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In the present paper, we establish some new inequalities similar to Hilberts type inequalities. Our results provide some new
estimates to these types of inequalities.
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The well-known classical Hilbert’s double-series inequality
can be stated as follows [1, page 253].
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Theorem A. If p;, p, > 1 such that 1/p, +1/p, = 1 and X (t (n=t+DIVE ()] > '

0<A=2-1/p, =1/p, = 1/q, +1/q, < 1, where,
as usual, q; and q, are the conjugate exponents of p, and p,,
respectively, then
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The first aim of this paper is to establish a new inequality
similar to Hilbert’s type inequality. Our result provides new

( Z o )1/p ' (i b )UP : M estimates to this type of inequality.

Theorem 2. Let p > 1 be constants, and 1/p + 1/q = 1.
Fori = 1,2, let a;(s;,t;) be real-valued functions defined for
(s;pt;), wheres; = 1,2,...,m; t; = 1,2,...,n;, and let m;, n,
be natural numbers. Let a;(0,t;) = a,(s;,0) = 0, and define the
operators V,,V, by

where K = K(py, p,) depends on p, and p, only.

In recent years, several authors [1-18] have given consid-
erable attention to Hilbert’s double-series inequality together
with its integral version, inverse version, and various general-

L . ) . . . Vi, (s, t) =0, (s;,8) —v; (s; — 1,t;),
izations. In particular, Pachpatte [11] established an inequality i (s 1) = 0 (s 1) — vy (s ) 3)
similar to inequality (1) as follows. Vo, (spt;) =0 (spt;) —v; (58, — 1)

Theorem 1. Let p > 1 be constant and 1/p +1/q = 1L If  Thep,
a(s) and b(t) are real-valued functions defined for {0, 1, ..., m}

and {0, 1, ..., n}, respectively, and a(0) = b(0) = 0. Moreover, mon [ my
define the operators V by Vu(t) = u(t) — u(t — 1). Then, Zl Z Zl zl (|a1 (spt)|” +ay (55, 1,)]* )
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Remark 3. Inequality (4) is just a similar version of the
following inequality established by Pachpatte [11]:
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On the other hand, let a,(s;,t,) and a,(s,,t,) change to
a,(s;) and a,(s,), respectively, and, with appropriate trans-
formation, we have
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and S(h) is as in (6). This is just a similar version of inequality
(2) in Theorem 1.

The integral analogue of inequality (1) in Theorem A is as
follows [1, page 254].

Theorem B. Let p,, p,, 41> 9y, and A be as in Theorem A. If
f € LP(0,00) and g € LY(0, 00), then
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where K = K(p, q) depends on p and q only.

(10)

In [11], Pachpatte also established a similar version of
inequality (10) as follows.

Theorem 4. Let p > 1 be constants, and 1/p+1/q = 1. If f(s)
and g(t) are real-valued continuous functions defined on [0, x)
and [0, y), respectively, and let f(0) = g(0) = 0. Then,
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Another aim of this paper is to establish a new integral
inequality similar to Hilbert’s type inequality.
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Theorem 5. Let p > 1, and 1/p +1/q = 1. Fori = 1,2, let
h; > 1, f(s;,t;) be real-valued differentiable functions defined
on [0,x;) x [0, y,), where x; € (0,00), y; € (0,00), and

.flh1 (Sl’tl)lp + |f2h2 (52’t2)|q

£(0,t;) = fi(s;,0) = 0. As usual, partial derivatives of f; are
denoted by D, f;, D, f;, Dy, f; = D5, f;, and so forth. Let

D, f; (spt;) = D, (i f" ™ (st) - Dy fi(sp ). (12)

Then,
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and S(h) is as in (6).

Remark 6. Inequality (13) is just a similar version of the
following inequality established by Pachpatte [11]:
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On the other hand, let fi(s;,t;) and f,(s,,t,) change
to f,(s;) and f,(s,), respectively, and, with appropriate
transformation, we have
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This is just a similar version of inequality (I11) in
Theorem 4.

2. Proof of Theorems

Proof of Theorem 2. From the hypotheses of Theorem 2, we
have

s b
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By using Holder’s inequality and noticing the reverse Young’s
inequality [19],
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for positive real numbers s;, s, and 1/ + 1/ = 1, & > 1,

where S(h) is as in (6). Hence,
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taking the sum of both sides of (20) over t; and s; from 1 to
m; and m; (i = 1,2), respectively, and making use of Hélder’s
inequality, we have

l“z 52»t2)| )

55 (55 fatcnr

s;=1t;=1 \s,=1¢t,=1

X (Fp,q (s1>t1, 80, 15)

- max {P(Sltl)p/q’ Q(Sztz)q/P})_l )
&=1m=

m R 1/p
< L Z Z( Z Z [V,Viay (51>’11)| )

m, n, s, b 1/q
% Z Z( Z Z|V2V1a2 (Ez’ﬂz)|q> .

=1 {2:1 1,=1

Abstract and Applied Analysis

m on s 4 1/p
(Z Z Z Z|V2V1al (E1>711)| )

si=14=1& =1m=

1/
x (myn,) P

m, n, s 1/q
x < Z Z Z Z|V2V1‘12 (52’712)|q> .

s;=1t,=1 {2:1 17,=1

1 1/ 1/
=E(m1”1) q(mznz) P

x(%i(ml—£1+l)

‘51:1 m=1

1/p
X (ny —ny +1) |v2V1a1 (fl)’h)lp>

X(gii@m-%+”05—m+U

&=1mp=1

1/q
= |V2V1512 (Ez’ ’72)lq>

1 / /
= E(W‘l”l)l q(””z”z)l P
my n
<ZZ(m1—sl+1) -t +1)
sp=1t;=1

1/p
X |V2V1‘11 (s15 tl)lp)

—t,+1)

X(mz_zi(mz_szﬁLl)(”z

1/p
x |V,Vya, (52,t2)|p> :
(22)

This completes the proof. O

Proof of Theorem 5. From the hypotheses of Theorem 5, we
obtain fori = 1,2:
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This completes the proof. O [4] M. Gao and B. Yang, “On the extended Hilberts inequality;’
Proceedings of the American Mathematical Society, vol. 126, no.
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