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This paper deals with a reaction-diffusion system with fractional reactions modeling 𝑚-substances into interaction following
activator-inhibitor’s scheme. The existence of global solutions is obtained via a judicious Lyapunov functional that generalizes the
one introduced by Masuda and Takahashi.

1. Introduction

In this paper, we are concerned with the existence of global
solutions to a reaction-diffusion system with 𝑚 components
generalizing the activator-inhibitor system:
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The main result of the paper is the following.

Theorem 1. Assume that condition (4) is satisfied. Let 𝑢 be a
solution of (1)–(3) with positive and bounded initial data, and
let
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denotes the eventual blow-up time.

Corollary 2. Under the assumptions ofTheorem 1 all solutions
of (1)–(3) with positive initial data in 𝐶(Ω) are global. If in
addition 𝑏

1
, . . . , 𝑏

𝑚
, 𝜎 > 0, then 𝑢 is uniformly bounded in Ω ×

[0, ∞).

Before we prove our results, let us dwell a while on
the existing literature concerning Gierer-Meinhardt’s type
systems.

In 1972, following an ingenious idea of Turing [1], Gierer
and Meinhardt [2] proposed a mathematical model for
pattern formations of spatial tissue structures of hydra in
morphogenesis. It is a system of reaction-diffusion equations
of the form:
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where Ω ⊂ R𝑁 (𝑁 = 1, 2, 3 in practice) is a bounded domain
with smooth boundary 𝜕Ω, 𝑎

1
, 𝑎
2
, 𝜇, ], 𝜎 > 0, and 𝑝, 𝑞, 𝑟

and 𝑠 are non negative windexes with 𝑝 > 1. Here 𝑢 is the
activator, and V is the inhibitor.

Global existence of solutions in (0, ∞) was proved by
Rothe [3], more than ten years after Gierer and Meinhardt’s
original paper with special choice of the parameters: 𝑝 = 2,
𝑞 = 1, 𝑟 = 2, 𝑠 = 0, and 𝑁 = 3. Masuda and Takahashi [4]
were able to prove global estimates and bounds of the solution
for Gierer and Meinhardt’s system in its general form. They
proceeded by first proving lower bounds, then 𝐿

𝑝 bounds
(for any 𝑝 > 1), then uniform estimates and bounds in
appropriate Sobolev spaces. The key point is represented by
the 𝐿

𝑝 bounds, which are derived using in a subtle way the
specific structure of the equations.

Li et al. [5] also studied the activator-inhibitor model.
Very recently, Bernasconi [6] considered the larger sys-
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and Meinhardt et al. [7] proposed activator-inhibitor models
to describe a theory of biological pattern:
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which is Gierer and Meinhardt’s system supplemented with
a third equation, where 𝑎(𝑥, 𝑡) is the activator, ℎ(𝑥, 𝑡) is the
inhibitor, and 𝑠(𝑥, 𝑡) is a source that acts as an inhomogeneous
inhibitor.

Our paper generalizes the system in [5] to 𝑚-compo-
nents.

2. Preliminary Observations and Notations
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It is well known that to prove global existence of solu-
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Our aim is to construct a Lyapunov functional that allows
us to obtain 𝐿

𝑝-bounds on 𝑢
𝑖
leading to global existence.

3. Preparatory Lemmas

For the proof of Theorem 1, we need some preparatory
lemmas whose proofs will be in the appendix.
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Differentiating 𝐿(𝑡) with respect to 𝑡 yields

𝐿
󸀠
(𝑡) = ∫

Ω

𝑑

𝑑𝑡

(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

) 𝑑𝑥

= ∫

Ω

(𝛼
1

𝑢
𝛼
1
−1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

𝜕
𝑡
𝑢
1

−

𝑚

∑

𝑖=2

𝛼
𝑖

𝑢
𝛼
1

1

𝑢
𝛼
𝑖
+1

𝑖
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝛼
𝑗

𝑗

𝜕
𝑡
𝑢
𝑖
) 𝑑𝑥.

(29)

Replacing 𝜕
𝑡
𝑢
𝑖
, 𝑖 = 1, . . . , 𝑚, by its expression from (1), we get

𝐿
󸀠
(𝑡) = ∫

Ω

(𝑎
1
𝛼
1

𝑢
𝛼
1
−1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

Δ𝑢
1

−

𝑚

∑

𝑖=2

𝛼
𝑖
𝑎
𝑖

𝑢
𝛼
1

1

𝑢
𝛼
𝑖
+1

𝑖
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝛼
𝑗

𝑗

Δ𝑢
𝑖

− 𝑏
1
𝛼

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

+

𝑚

∑

𝑖=2

𝑏
𝑖
𝛼
𝑖

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

+ 𝛼
1

𝑢
𝑝
11
−1+𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝑝
1𝑗
+𝛼
𝑗

𝑗

−

𝑚

∑

𝑖=2

𝛼
𝑖

𝑢
𝑝
𝑖1
+𝛼
1

1

𝑢
𝑝
𝑖𝑖
+1+𝛼
𝑖

𝑘
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝑝
𝑖,𝑗
+𝛼
𝑗

𝑗

+ 𝜎𝛼
1

𝑢
𝛼
1
−1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

) 𝑑𝑥

:= 𝐼 + 𝐽,

(30)

where we have set

𝐼 = 𝑎
1
𝛼
1

∫

Ω

𝑢
𝛼
1
−1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

Δ𝑢
1

𝑑𝑥

−

𝑚

∑

𝑖=2

𝛼
𝑖
𝑎
𝑖
∫

Ω

𝑢
𝛼
1

1

𝑢
𝛼
𝑖
+1

𝑖
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝛼
𝑗

𝑗

Δ𝑢
𝑖
𝑑𝑥,

(31)

𝐽 = (−𝑏
1
𝛼
1
+

𝑚

∑

𝑖=2

𝑏
𝑖
𝛼
𝑖
) 𝐿 (𝑡)

+ 𝛼
1

∫

Ω

𝑢
𝑝
11
−1+𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝑝
1𝑗
+𝛼
𝑗

𝑗

𝑑𝑥

−

𝑚

∑

𝑖=2

𝛼
𝑖
∫

Ω

𝑢
𝑝
𝑖1
+𝛼
1

1

𝑢
𝑝
𝑖𝑖
+1+𝛼
𝑖

𝑘
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝑝
𝑖𝑗
+𝛼
𝑗

𝑗

𝑑𝑥

+ 𝜎𝛼
1

∫

Ω

𝑢
𝛼
1
−1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

𝑑𝑥.

(32)

Estimation of 𝐼.We are going to show that 𝐼 ≤ 0.
Using Green’s formula, we obtain

𝐼 = ∫

Ω

(𝑎
1
𝛼
1

[

[

− (𝛼
1

− 1)

𝑢
𝛼
1
−2

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

󵄨
󵄨
󵄨
󵄨
∇𝑢

1

󵄨
󵄨
󵄨
󵄨

2

+

𝑚

∑

𝑖=2

𝛼
𝑖

𝑢
𝛼
1
−1

1

𝑢
𝛼
𝑖
+1

𝑖
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝛼
𝑗

𝑗

∇𝑢
1
∇𝑢

𝑖
]

]

+

𝑚

∑

𝑖=2

𝑎
𝑖

𝛼
𝑖

⋅
[

[

𝛼
1

𝑢
𝛼
1
−1

1

𝑢
𝛼
𝑖
+1

𝑖
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝛼
𝑗

𝑗

∇𝑢
1
∇𝑢

𝑖

− (𝛼
𝑖
+ 1)

𝑢
𝛼
1

1

𝑢
𝛼
𝑖
+2

𝑖
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝛼
𝑗

𝑗

󵄨
󵄨
󵄨
󵄨
∇𝑢

𝑖

󵄨
󵄨
󵄨
󵄨

2

−

𝑚

∑

𝑘=2
𝑘 ̸= 𝑖

𝛼
𝑘

×

𝑢
𝛼
1

1

𝑢
𝛼
𝑘
+1

𝑘
𝑢
𝛼
𝑖
+1

𝑖
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖,𝑗 ̸= 𝑘
𝑢

𝛼
𝑗

𝑗

× ∇𝑢
𝑘
∇𝑢

𝑖
]

]

) 𝑑𝑥,

= − ∫

Ω

(

𝑢
𝛼
1
−2

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗
+2

𝑗

(𝑄𝑇) ⋅ 𝑇) 𝑑𝑥,

(33)

where 𝑄 = (𝑎
𝑖,𝑗

)
1≤𝑖,𝑗≤𝑚

is defined in (8) and

𝑇 = (

𝑚

∏

𝑗=2

𝑢
𝑗
∇𝑢

1
, . . . ,

𝑚

∏

𝑗=1

𝑗 ̸= 𝑖

𝑢
𝑗
∇𝑢

𝑖
, . . . ,

𝑚−1

∏

𝑗=1

𝑢
𝑗
∇𝑢

𝑚
)

𝑡

. (34)

The matrix 𝑄 is positive definite if and only if all its
associatedminormatricesΔ

1
, Δ

2
, . . . , Δ

𝑚
are positive. To see

this, we have the following.
(1) Δ

1
= 𝑎

1
𝛼
1
(𝛼
1

− 1) > 0. Using (5), we get det[1] > 0.
(2) According to Lemma 4, we have

det [2] = 𝐾
2

2
= 𝛼

2

1
𝛼
2

2
𝑎
1
𝑎
2

[

𝛼
1

− 1

𝛼
1

𝛼
2

+ 1

𝛼
2

− 𝐴
2

12
] . (35)

Using (6) and (24) for 𝑙 = 2, we get det[2] > 0.
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(3) Again according to Lemma 4, we have

𝐾
3

3
= det [3] det [1] . (36)

But det[1] > 0, thus sign(𝐾
3

3
) = sign(det[3]).

Using (6) and (24) for 𝑙 = 3, we get det[3] > 0.
(4) We suppose that det[𝑘] > 0, 𝑘 = 1, 2, . . . , 𝑙 − 1 and

prove that det[𝑙] > 0; thus
det [𝑘] > 0, 𝑘 = 1, . . . , (𝑙 − 1)

󳨐⇒

𝑘=𝑙−2

∏

𝑘=1

(det[𝑘])
2
(𝑙−𝑘−2)

> 0.

(37)

From Lemma 4,

𝐾
𝑙

𝑙
= det [𝑙] ⋅

𝑘=𝑙−2

∏

𝑘=1

(det[𝑘])
2
(𝑙−𝑘−2)

. (38)

This along with (37) yields

sign (𝐾
𝑙

𝑙
) = sign (det [𝑙]) . (39)

But from (6) and (24) 𝐾
𝑙

𝑙
> 0; thus det[𝑙] > 0.

Consequently, we have 𝐼 ≤ 0.

Estimation of 𝐽. We are going to estimate 𝐽 by a function of
𝐿(𝑡).

According to the maximum principle, there exists 𝐶
0

depending on 𝜑
𝑖
(𝑥), 𝑖 = 1, . . . , 𝑚, such that 𝑢

𝑖
≥ 𝐶

0
> 0, 𝑖 =

2, . . . , 𝑚. We then have

𝑢
𝛼
1
−1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

= (

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

(𝛼
1
−1)/𝛼

1
𝑚

∏

𝑗=2

(

1

𝑢
𝑗

)

𝛼
𝑗
/𝛼
1

≤ (

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

(𝛼
1
−1)/𝛼

1

(

1

𝐶
0

)

∑
𝑚

𝑗=2
𝛼
𝑗
/𝛼
1

,

(40)

whereupon

𝑢
𝛼
1
−1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

≤ 𝐶
2
(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

(𝛼
1
−1)/𝛼

1

,

where 𝐶
2

= (

1

𝐶
0

)

∑
𝑚

𝑗=2
𝛼
𝑗
/𝛼
1

.

(41)

We have

𝐽 ≤ (−𝑏
1
𝛼
1
+

𝑚

∑

𝑖=2

𝑏
𝑖
𝛼
𝑖
) 𝐿 (𝑡)

+ 𝛼
1

∫

Ω

𝑢
𝑞
11
−1+𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝑞
1𝑗
+𝛼
𝑗

𝑗

𝑑𝑥

−

𝑚

∑

𝑖=2

𝛼
𝑖
∫

Ω

𝑢
𝑞
𝑖1
+𝛼
1

1

𝑢
𝑞
𝑖𝑖
+1+𝛼
𝑖

𝑘
∏
𝑚

𝑗=2,𝑗 ̸= 𝑖
𝑢

𝑞
𝑖𝑗
+𝛼
𝑗

𝑗

𝑑𝑥

+ 𝜎𝛼
1

∫

Ω

𝐶
2
(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

(𝛼
1
−1)/𝛼

1

𝑑𝑥.

(42)

Using Lemma 3, we obtain

𝐽 ≤ (−𝑏
1
𝛼
1
+

𝑚

∑

𝑖=2

𝑏
𝑖
𝛼
𝑖
) 𝐿 (𝑡)

+ ∫

Ω

𝐶(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

𝜃

𝑑𝑥

+ 𝜎𝛼
1

∫

Ω

𝐶
2
(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

(𝛼
1
−1)/𝛼

1

𝑑𝑥.

(43)

Applying Hölder’s inequality, we obtain

∫

Ω

𝐶(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

𝜃

𝑑𝑥

≤ (∫

Ω

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

𝑑𝑥)

𝜃

𝐶(meas(Ω))
1−𝜃

.

(44)

So

∫

Ω

𝐶(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

𝜃

𝑑𝑥 ≤ 𝐶
3
𝐿
𝜃

(𝑡) ,

𝐶
3

= 𝐶(meas (Ω))
1−𝜃

.

(45)

Also, we have

∫

Ω

𝐶
2
(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

(𝛼
1
−1)/𝛼

1

𝑑𝑥

≤ (∫

Ω

(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

) 𝑑𝑥)

(𝛼
1
−1)/𝛼

1

⋅ (∫

Ω

(𝐶
2
)
𝛼
1

𝑑𝑥)

1/𝛼
1

.

(46)

So

∫

Ω

𝐶
2
(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

(𝛼
1
−1)/𝛼

1

𝑑𝑥 ≤ 𝐶
4
𝐿

(𝛼
1

− 1)

𝛼
1 (𝑡) ,

where 𝐶
4

= 𝐶
2
(meas (Ω))

1/𝛼
1

.

(47)

We then get

𝐽 ≤ (−𝑏
1
𝛼
1
+

𝑚

∑

𝑖=2

𝑏
𝑖
𝛼
𝑖
) 𝐿 (𝑡) + 𝐶

3
𝐿
𝜃

(𝑡)

+ 𝛼
1
𝜎𝐶

4
𝐿
(𝛼
1
−1)/𝛼

1
(𝑡) ,

(48)
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which implies

𝐽 ≤ (−𝑏
1
𝛼
1
+

𝑚

∑

𝑖=2

𝑏
𝑖
𝛼
𝑖
) 𝐿 (𝑡)

+ 𝐶
5

(𝐿
𝜃

(𝑡) + 𝛼
1
𝜎𝐿

(𝛼
1
−1)/𝛼

1
(𝑡)) .

(49)

This yields the differential inequality:

𝐿
󸀠
(𝑡) ≤ (−𝑏

1
𝛼
1
+

𝑚

∑

𝑖=2

𝑏
𝑖
𝛼
𝑖
) 𝐿 (𝑡)

+ 𝐶
5

(𝐿
𝜃

(𝑡) + 𝛼
1
𝜎𝐿

(𝛼
1
−1)/𝛼

1
(𝑡)) .

(50)

Thus under conditions (5), (6), and (8), we obtain −𝑏
1
𝛼
1

+

∑
𝑚

𝑖=2
𝑏
𝑖
𝛼
𝑖
< 0; using Lemma 6 we deduce that 𝐿(𝑡) is bounded

on (0, 𝑇max); that is, 𝐿(𝑡) ≤ 𝛾
1
, where 𝛾

1
depends on 𝜑

𝑖
(𝑥),

𝑖 = 1, . . . , 𝑚.

Proof of Corollary 2 (𝐿∞-bounds). By Theorem 1, we have
𝑢
𝑝
𝑖1

1
/∏

𝑚

𝑗=2
𝑢

𝑝
𝑖𝑗

𝑗
∈ 𝐿

∞
((0, 𝑇max), 𝐿

𝑟
(Ω)), 𝑖 = 2, . . . , 𝑚 for all

𝑟 > 𝑁/2. By a simple argument relying on the variation-
of-constants formula and the 𝐿

𝑝-𝐿𝑞-estimate (Proposition
48.4 see [10]), we deduce that 𝑢 is uniformly bounded.
Consequently, 𝑇max = ∞.

Appendix

The purpose of this appendix is to prove the lemmas of
Section 3 which have been used in the proof of Theorem 1.

Proof of Lemma 3. Inequality (18) is equivalent to

𝛼
1

𝑢
𝑞
11
−1

1

∏
𝑚

𝑗=2
𝑢

𝑞
1𝑗

𝑗

≤ 𝛼
𝑘

𝑢
𝑞
𝑘1

1

𝑢
𝑞
𝑘𝑘
+1

𝑘
∏
𝑚

𝑗=2,𝑗 ̸= 𝑘
𝑢

𝑞
𝑘𝑗

𝑗

+ 𝐶(

𝑢
𝛼
1

1

∏
𝑚

𝑗=2
𝑢

𝛼
𝑗

𝑗

)

𝜃−1

.

(A.1)

Let us set 𝜁 = (𝛼
𝑘
𝑢
𝑞
𝑘1

1
)/(𝑢

𝑞
𝑘𝑘
+1

𝑘
∏
𝑚

𝑗=2,𝑗 ̸= 𝑘
𝑢

𝑞
𝑘𝑗

𝑗
).

Now, we write

𝛼
1

𝑢
𝑞
11
−1

1

∏
𝑚

𝑗=2
𝑢

𝑞
1𝑗

𝑗

= 𝛼
1
(𝛼
𝑘
)
−(𝑞
11
−1)/𝑞

𝑘1

(𝜁)
(𝑞
11
−1)/𝑞

𝑘1

⋅

𝑚

∏

𝑗=2

𝑗 ̸= 𝑘

(𝑢
𝑗
)

𝑞
𝑘𝑗
(𝑞
11
−1)/𝑞

𝑘1
−𝑞
1𝑗

⋅ (𝑢
𝑘
)
(𝑞
𝑘𝑘
+1)(𝑞

11
−1)/𝑞

𝑘1
−𝑞
1𝑘

.

(A.2)

For each 𝜖 such that 0 < 𝜖 < min{1, 𝑞
1𝑘

/(𝑞
𝑘𝑘

+ 1), 𝑞
1𝑗

/𝑞
𝑘𝑗

, 𝑗 =

2, . . . , 𝑚, and 𝑗 ̸= 𝑘} − (𝑞
11

− 1)/𝑞
𝑘1
,

𝛼
1

𝑢
𝑞
11
−1

1

∏
𝑚

𝑗=2
𝑢

𝑞
1𝑗

𝑗

= 𝛼
1
(𝛼
𝑘
)
−(𝑞
11
−1)/𝑞

𝑘1

(𝜁)
(𝑞
11
−1)/𝑞

𝑘1
+𝜖

× (𝜁)
−𝜖

𝑚

∏

𝑗=2

𝑗 ̸= 𝑘

(𝑢
𝑗
)

𝑞
𝑘𝑗
(𝑞
11
−1)/𝑞

𝑘1
−𝑞
1𝑗

× (𝑢
𝑘
)
(𝑞
𝑘𝑘
+1)(𝑞

11
−1)/𝑞

𝑘1
−𝑞
1𝑘

= 𝛼
1
(𝛼
𝑘
)
−(𝑞
11
−1)/𝑞

𝑘1
−𝜖

(𝜁)
(𝑞
11
−1)/𝑞

𝑘1
+𝜖

× (

1

𝑢
𝛼
1

1

)

𝑞
𝑘1
𝜖/𝛼
1

×

𝑚

∏

𝑗=2

𝑗 ̸= 𝑘

(𝑢
𝑗
)

𝑞
𝑘,𝑗
(𝑞
11
−1)/𝑞

𝑘,1
−𝑞
1𝑗
+𝜖𝑞
𝑘𝑗

× (𝑢
𝑘
)
(𝑞
𝑘𝑘
+1)(𝑞

11
−1)/𝑞

𝑘,1
−𝑞
1𝑘
+𝜖(𝑞
𝑘𝑘
+1)

≤ 𝛼
1
(𝛼
𝑘
)
−(𝑞
11
−1)/𝑞

𝑘1
−𝜖

(𝜁)
(𝑞
11
−1)/𝑞

𝑘1
+𝜖

× (

1

𝑢
𝛼
1

1

)

𝑞
𝑘1
𝜖/𝛼
1

×

𝑚

∏

𝑗=2

𝑗 ̸= 𝑘

(ℎ
𝑗
)

𝑞
𝑘𝑗
(𝑞
11
−1)/𝑞

𝑘1
−𝑞
1𝑗
+𝜖𝑞
𝑘𝑗

× (ℎ
𝑘
)
(𝑞
𝑘𝑘
+1)(𝑞

11
−1)/𝑞

𝑘1
−𝑞
1𝑘
+𝜖(𝑞
𝑘𝑘
+1)

𝑚

∏

𝑗=2

(

𝑢
𝑗

ℎ
𝑗

)

𝛼𝑗𝑞
𝑘1
𝜖/𝛼
1

≤ 𝐶
1
(𝜁)

(𝑞
11
−1)/𝑞

𝑘1
+𝜖

(

∏
𝑚

𝑗=2
𝑢
𝛼𝑗

𝑗

𝑢
𝛼
1

1

)

𝑞
𝑘1
𝜖/𝛼
1

,

(A.3)

where

𝐶
1

= 𝛼
1
(𝛼
𝑘
)
−(𝑞
11
−1)/𝑞

𝑘1
−𝜖

×

𝑚

∏

𝑗=2

𝑗 ̸= 𝑘

(ℎ
𝑗
)

𝑞
𝑘𝑗
(𝑞
11
−1)/𝑞

𝑘1
−𝑞
1,𝑗
+𝜖𝑞
𝑘,𝑗
−𝛼𝑗𝑞
𝑘1
𝜖/𝛼
1

× (ℎ
𝑘
)
(𝑞
𝑘𝑘
+1)(𝑞

11
−1)/𝑞

𝑘1
−𝑞
1𝑘
+𝜖(𝑞
𝑘𝑘
+1)−𝛼

𝑘
𝑞
𝑘1
𝜖/𝛼
1

.

(A.4)

Using Young’s inequality for (A.3) with

𝐶 = 𝐶
1+(𝑞
11
−1+𝑞
𝑘1
𝜖)/(𝑞
𝑘1
−(𝑞
11
−1)−𝑞

𝑘1
𝜖)

1
,

𝜃 = 1 −

𝑞
𝑘1

𝜖

𝛼
1

(1 − (𝑞
11

− 1) /𝑞
𝑘1

− 𝜖)

,

(A.5)

where 𝜖 is sufficiently small, we get inequality (18).

Proof of Lemma 4. We prove this lemma by induction.
For 𝑚 = 2, we have 𝐾

2

2
= det[2].

We consider the case 𝑚 = 3.
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By using the well-known Dodgson condensation [11] for
the symmetric 3-square matrix:

det [1] det [3] = det [2] det
1≤𝑖,𝑗≤3

[(𝑎
𝑖,𝑗

)
𝑖 ̸= 2,𝑗 ̸= 2

]

− [ det
1≤𝑖,𝑗≤3

[(𝑎
𝑖,𝑗

)
𝑖 ̸= 3,𝑗 ̸= 2

]]

2

.

(A.6)

But
det [2] = 𝐾

2

2
,

det
1≤𝑖,𝑗≤3

[(𝑎
𝑖,𝑗

) 𝑖 ̸= 2

𝑗 ̸= 2

] = 𝑎
11

𝑎
33

− (𝑎
13

)
2

= 𝐾
2

3
,

det
1≤𝑖,𝑗≤3

[(𝑎
𝑖,𝑗

) 𝑖 ̸= 2

𝑗 ̸= 3

] = 𝑎
11

𝑎
23

− 𝑎
12

𝑎
13

= 𝐻
2

3
.

(A.7)

So

det [1] det [3] = 𝐾
2

2
⋅ 𝐾

2

3
− [𝐻

2

3
]

2

. (A.8)

Hence by using formula (20), formula (19) is correct for 𝑚 =

3.
When 𝑚 ≥ 4, we suppose that formula (19) is correct for

(𝑚 − 1), 𝑚 − 2, 𝑚 − 3, . . . , 4, and we prove it for 𝑚.
It is sufficient to prove that

𝐾
𝑚−1

𝑚
= det
1≤𝑖,𝑗≤𝑚

((𝑎
𝑖,𝑗

) 𝑖 ̸=𝑚−1

𝑗 ̸=𝑚−1

)

⋅

𝑘=𝑚−3

∏

𝑘=1

(det[𝑘])
2
(𝑚−𝑘−3)

.

(A.9)

By putting 𝑙 = 𝑚 − 1 in formula (21), we get

𝐻
𝑚−1

𝑚
= det
1≤𝑖,𝑗≤𝑚

((𝑎
𝑖,𝑗

) 𝑖 ̸=𝑚

𝑗 ̸=𝑚−1

)

⋅

𝑘=𝑚−3

∏

𝑘=1

(det[𝑘])
2
(𝑚−𝑘−3)

.

(A.10)

From the mathematical induction proof, we have

𝐾
(𝑚−1)

(𝑚−1)
= det [𝑚 − 1]

⋅

𝑘=𝑚−3

∏

𝑘=1

(det[𝑘])
2
(𝑚−𝑘−3)

.

(A.11)

By putting 𝑙 = 𝑚 in formula (20), we get

𝐾
𝑚

𝑚
= 𝐾

𝑚−1

𝑚−1
⋅ 𝐾

𝑚−1

𝑚
− (𝐻

𝑚−1

𝑚
)

2

. (A.12)

By replacing (A.9), (A.10), and (A.11) in (A.12), we obtain

𝐾
𝑚

𝑚
=

𝑘=𝑚−3

∏

𝑘=1

(det[𝑘])
2
(𝑚−𝑘−2)

⋅ det [𝑚 − 2] ⋅ det [𝑚]

= det [𝑚] ⋅

𝑘=𝑚−2

∏

𝑘=1

(det[𝑘])
2
(𝑚−𝑘−2)

,

(A.13)

and thus formula (19) is correct for 𝑚.

Now, we prove formula (A.9); we may generalize formula
(A.9) as follows:

𝐾
𝑙

𝑚
= det
1≤𝑖,𝑗≤𝑚

((𝑎
𝑖𝑗
) 𝑖 ̸=𝑚−1,...𝑙

𝑗 ̸=𝑚−1,...𝑙

)

⋅

𝑘=𝑙−2

∏

𝑘=1

(det[𝑘])
2
((𝑙−2)−𝑘)

,

𝑙 = 3, . . . , 𝑚 − 1.

(A.14)

Also, we prove formula (A.14) by induction. It is a second
inductive proof included in the first one.

It is evident for 𝑙 = 2.
For 𝑙 = 3, formula (20) will be:

𝐾
3

𝑚
= 𝐾

2

2
⋅ 𝐾

2

𝑚
− [𝐻

2

𝑚
]

2

. (A.15)

Since we already know that

𝐾
2

2
= det [2] ,

𝐾
2

𝑚
= det
1≤𝑖,𝑗≤𝑚

((𝑎
𝑖,𝑗

) 𝑖 ̸=𝑚−1,...2

𝑗 ̸=𝑚−1,...2

) ,

𝐻
2

𝑚
= det
1≤𝑖,𝑗≤𝑚

((𝑎
𝑖,𝑗

) 𝑖 ̸=𝑚−1,...,2

𝑗 ̸=𝑚,...,3

) ,

(A.16)

simple substitution of these three formulas in the formula
(A.15) followed by the application of the modified well-
known Dodgson condensation which has been modified in
[11] will lead to formula (A.14) for 𝑙 = 3. directly.

When 𝑙 ≥ 4, we suppose that formula (A.14) is correct for
𝑙 − 1, and we prove it for 𝑙.

Formula (20) for 𝑙 − 1 reads

𝐾
𝑙

𝑚
= 𝐾

𝑙−1

𝑙−1
⋅ 𝐾

𝑙−1

𝑚
− [𝐻

𝑙−1

𝑚
]

2

. (A.17)

According to the first induction, we have

𝐾
(𝑙−1)

(𝑙−1)
= det [𝑙 − 1]

𝑘=𝑙−3

∏

𝑘=1

(det[𝑘])
2
(𝑙−𝑘−3)

. (A.18)

According to the second induction, we have

𝐾
𝑙−1

𝑚
= det
1≤𝑖,𝑗≤𝑚

((𝑎
𝑖,𝑗

) 𝑖 ̸=𝑚−1,...,𝑙−1

𝑗 ̸=𝑚−1,...,𝑙−1

)

⋅

𝑘=(𝑙−3)

∏

𝑘=1

(det[𝑘])
2
((𝑙−3)−𝑘)

.

(A.19)

According to formula (21), we have:

𝐻
𝑙−1

𝑚
= det
1≤𝑖,𝑗≤𝑚

((𝑎
𝑖,𝑗

) 𝑖 ̸=𝑚,...,𝑙

𝑗 ̸=𝑚−1,..,𝑙−1

)

⋅

𝑘=𝑙−3

∏

𝑘=1

(det[𝑘])
2
((𝑙−3)−𝑘)

.

(A.20)
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By replacing (A.18), (A.19), and (A.20) in (A.17) and by using
the well-known Dodgson condensation, we obtain formula
(A.14) for 𝑙. Therefore, the second inductive proof is finished
and consequently the first one.

Proof of Lemma 5. We prove this lemma by induction:

𝐾
𝑙

𝑙
> 𝑆

𝑙

𝑙
, 𝑙 = 2, . . . , 𝑚. (A.21)

For 𝑙 = 2, we have

𝐾
2

2
= 𝛼

2

1
𝛼
2

2
𝑎
1
𝑎
2

[

𝛼
1

− 1

𝛼
1

𝛼
2

+ 1

𝛼
2

− 𝐴
2

12
]

> 𝛼
2

1
𝛼
2

2
𝑎
1
𝑎
2

[

1

2𝛼
2

− 𝐴
2

12
]

= 𝑆
2

2
.

(A.22)

Because

𝛼
1

> 2, then 𝛼
1

− 1

𝛼
1

𝛼
2

+ 1

𝛼
2

>

1

2𝛼
2

. (A.23)

Assuming 𝑙 ≥ 3, we suppose (24) is true for (𝑙−1), 𝑙−2, 𝑙−

3, . . . , 3, and we prove it for 𝑙. Hence, we aim to prove

𝐾
2

2
> 𝑆

2

2
, 𝐾

3

3
> 𝑆

3

3
, 𝐾

4

4
> 𝑆

4

4
, . . . ,

𝐾
𝑙−1

𝑙−1
> 𝑆

𝑙−1

𝑙−1
󳨐⇒ 𝐾

𝑙

𝑙
> 𝑆

𝑙

𝑙
.

(A.24)

Recall that

𝐾
𝑙

𝑙
= 𝐾

𝑙−1

𝑙−1
𝐾
𝑙−1

𝑙
− [𝐻

𝑙−1

𝑙
]

2

. (A.25)

It is then sufficient to prove

𝐾
𝑙−1

𝑙
> 𝑆

𝑙−1

𝑙
, (A.26)

which will satisfy the inequality

𝐾
𝑙

𝑙
= 𝐾

𝑙−1

𝑙−1
𝐾
𝑙−1

𝑙
− [𝐻

𝑙−1

𝑙
]

2

> 𝑆
𝑙−1

𝑙−1
𝑆
𝑙−1

𝑙
− [𝐻

𝑙−1

𝑙
]

2

= 𝑆
𝑙

𝑙
.

(A.27)

In order to prove (A.26), we first generalize it in the form

𝐾
𝑟

𝑙
> 𝑆

𝑟

𝑙
, 𝑟 = 2, . . . , 𝑙 − 1. (A.28)

This can be proven by mathematical induction. It is a
secondary inductive proof inside the primary one. For 𝑟 = 2,
it is evident that

𝐾
2

𝑙
> 𝑆

2

𝑙
. (A.29)

For 𝑟 = 3, the formula

𝐾
3

𝑙
= 𝐾

2

2
𝐾
2

𝑙
− [𝐻

2

𝑙
]

2

> 𝑆
2

2
𝑆
2

𝑙
− [𝐻

2

𝑙
]

2

= 𝑆
3

𝑙
(A.30)

is evident too.

When 𝑟 ≥ 4, we suppose formula (A.28) true for 𝑙 − 2:

𝐾
𝑙−2

𝑙
> 𝑆

𝑙−2

𝑙
(A.31)

and we prove it for 𝑙 − 1:

𝐾
𝑙−1

𝑙
> 𝑆

𝑙−1

𝑙
. (A.32)

We have

𝐾
𝑙−1

𝑙
= 𝐾

𝑙−2

𝑙−2
𝐾
𝑙−2

𝑙
− [𝐻

𝑙−2

𝑙
]

2

> 𝑆
𝑙−2

𝑙−2
𝑆
𝑙−2

𝑙
− [𝐻

𝑙−2

𝑙
]

2

= 𝑆
𝑙−1

𝑙
.

(A.33)

Then

𝐾
𝑙−1

𝑙
> 𝑆

𝑙−1

𝑙
. (A.34)

Accordingly, we have

𝐾
𝑙

𝑙
> 𝑆

𝑙

𝑙
. (A.35)

This finishes the proof.
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