∈N













1

𝑘 + 1

𝑘

∑

𝑗=0

𝑥𝑗













.

(8)

Proof. Since (6) holds, ℎ is a 𝐵𝐾-space with the norm ‖ ⋅ ‖ℎ

[2, 3], and thematrix𝐶 is triangle matrix, thenTheorem 4.3.2

of Wilansky [4] gives the fact that the space ℎ(𝐶) is a 𝐵𝐾-
space.

Lemma 3 (see [5]). The 𝐵𝐾-space ℎ has an 𝐴𝐾 property.

Since {𝑒𝑘 : 𝑘 ∈ N} ̸⊂ ℎ(𝐶), then one has the following.

Theorem 4. The 𝐵𝐾-space ℎ(𝐶) does not have an 𝐴𝐾 prop-
erty.

Theorem 5. One has the following:

ℎ (𝐶) = ℓ1 (𝐶) ∩ ∫ 𝑏V (𝐶) = ℓ1 (𝐶) ∩ ∫ 𝑏V0 (𝐶) . (9)

Proof. It is similar to the proof of [3, Theorem 3.2].

Theorem 6. The sequence space ℎ(𝐶) is norm isomorphic to
the space ℎ; that is, ℎ(𝐶) ≅ ℎ.

Proof. To prove this, we will show the existence of a linear
bijection between the spaces ℎ(𝐶) and ℎ. Consider the
transformation𝑇 defined, with the notation of (7), from ℎ(𝐶)



Abstract and Applied Analysis 3

to ℎ by 𝑥 → 𝑦 = 𝑇𝑥. The linearity of 𝑇 is clear. Furthermore,
it is trivial that 𝑥 = 𝜃 = (0, 0, 0, . . .) whenever 𝑇𝑥 = 𝜃, and,
hence, 𝑇 is injective.

Let 𝑦 ∈ ℎ, and define the sequence 𝑥 = (𝑥𝑘) by 𝑥𝑘 =

(𝑘 + 1)𝑦𝑘 − 𝑘𝑦𝑘−1(𝑘 ∈ N). Then, we have

‖𝑥‖ℎ(𝐶) = ∑

𝑘

𝑘













1

𝑘 + 1

𝑘

∑

𝑗=0

[(𝑗 + 1) 𝑦𝑗 − 𝑗𝑦𝑗−1]

−

1

𝑘 + 2

𝑘+1

∑

𝑗=0

[(𝑗 + 1) 𝑦𝑗 − 𝑗𝑦𝑗−1]













= ∑

𝑘

𝑘




𝑦𝑘 − 𝑦𝑘+1





=





𝑦



ℎ

< ∞.

(10)

Consequently, we see from here that 𝑇 is surjective and
is norm preserving. Hence, 𝑇 is a linear bijection which,
therefore, shows that the spaces ℎ(𝐶) and ℎ are norm
isomorphic, as desired.

Theorem 7. Define a sequence 𝑏
(𝑘)

= {𝑏
(𝑘)

𝑛
}𝑛∈N of elements of

the space ℎ(𝐶) for every fixed 𝑘 ∈ N by

𝑏
(𝑘)

𝑛
= {

(−1)
𝑛−𝑘

(𝑘 + 1) , 𝑘 ≤ 𝑛 ≤ 𝑘 + 1,

0, 0 ≤ 𝑛 < 𝑘 or 𝑛 > 𝑘 + 1.

(11)

Then, the sequence {𝑏
(𝑘)

𝑛
}𝑛∈N is a basis for the space ℎ(𝐶), and

any 𝑥 ∈ ℎ(𝐶) has a unique representation of the form
𝑥 = ∑

𝑘

𝜆𝑘𝑏
(𝑘)

, (12)

where 𝜆𝑘 = (𝐶1𝑥)𝑘 for all 𝑘 ∈ N.

Proof. It is clear that {𝑏(𝑘)} ⊂ ℎ(𝐶), since

𝐶1𝑏
(𝑘)

= 𝑒
𝑘
∈ ℓ (𝑘 = 0, 1, 2, . . .) . (13)

Let 𝑥 ∈ ℎ(𝐶) be given. For every nonnegative integer 𝑚,
we put

𝑥
[𝑚]

=

𝑚

∑

𝑘=0

𝜆𝑘𝑏
(𝑘)

. (14)

Then, we obtain by applying 𝐶1 to (14) with (13) that

𝐶1𝑥
[𝑚]

=

𝑚

∑

𝑘=0

𝜆𝑘𝐶1𝑏
(𝑘)

=

𝑚

∑

𝑘=0

(𝐶1𝑥)𝑘
𝑒
𝑘
,

{𝐶1 (𝑥 − 𝑥
[𝑚]

)}
𝑖
= {

0, (0 ≤ 𝑖 ≤ 𝑚) ,

(𝐶1𝑥)𝑖
, (𝑖 > 𝑚) ,

(𝑖, 𝑚 ∈ N ).

(15)

Given that 𝜀 > 0, then there is an integer 𝑚0 such that







(𝐶1𝑥)𝑗








<

𝜀

2

(16)

for all 𝑚 ≥ 𝑚0. Hence,





𝑥 − 𝑥
[𝑚]



ℎ(𝐶)

= sup
𝑛≥𝑚





(𝐶1)𝑛





≤ sup
𝑛≥𝑚0





(𝐶1)𝑛





≤

𝜀

2

< 𝜀 (17)

for all 𝑚 ≥ 𝑚0, which proves that 𝑥 ∈ ℎ(𝐶) is represented as
in (12).

To show the uniqueness of this representation, we assume
that 𝑥 = ∑

𝑘
𝜇𝑘𝑏
(𝑘). Since the linear transformation 𝑇, from

ℎ(𝐶) to ℎ, used in Theorem 6 is continuous, then we have at
this stage that

(𝐶1𝑥)𝑛
= ∑

𝑘

𝜇𝑘{𝐶1𝑏
(𝑘)

}
𝑛
= ∑

𝑘

𝜇𝑘𝑒
𝑘

𝑛
= 𝜇𝑛 (𝑛 ∈ N) , (18)

which contradicts the fact that (𝐶1𝑥)𝑛 = 𝜆𝑛 for all 𝑛 ∈ N.
Hence, the representation (12) of 𝑥 ∈ ℎ(𝐶) is unique.

3. Duals of the Sequence Space ℎ(𝐶)

In this section, we state and prove the theorems determining
the 𝛼-, 𝛽-, and 𝛾-duals of the sequence space ℎ(𝐶).

The set 𝑆(𝜆, 𝜇) defined by

𝑆 (𝜆, 𝜇) = {𝑧 = (𝑧𝑘) ∈ 𝜔 : 𝑥𝑧 = (𝑥𝑘𝑧𝑘) ∈ 𝜇

∀𝑥 = (𝑥𝑘) ∈ 𝜆}

(19)

is called the multiplier space of the sequence spaces 𝜆 and 𝜇.
One can easily observe for a sequence space 𝜐 with 𝜆 ⊃ 𝜐 ⊃ 𝜇

that the inclusions

𝑆 (𝜆, 𝜇) ⊂ 𝑆 (𝜐, 𝜇) , 𝑆 (𝜆, 𝜇) ⊂ 𝑆 (𝜆, 𝜐) (20)

hold.With the notation of (19), the alpha-, beta-, and gamma-
duals of a sequence space 𝜆, which are, respectively, denoted
by 𝜆
𝛼, 𝜆𝛽, and 𝜆

𝛾 are defined by

𝜆
𝛼
= 𝑆 (𝜆, ℓ1) , 𝜆

𝛽
= 𝑆 (𝜆, 𝑐𝑠) , 𝜆

𝛾
= 𝑆 (𝜆, 𝑏𝑠) . (21)

The alpha-, beta-, and gamma-duals of a sequence space
are also referred to as the Köthe-Toeplitz dual, the generalized
Köthe-Toeplitz dual, and theGarling dual of a sequence space,
respectively.

Given an 𝐹𝐾-space 𝑋 containing Φ, its conjugate is
denoted by 𝑋

, and its 𝑓-dual or sequential dual is denoted
by 𝑋
𝑓 and is given by 𝑋

𝑓
= {all sequences (𝑓(𝑒

𝑘
)) : 𝑓 ∈ 𝑋


}.

We need the following lemmas.

Lemma 8 (see [6]). Let 𝐵𝑈 = (𝑏𝑛𝑘) be defined via a sequence
𝑎 = (𝑎𝑘) ∈ 𝜔, and let the inverse V = (V𝑛𝑘) of the trianglematrix
𝑈 = (𝑢𝑛𝑘) be defined by 𝑏𝑛𝑘 = ∑

𝑛

𝑗=𝑘
𝑎𝑗V𝑗𝑘 for all 𝑘, 𝑛 ∈ N. Then,

𝜆
𝛽

𝑈
= {𝑎 = (𝑎𝑘) ∈ 𝜔 : 𝐵

𝑈
∈ (𝜆 : 𝑐)} ,

𝜆
𝛾

𝑈
= {𝑎 = (𝑎𝑘) ∈ 𝜔 : 𝐵

𝑈
∈ (𝜆 : ℓ∞)} .

(22)

Lemma 9 (see [5]). (i) 𝐴 ∈ (ℎ : ℓ) if and only if
∞

∑

𝑛=1





𝑎𝑛𝑘





𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑠 (𝑘 = 1, 2, . . .) ,

sup
𝑘

1

𝑘

∞

∑

𝑛=1












𝑘

∑

𝜐=1

𝑎𝑛𝜐












< ∞.

(23)

(ii) 𝐴 ∈ (ℎ : 𝑐) if and only if

sup
𝑛,𝑘

1

𝑘












𝑘

∑

𝜐=1

𝑎𝑛𝜐












< ∞, (24)

lim
𝑛→∞

𝑎𝑛𝑘 𝑒𝑥𝑖𝑠𝑡𝑠 (𝑘 = 1, 2, . . .) . (25)
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(iii) 𝐴 ∈ (ℎ : 𝑐0) if and only if

lim
𝑛→∞

𝑎𝑛𝑘 = 0 (26)

and (24) hold.
(iv) 𝐴 ∈ (ℎ : ℓ∞) if and only if (24) holds.
(v) 𝐴 ∈ (ℎ : ℎ) if and only if (26) holds and
∞

∑

𝑛=1

𝑛




𝑎𝑛𝑘 − 𝑎𝑛+1,𝑘





𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑠 (𝑘 = 1, 2, . . .) ,

sup
𝑘

1

𝑘

∞

∑

𝑛=1

𝑛












𝑘

∑

V=1

(𝑎𝑛V − 𝑎𝑛+1,V)












< ∞.

(27)

Theorem 10. The 𝛼-dual of the space ℎ(𝐶) is the set

𝑑1 = {𝑎 = (𝑎𝑘) ∈ 𝜔 : sup
𝑁,K∈F

1

𝑘

× ∑

𝑛∈𝑁











∑

𝑘∈𝐾

(−1)
𝑛−𝑘

(𝑘 + 1) 𝑎𝑛











< ∞} .

(28)

Proof. Let 𝑎 = (𝑎𝑛) ∈ 𝜔. We define the matrix 𝐵 = (𝑏𝑛𝑘) via
the sequence 𝑎 = (𝑎𝑛) by

𝑏𝑛𝑘 = {

(−1)
𝑛−𝑘

(𝑘 + 1) 𝑎𝑛 (𝑛 − 1 ≤ 𝑘 ≤ 𝑛 + 1) ,

0, (0 ≤ 𝑘 < 𝑛 − 1 or 𝑘 > 𝑛) ,

(𝑛, 𝑘 ∈ N) .

(29)

Bearing in mind the relation (7), we immediately derive that

𝑎𝑛𝑥𝑛 =

𝑛

∑

𝑘=𝑛−1

(−1)
𝑛−𝑘

(𝑘 + 1) 𝑎𝑛𝑦𝑘 = (𝐵𝑦)
𝑛

(𝑛 ∈ N) . (30)

We, therefore, observe by (30) that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ ℓ1

whenever 𝑥 ∈ ℎ(𝐶) if and only if 𝐵𝑦 ∈ ℓ1 whenever 𝑦 ∈ ℎ.
Then, we derive by Lemma 9 (i) that

sup
𝑁,𝐾∈F

1

𝑘

∑

𝑛∈𝑁












∑

𝑘∈𝐾

(−1)
𝑛−𝑘

(𝑘 + 1) 𝑎𝑛












< ∞, (31)

which yields the result that [ℎ(𝐶)]
𝛼
= 𝑑1.

Hahn [2] proved that ℎ𝛽 = 𝜎∞.

Theorem 11. Consider the following:

[ℎ (𝐶)]
𝛽
= 𝜎∞ ∩ ℓ∞. (32)

Proof. Consider the equation

𝑛

∑

𝑘=0

𝑎𝑘𝑥𝑘 =

𝑛

∑

𝑘=0

𝑎𝑘(

∞

∑

𝑗=𝑘

𝑦𝑗

𝑗

)

=

𝑛

∑

𝑘=0

(

∞

∑

𝑗=𝑘

𝑎𝑗)𝑦𝑘 = (𝐸𝑦)
𝑛

(𝑛 ∈ N) ,

(33)

where 𝐸 = (𝑒𝑛𝑘) is defined by

𝑒
(𝑘)

𝑛
=

{

{

{

∑

∞

𝑗=𝑘

𝑎𝑗

𝑗

(0 ≤ 𝑘 ≤ 𝑛) ,

0 (𝑘 > 𝑛) ,

(𝑛, 𝑘 ∈ N ). (34)

Thus, we deduce from (33) that 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑐𝑠 whenever
𝑥 = (𝑥𝑘) ∈ ℎ(𝐶) if and only if 𝐸𝑦 ∈ 𝑐 whenever 𝑦 = (𝑦𝑘) ∈ ℎ.
Therefore, we derive the consequence from Lemma 9 (ii) that
[ℎ(𝐶)]

𝛽
= 𝜎∞ ∩ ℓ∞.

Theorem 12. One has the following:

[ℎ (𝐶)]
𝛾
= 𝜎∞ ∩ ℓ∞. (35)

Proof. This is obtained in the similar way used in the proof of
Theorem 11.

4. Matrix Transformations

Let us suppose throughout that the sequences 𝑥 = (𝑥𝑘) and
𝑦 = (𝑦𝑘) are connected with (7), and let the 𝐴-transform of
the sequence 𝑥 = (𝑥𝑘) be 𝑟 = (𝑟𝑛), and let the 𝐵-transform of
the sequence 𝑦 = (𝑦𝑘) be 𝑠 = (𝑠𝑛); that is,

𝑟𝑛 = (𝐴𝑥)𝑛 = ∑

𝑘

𝑎𝑛𝑘𝑥𝑘 (𝑛 ∈ N) ,

𝑠𝑛 = (𝐵𝑦)
𝑛
= ∑

𝑘

𝑏𝑛𝑘𝑦𝑘 (𝑛 ∈ N) .

(36)

It is clear here that themethod𝐵 is applied to the𝐶-transform
of the sequence 𝑥 = (𝑥𝑘), while the method 𝐴 is directly
applied to the terms of the sequence 𝑥 = (𝑥𝑘). So themethods
𝐴 and 𝐵 are essentially different.

Following Şengönül and Başar [7], we give some knowl-
edge about the dual summability methods of the new type.
Let us assume the existence of the matrix product 𝐵𝐶. We
will say in this situation that the methods 𝐴 and 𝐵 in (36) are
the dual of the new type if 𝑟 = (𝑟𝑛) is reduced to 𝑠 = (𝑠𝑛)

(or 𝑠 = (𝑠𝑛) becomes 𝑟 = (𝑟𝑛)) under the application of the
formal summation by parts. This leads us to the fact that 𝐵𝐶

exists and is equal to𝐴 and (𝐵𝐶)𝑥 = 𝐵(𝐶𝑥) formally holds, if
one side exists. This statement is equivalent to the relation

𝑎𝑛𝑘 =

∞

∑

𝑗=𝑘

1

𝑗 + 1

𝑏𝑛𝑗 (or 𝑏𝑛𝑘 = (𝑘 + 1) Δ𝑎𝑛𝑘,

where Δ𝑎𝑛𝑘 = 𝑎𝑛𝑘 − 𝑎𝑛,𝑘+1) (𝑛 ∈ N) .

(37)

Now, we may give the following theorem.

Theorem 13. Let𝐴 = (𝑎𝑛𝑘) and 𝐵 = (𝑏𝑛𝑘) be the dual matrices
of the new type, and 𝜇 be any given sequence space. Then, let
𝐴 ∈ (ℎ(𝐶) : 𝜇) if and only if 𝐵 ∈ (ℎ : 𝜇) and

{(𝑛 + 1) 𝑎𝑛𝑘}𝑛∈N
∈ 𝑐0 (38)

for every fixed 𝑘 ∈ N.
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Proof. Suppose that𝐴 = (𝑎𝑛𝑘) and𝐵 = (𝑏𝑛𝑘) are dual matrices
of the new type; that is to say that (37) holds; let 𝜇 be any given
sequence space, and take account that the spaces ℎ(𝐶) and ℎ

are linearly isomorphic.
Let 𝐴 ∈ (ℎ(𝐶) : 𝜇), and take any 𝑦 ∈ ℎ. Then, 𝐵𝐶 exists,

and (𝑎𝑛𝑘)𝑘∈N ∈ 𝑑2 ∩ 𝑑3 ∩ 𝑐𝑠, which yields that (𝑎𝑛𝑘)𝑘∈N ∈ ℓ1

for each 𝑛 ∈ N. Hence, 𝐵𝑦 exists, and, thus, letting 𝑚 → ∞

in the equality

𝑚

∑

𝑘=0

𝑏𝑛𝑘𝑦𝑘 =

𝑚

∑

𝑘=0

𝑚

∑

𝑗=𝑘

1

𝑗 + 1

𝑏𝑛𝑗𝑥𝑘 (𝑛,𝑚 ∈ N) , (39)

we have by (37) that 𝐵𝑦 = 𝐴𝑥, which leads us to the
consequence that 𝐵 ∈ (ℎ : 𝜇).

Conversely, let 𝐵 ∈ (ℎ : 𝜇), and (38) hold, and take any
𝑥 ∈ ℎ(𝐶). Then, we have (𝑏𝑛𝑘)𝑘∈N ∈ ℓ1, which gives together
with (38) that (𝑎𝑛𝑘)𝑘∈N ∈ [ℎ(𝐶)]

𝛽 for each 𝑛 ∈ N. Hence, 𝐴𝑥

exists. Therefore, we obtain from the equality

𝑚

∑

𝑘=0

𝑎𝑛𝑘𝑥𝑘 =

𝑚−1

∑

𝑘=0

(𝑘 + 1) Δ 𝑛𝑘𝑦𝑘 + (𝑚 + 1) 𝑎𝑛𝑚𝑦𝑚

=

𝑚

∑

𝑘=0

𝑏𝑛𝑘𝑦𝑘 (𝑛,𝑚 ∈ N)

(40)

as𝑚 → ∞ that𝐴𝑥 = 𝐵𝑦, and this shows that𝐴 ∈ (ℎ(𝐶) : 𝜇).
This completes the proof.

By the changing roles of the spaces ℎ(𝑐) and 𝜇 in
Theorem 13, we have the following.

Theorem 14. Suppose that the elements of the infinite matrices
𝐹 = (𝑓𝑛𝑘) and 𝐺 = (𝑔𝑛𝑘) are connected with the relation

𝑔𝑛𝑘 =

𝑛

∑

𝑗=0

𝑓𝑗𝑘

𝑛 + 1
(41)

for all 𝑘,𝑚 ∈ N, and let 𝜇 be any given sequence space. Then,
𝐹 ∈ (𝜇 : ℎ(𝐶)) if and only if 𝐺 ∈ (𝜇 : ℎ).

Proof. Let 𝑥 = (𝑥𝑘) ∈ 𝜇, and consider the following equality
with (41):

1

𝑖 + 1

𝑖

∑

𝑗=0

𝑛

∑

𝑘=0

𝑓𝑗𝑘𝑥𝑘 =

𝑛

∑

𝑘=0

𝑔𝑖𝑘𝑥𝑘 (𝑖, 𝑛 ∈ N) (42)

which yields as 𝑛 → ∞ that

1

𝑖 + 1

𝑖

∑

𝑗=0

(𝐹𝑥)𝑗 = (𝐺𝑥)𝑖 (𝑖 ∈ N) . (43)

Therefore, one can easily see by (43) that𝐹𝑥 ∈ ℎ(𝐶)whenever
𝑥 ∈ 𝜇 if and only if 𝐺𝑥 ∈ 𝑐 whenever 𝑥 ∈ 𝜇.

Corollary 15. (i) 𝐴 = (𝑎𝑛𝑘) ∈ (ℎ(𝐶) : ℓ) if and only if (23)
hold with ∑

∞

𝑗=𝑘
(1/(𝑘 + 1))𝑏𝑛𝑗 instead of 𝑎𝑛𝑘.

(ii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℎ(𝐶) : 𝑐) if and only if (24) and (25) hold
with ∑

∞

𝑗=𝑘
(1/(𝑘 + 1))𝑏𝑛𝑗 instead of 𝑎𝑛𝑘.

(iii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℎ(𝐶) : 𝑐0) if and only if lim𝑛→∞𝑎𝑛𝑘 = 0

and (24) hold with ∑
∞

𝑗=𝑘
(1/(𝑘 + 1))𝑏𝑛𝑗 instead of 𝑎𝑛𝑘.

(iv) 𝐴 = (𝑎𝑛𝑘) ∈ (ℎ(𝐶) : ℓ∞) if and only if (24) hold with
∑
∞

𝑗=𝑘
(1/(𝑘 + 1))𝑏𝑛𝑗 instead of 𝑎𝑛𝑘.
(v) 𝐴 = (𝑎𝑛𝑘) ∈ (ℎ(𝐶) : ℎ) if and only if (26) and (27) hold

with ∑
∞

𝑗=𝑘
(1/(𝑘 + 1))𝑏𝑛𝑗 instead of 𝑎𝑛𝑘.

5. Conclusion

Hahn [2] defined the space ℎ and gave some of its general
properties. G. Goes and S. Goes [3] studied the functional
analytic properties of the space ℎ. The study of the Hahn
sequence space was initiated by Chandrasekhara Rao [5]
with a certain specific purpose in the Banach space the-
ory. Also Chandrasekhara Rao [5] computed some matrix
transformations. Chandrasekhara Rao and Subramanian [8]
introduced a new class of sequence spaces called semi-replete
spaces. Chandrasekhara Rao and Subramanian [8] defined
the semi-Hahn space and proved that the intersection of all
the semi-Hahn spaces is the Hahn space. Balasubramanian
and Pandiarani [9] defined the new sequence space ℎ(𝐹)

called the Hahn sequence space of fuzzy numbers and proved
that 𝛽- and 𝛾-duals of ℎ(𝐹) is the Cesàro space of the set of all
fuzzy bounded sequences.

The sequence space ℎ was defined by Hahn [2], and G.
Goes and S. Goes [3] and Chandrasekhara Rao et al. [5, 8,
10] investigated some properties of the space ℎ. In exception
of these works, there has not been any work related to the
Hahn sequence space. In this paper, the Hahn sequence space
ℎ defined by the Cesáromeanworked as follows. In Section 2,
the new Hahn sequence space is determined by the Cesáro
mean, and some properties of this space are investigated. In
Section 3,𝛼-,𝛽-, and 𝛾-duals of the newHahn sequence space
are computed. In Section 4, the matrix classes (ℎ(𝐶) : 𝜇) and
(𝜇 : ℎ(𝐶)) are characterized, where 𝜇 is an arbitrary sequence
space, and some results of these characterizations are given.

We can define the matrix domain ℎ𝐴 of an arbitrary tri-
angle𝐴, compute its 𝛼-, 𝛽-, and 𝛾-duals, and characterize the
matrix transformations on them into the classical sequence
spaces, and almost the convergent sequence space is a new
result.
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