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Received 16 June 2013; Accepted 22 July 2013

Academic Editor: Valery Y. Glizer
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This paper deals with the singularly perturbed delay differential equations under boundary conditions. A numerical approximation
based on the exponential functions is proposed to solve the singularly perturbed delay differential equations. By aid of the
collocation points and the matrix operations, the suggested scheme converts singularly perturbed problem into a matrix equation,
and this matrix equation corresponds to a system of linear algebraic equations. Also, an error analysis technique based on the
residual function is introduced for the method. Four examples are considered to demonstrate the performance of the proposed
scheme, and the results are discussed.

1. Introduction

The mathematical models of many practical phenomena in
many areas of sciences often result in boundary-value prob-
lems of singularly perturbed delay differential equations, for
example, the study of bistable devices [1], description of the
human pupil-light reflex [2], a variety of models for physio-
logical processes or diseases [3, 4], evolutionary biology [4],
variational problems in control theory [5, 6], and so forth.
These problemsmainly depend on a small positive parameter
and a delay parameter in such a way that the solution varies
rapidly in some parts of the domain and varies slowly in
some other parts of the domain. Also, this class of problems
possesses boundary layers, that is, regions of rapid change in
the solution near one of the boundary points.

In the recent years, many researchers have a great interest
in singularly perturbed delay differential equation problems.
For example, for these problems, Patidar and Sharma [7] have
studied nonstandard finite difference methods, Kadalbajoo
and Ramesh [8] have applied the hybrid method, Kadalbajoo
and Sharma [9] have presented a numerical study, Rai and
Sharma [10] have worked on a numerical scheme based
fitted operator methods, Kadalbajoo and Ramesh [11] have

studied the finite difference scheme, the hybrid method, and
the fitted mesh methods, Amiraliyev and Erdogan [12] have
presented a numerical study based onfinite difference scheme
and piecewise-uniform mesh, Kadalbajoo and Kumar [13]
have applied the fitted mesh B-spline collocation method,
and Kadalbajoo and Sharma [14] have presented a numerical
study involved which finite difference scheme. In addition,
Rai and Sharma [15] have solved the singularly perturbed
differential difference equation arising in the modeling of
neuronal variability by using fitted operator scheme, Lange
and Miura [16] have given the singular perturbation anal-
ysis of boundary-value problems for differential difference
equations and boundary-value problems, and Kadalbajoo
and Sharma [17, 18] have studied the numerical solutions of
singularly perturbed delay differential equations by various
methods.

On the other hand, exponential polynomials or exponen-
tial functions have interesting applications in many optical
and quantum electronics [19], some nonlinear phenomena
modeled by partial differential equations [20], many stati-
stical discussions (especially in data analysis) [21], the safety
analysis of control synthesis [22], the problem of expressing
mean-periodic functions [23], and the study of spectral
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synthesis [24, 25]. These polynomials are based on the
exponential base set {1, 𝑒−𝑥, 𝑒−2𝑥, . . .}.

Recently, Yüzbaşı and Sezer have studied the exponential
polynomial solutions of the systems of linear differential
equations in [26].

In this study, we consider the singularly perturbed delay
differential equation

𝐿 [𝑦 (𝑥)] = 𝜀𝑦
󸀠󸀠

(𝑥) + 𝑝 (𝑥) 𝑦
󸀠

(𝑥 − 𝛿) + 𝑟 (𝑥) 𝑦 (𝑥)

= 𝑔 (𝑥) , 0 ≤ 𝑥 ≤ 𝑏
(1)

with the boundary conditions

𝑦 (0) = 𝛼, 𝑦 (𝑏) = 𝛽, (2)

where 𝜀 is a small positive parameter (0 < 𝜀 ≪ 1), 𝛿 is
a small shifting parameter 0 < 𝛿 ≪ 1, 𝛼 and 𝛽 are given
constants, 𝑦(𝑥) is an unknown function, and 𝑝(𝑥) and 𝑟(𝑥)
are the known functions defined on interval 0 ≤ 𝑥 ≤ 𝑏 < ∞.

The aim of this paper is to give an approximate solution
of the problems (1)-(2) in the form

𝑦 (𝑥) ≅ 𝑦
𝑁

(𝑥) =

𝑁

∑
𝑛=0

𝑎
𝑛

𝑒
−𝑛𝑥

, 0 ≤ 𝑥 ≤ 𝑏, (3)

where the exponential basis set is defined by {1, 𝑒
−𝑥

,

𝑒
−2𝑥

, . . . , 𝑒
−𝑁𝑥

} and 𝑎
𝑛

, (𝑛 = 0, 1, 2, . . . , 𝑁) are unknown
coefficients.

To find a solution in the form (3) of (1) under the
conditions (2), we will use the equally spaced collocation
points

𝑥
𝑖

=
𝑏

𝑁
𝑖, 𝑖 = 0, 1, . . . , 𝑁, 0 ≤ 𝑥 ≤ 𝑏. (4)

2. Matrix Relations for Exponential Functions

In this section, we construct the matrix relations related to
the exponential solution (3). Note that these relations will be
used in Section 3.

Firstly, the approximate solution 𝑦
𝑁

(𝑥) defined by (3) of
(1) can be written in the matrix form

𝑦 (𝑥) = E (𝑥)A, (5)

where

E (𝑥) = [1 𝑒
−𝑥

𝑒
−2𝑥

⋅ ⋅ ⋅ 𝑒
−𝑁𝑥] ,

A = [𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑁

]
𝑇

.

(6)

Also, the relation between E(𝑥) and its first derivative E(1)(𝑥)
is given by

E(1) (𝑥) = E (𝑥)M (7)

and the relation between E(𝑥) and its second derivative
E(2)(𝑥) is in the form

E(2) (𝑥) = E (𝑥)M2, (8)

where

M =

[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0

0 −1 0 ⋅ ⋅ ⋅ 0
...

... −2
...

...
0 0 0 d 0

0 0 0 ⋅ ⋅ ⋅ −𝑁

]
]
]
]
]
]

]

. (9)

By placing the relation (7) into first derivative of (5), we have

𝑦
(1)

(𝑥) = E (𝑥)MA. (10)

Similarly, from the relations (5) and (8), we obtain the matrix
form

𝑦
(2)

(𝑥) = E (𝑥)M2A. (11)

By writing 𝑥 → 𝑥 − 𝛿 in (10), we get the relation

𝑦
(1)

(𝑥 − 𝛿) = E (𝑥 − 𝛿)MA. (12)

The relation between E(𝑥 − 𝛿) and E(𝑥) is as follows:

E (𝑥 − 𝛿) = E (𝑥) Ş
𝛿

A, (13)

where

E (𝑥) = [1 𝑒
−𝑥

𝑒
−2𝑥

⋅ ⋅ ⋅ 𝑒
−𝑁𝑥] ,

Ş
𝛿

=

[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

0 𝑒
𝛿

0 ⋅ ⋅ ⋅ 0

0 0 𝑒
2𝛿

⋅ ⋅ ⋅ 0
...

...
... d

...
0 0 0 ⋅ ⋅ ⋅ 𝑒

𝑁𝛿

]
]
]
]
]
]

]

.

(14)

By substituting (13) into (12), we have the matrix form

𝑦
(1)

(𝑥 − 𝛿) = E (𝑥) Ş
𝛿

MA. (15)

3. Exponential Collocation Method

In this section, to compute the unknown coefficients in the
approximate solution (3), we use the following procedure by
using the matrix relations in Section 2.
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Firstly, let us substitute the matrix relations (5), (11), (12),
and (15) into (1) as follows:

𝜀E (𝑥)M2A + 𝑝 (𝑥)E (𝑥) Ş
𝛿

MA + 𝑟 (𝑥)E (𝑥)A = 𝑔 (𝑥) .
(16)

The collocation points defined by (4) are placed into (16), and
we have the system of the matrix equations as

𝜀E (𝑥
𝑖

)M2A + 𝑝 (𝑥
𝑖

)E (𝑥
𝑖

) Ş
𝛿

MA + 𝑟 (𝑥
𝑖

)E (𝑥
𝑖

)A = 𝑔 (𝑥
𝑖

) ,

𝑖 = 0, 1, . . . , 𝑁.

(17)

The system can be written in the matrix form

{𝜀EM2 + PEŞ
𝛿

M + RE}A = G, (18)

where

𝜀 =

[
[
[
[

[

𝜀 0 0 0

0 𝜀 0 0
...

... d
...

0 0 0 𝜀

]
]
]
]

]

,

E =
[
[
[
[

[

E (𝑥
0

)

E (𝑥
1

)
...

E (𝑥
𝑁

)

]
]
]
]

]

=

[
[
[
[

[

1 𝑒
−𝑥0 𝑒

−2𝑥0 ⋅ ⋅ ⋅ 𝑒
−𝑁𝑥0

1 𝑒
−𝑥1 𝑒

−2𝑥1 ⋅ ⋅ ⋅ 𝑒
−𝑁𝑥1

...
...

... ⋅ ⋅ ⋅
...

1 𝑒
−𝑥𝑁 𝑒

−2𝑥𝑁 ⋅ ⋅ ⋅ 𝑒
−𝑁𝑥𝑁

]
]
]
]

]

,

M =

[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0

0 −1 0 ⋅ ⋅ ⋅ 0
...

... −2
...

...
0 0 0 d 0

0 0 0 ⋅ ⋅ ⋅ −𝑁

]
]
]
]
]
]

]

,

P =
[
[
[
[

[

𝑝 (𝑥
0

) 0 0 0

0 𝑝 (𝑥
1

) 0 0
...

... d
...

0 0 0 𝑝 (𝑥
𝑁

)

]
]
]
]

]

,

Ş
𝛿

=

[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0

0 𝑒
𝛿

0 ⋅ ⋅ ⋅ 0

0 0 𝑒
2𝛿

⋅ ⋅ ⋅ 0
...

...
... d

...
0 0 0 ⋅ ⋅ ⋅ 𝑒

𝑁𝛿

]
]
]
]
]
]

]

,

R =
[
[
[
[

[

𝑟 (𝑥
0

) 0 0 0

0 𝑟 (𝑥
1

) 0 0
...

... d
...

0 0 0 𝑟 (𝑥
𝑁

)

]
]
]
]

]

, G =

[
[
[
[

[

𝑔 (𝑥
0

)

𝑔 (𝑥
1

)
...

𝑔 (𝑥
𝑁

)

]
]
]
]

]

.

(19)

Wenote that thematrix equation (18) corresponds to a system
of (𝑁 + 1) algebraic equations with the (𝑁 + 1) unknown
coefficients 𝑎

0

, 𝑎
1

, . . . , 𝑎
𝑁

.
Briefly, (18) can be expressed in the form

WA = G or [W;G] , (20)

where

W = 𝜀EM2 + PEŞ
𝛿

M + RE. (21)

From the relation (5), the matrix forms of the conditions (2)
are written as

𝑦 (0) = E (0)A = [𝛼] , 𝑦 (𝑏) = E (𝑏)A = [𝛽] . (22)

Briefly, we write the above matrix forms of the conditions as
follows:

C
1

A = [𝛼] or [C
1

; 𝛼] ,

C
2

A = [𝛽] or [C
2

; 𝛽] ,
(23)

where

C
1

= E (0) = [𝑐
1 0

𝑐
1 1

𝑐
1 2

⋅ ⋅ ⋅ 𝑐
1 𝑁

] ,

C
2

= E (𝑏) = [𝑐
2 0

𝑐
2 1

𝑐
2 2

⋅ ⋅ ⋅ 𝑐
2 𝑁

] .
(24)

To obtain the solution of (1) under conditions (2), we replace
the row matrices (23) with any two rows of the matrix (20),
and thus we have the augmented matrix

W̃A = G̃. (25)

For simplicity, if the last two rows of the matrix (20) are
replaced, the augmented matrix (25) becomes

[W̃; G̃]

=

[
[
[
[
[
[
[
[
[

[

𝑤
0 0

𝑤
0 1

𝑤
0 2

. . . 𝑤
0 𝑁

; 𝑔 (𝑥
0

)

𝑤
1 0

𝑤
1 1

𝑤
1 2

. . . 𝑤
1 𝑁

; 𝑔 (𝑥
1

)
...

...
...

...
...

...
...

𝑤
𝑁−2 0

𝑤
𝑁−2 1

𝑤
𝑁−2 2

. . . 𝑤
𝑁−2 𝑁

... 𝑔 (𝑥
𝑁−2

)

𝑐
1 0

𝑐
1 1

𝑐
1 2

. . . 𝑐
1 𝑁

; 𝛼

𝑐
2 0

𝑐
2 1

𝑐
2 2

. . . 𝑐
2 𝑁

; 𝛽

]
]
]
]
]
]
]
]
]

]

.

(26)

However, we donot have to replace the last rows. For example,
if the matrixW is singular, then the rows that have the same
factor or all zeros are replaced.

If rank W̃ = rank[W̃; G̃] = 𝑁 + 1, then the coefficients
𝑎
0

, 𝑎
1

, . . . , 𝑎
𝑁

are uniquely determined by

A = W̃−1G̃, (27)
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where

A = [𝑎
0

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑁

]
𝑇

. (28)

By substituting the determined coefficients 𝑎
0

, 𝑎
1

, . . . , 𝑎
𝑁

into
(3), we obtain the approximate solution

𝑦
𝑁

(𝑥) =

𝑁

∑
𝑛=0

𝑎
𝑛

𝑒
−𝑛𝑥

. (29)

On the other hand, when |W̃| = 0, if rank W̃ = rank[W̃; G̃] <
𝑁 + 1, then we may find a particular solution. Otherwise if
rank W̃ ̸= rank[W̃; G̃] < 𝑁 + 1, then there is not a solution.

4. Error Estimation Based on Residual
Function and Improvement of Solution

In this section, we apply the error estimation technique in
[27–29] and the residual correction method in [30, 31] for
our method and the problems (1)-(2). For our purpose, let us
define the residual function for the present method as

𝑅
𝑁

(𝑥) = 𝐿 [𝑦
𝑁

(𝑥)] − 𝑔 (𝑥) , (30)

where 𝑦
𝑁

(𝑥) denotes the approximate solution (29) of the
problems (1)-(2). Therefore, 𝑦

𝑁

(𝑥) satisfies

𝐿 [𝑦
𝑁

(𝑥)] = 𝜀𝑦
(2)

𝑁

(𝑥) + 𝑝 (𝑥) 𝑦
(1)

𝑁

(𝑥 − 𝛿) + 𝑞 (𝑥) 𝑦
𝑁

(𝑥)

= 𝑔 (𝑥) + 𝑅
𝑁

(𝑥)

(31)

and the conditions

𝑦
𝑁

(0) = 𝛼, 𝑦
𝑁

(𝑏) = 𝛽. (32)

If 𝑦(𝑥) is the exact solution of the problems (1)-(2), then

𝑒
𝑁

(𝑥) = 𝑦 (𝑥) − 𝑦
𝑁

(𝑥) (33)

becomes the error function. By substituting (33) into the
problem (1)-(2) and by using (30), we obtain the error diffe-
rential equation

𝐿 [𝑒
𝑁

(𝑥)] = 𝐿 [𝑦 (𝑥)] − 𝐿 [𝑦
𝑁

(𝑥)] = −𝑅
𝑁

(𝑥) . (34)

By using (33), the inhomogeneous conditions (2) and (32) are
reduced to the homogeneous conditions

𝑒
𝑁

(0) = 0, 𝑒
𝑁

(𝑏) = 0. (35)

From (34) and (35), we can clearly write the error problem

𝜀𝑒
(2)

𝑁

(𝑥) + 𝑝 (𝑥) 𝑒
(1)

𝑁

(𝑥 − 𝛿) + 𝑞 (𝑥) 𝑒
𝑁

(𝑥) = −𝑅
𝑁

(𝑥) ,

𝑒
𝑁

(0) = 0, 𝑒
𝑁

(𝑏) = 0.
(36)

By solving the problem (36) in the same way as Section 3, the
approximation 𝑒

𝑁,𝑀

(𝑥) is obtained for 𝑒
𝑁

(𝑥).

Consequently, by summing the exponential polynomial
solution 𝑦

𝑁

(𝑥) and the estimated error function 𝑒
𝑁,𝑀

(𝑥), we
obtain the corrected exponential solution

𝑦
𝑁,𝑀

(𝑥) = 𝑦
𝑁

(𝑥) + 𝑒
𝑁,𝑀

(𝑥) . (37)

We note that the errors 𝑒
𝑁

(𝑥
𝑖

) = 𝑦(𝑥
𝑖

) − 𝑦
𝑁

(𝑥
𝑖

), (0 ≤ 𝑥
𝑖

≤ 𝑏)
can be estimated by the error function 𝑒

𝑁,𝑀

(𝑥)when the exact
solution of (1) is unknown.

5. Numerical Examples

In this section, we apply the presented method to some
examples. In examples, the terms 𝑦(𝑥), 𝑦𝜀,𝛿

𝑁

(𝑥), 𝑦𝜀,𝛿
𝑁,𝑀

(𝑥),
and |𝑒𝜀,𝛿

𝑁,𝑀

(𝑥)|, respectively, represent the exact solution, the
approximate solution, the corrected approximate solution,
and the estimated absolute error function. Also, 𝑒𝜀,𝛿

𝑁,𝑀

=

max{|𝑒𝜀,𝛿
𝑁,𝑀

(𝑥)|, 0 ≤ 𝑥 ≤ 𝑏} denotes the estimated maximum
error for the values 𝜀, 𝛿,𝑁, and𝑀.

Example 1 (see [13]). Firstly, let us consider the singularly-
perturbed delay differential equation

𝜀𝑦
󸀠󸀠

(𝑥) + (1 + 𝑥) 𝑦
󸀠

(𝑥 − 𝛿) − 𝑒
−𝑥

𝑦 (𝑥) = 1,

0 ≤ 𝑥 ≤ 1
(38)

with the boundary conditions

𝑦 (0) = 0, 𝑦 (1) = 1. (39)

Firstly, we obtain the approximate solutions𝑦𝜀
𝑁

(𝑥) for various
values of 𝑁 by the presented method in Section 3. Secondly,
the approximate solutions are corrected by the residual
correction technique for various values of 𝑀. Hence, the
corrected approximate solutions 𝑦𝜀,𝛿

𝑁,𝑀

(𝑥) are obtained. In
Table 1, we give the estimated maximum absolute errors for
various values of 𝜀 = 2𝛿, 𝑁, and 𝑀. Figures 1(a), 1(b), and
1(c) display the corrected approximate solutions 𝑦𝜀

𝑁,𝑀

(𝑥) for
some values of 𝜀 = 2𝛿,𝑁, and𝑀.

Example 2 (see [7]). Now, we consider the singularly per-
turbed delay differential equation

𝜀𝑦
󸀠󸀠

(𝑥) − 𝑒
𝑥

𝑦
󸀠

(𝑥 − 𝛿) − 𝑦 (𝑥) = 0, 0 ≤ 𝑥 ≤ 1 (40)

with the boundary conditions

𝑦 (0) = 1, 𝑦 (1) = 1. (41)

In Table 2, the estimated maximum absolute errors for vari-
ous values of 𝜀 = 2𝛿, 𝑁, and 𝑀 are presented. For various
values of 𝜀 = 2𝛿, 𝑁, and 𝑀, Figures 2(a), 2(b), 2(c), and
2(d) show the graphs of the corrected approximate solutions
𝑦
𝜀,𝛿

𝑁,𝑀

(𝑥).
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Table 1: Estimated maximum absolute errors for various values of 𝜀 = 2𝛿,𝑁, and𝑀 of (38).

𝜀
Estimated absolute errors

𝑒
𝜀

3,8

𝑒
𝜀

5,10

𝑒
5,10

𝑒
𝜀

8,12

𝑒
𝜀

11,16

𝑒
𝜀

14,19

𝑒
𝜀

20,22

2
−6

5.7489𝑒 − 002 5.4037𝑒 − 002 3.1683𝑒 − 002 2.2311𝑒 − 001 5.1323𝑒 − 002 8.3183𝑒 − 002

2
−7

5.6434𝑒 − 002 5.6931𝑒 − 002 3.2954𝑒 − 002 2.4047𝑒 − 001 4.8550𝑒 − 002 9.8938𝑒 − 002

2
−8

5.5986𝑒 − 002 5.8328𝑒 − 002 3.3947𝑒 − 002 2.5350𝑒 − 001 6.1626𝑒 − 002 1.4590𝑒 − 001

2
−9

5.5792𝑒 − 002 5.8965𝑒 − 002 3.4384𝑒 − 002 2.5973𝑒 − 001 4.5761𝑒 − 002 2.1930𝑒 − 001

2
−10

5.5703𝑒 − 002 5.9264𝑒 − 002 3.4579𝑒 − 002 2.6261𝑒 − 001 7.3528𝑒 − 002 2.4933𝑒 − 001

2
−11

5.5661𝑒 − 002 5.9409𝑒 − 002 3.4670𝑒 − 002 2.6405𝑒 − 001 4.4186𝑒 − 002 1.9391𝑒 − 001
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Figure 1: For 𝛿 = 0.5𝜀 and various values of𝑁 and𝑀 of (38), (a) graph of the approximate solutions for 𝜀 = 2−6, (b) graph of the approximate
solutions for 𝜀 = 2−8, and (c) graph of the approximate solutions for 𝜀 = 2−11.
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Table 2: Estimated maximum absolute errors for various values of 𝜀 = 2𝛿,𝑁, and𝑀 of (40).

𝜀
Estimated absolute errors

𝑒
𝜀

3,6

𝑒
𝜀

6,8

𝑒
𝜀

9,12

𝑒
𝜀

12,15

𝑒
𝜀

16,19

2
−5

3.3762𝑒 − 001 3.5893𝑒 − 001 4.5710𝑒 − 001 3.0570𝑒 − 001 3.1328𝑒 − 001

2
−6

3.6939𝑒 − 001 3.7298𝑒 − 001 5.2769𝑒 − 001 4.4360𝑒 − 001 5.4311𝑒 − 001

2
−7

3.8483𝑒 − 001 3.8095𝑒 − 001 5.7945𝑒 − 001 9.0343𝑒 − 001 6.8159𝑒 − 001

2
−8

3.9191𝑒 − 001 3.8524𝑒 − 001 6.0724𝑒 − 001 1.4068𝑒 + 000 9.6851𝑒 − 001

2
−9

3.9515𝑒 − 001 3.8739𝑒 − 001 6.1946𝑒 − 001 1.7759𝑒 + 000 1.0094𝑒 + 000

2
−10

3.9668𝑒 − 001 3.8844𝑒 − 001 6.2446𝑒 − 001 1.9697𝑒 + 000 8.9508𝑒 − 001

2
−11

3.9741𝑒 − 001 3.8895𝑒 − 001 6.2654𝑒 − 001 2.0530𝑒 + 000 8.4631𝑒 − 001
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Figure 2: Graphs of the approximate solutions of (40), (a) for 𝜀 = 2−5, 𝛿 = 0.5𝜀, and various values of 𝑁 and𝑀, (b) for 𝜀 = 2−7, 𝛿 = 0.5𝜀,
and various values of 𝑁 and𝑀, (c) for 𝜀 = 2−10, 𝛿 = 0.5𝜀, and various values of𝑁 and𝑀, and (d) for 𝜀 = 2−5, 2−7, 2−10, and 2−11, 𝛿 = 0.5𝜀,
𝑁 = 16, and𝑀 = 19.
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Figure 3: For (42), (a) comparison of the exact solution and the approximate solutions for 𝜀 = 2−6, 𝛿 = 0.5𝜀, and various values of 𝑁 and
𝑀 and (b) comparison of the exact solution for 𝜀 = 2−7, and 𝛿 = 0.5𝜀, and the approximate solutions for 𝜀 = 2−4, 2−6, 2−7, and 2−8, 𝛿 = 0.5𝜀,
𝑁 = 20, and𝑀 = 22.

Example 3 (see [9]). Let us consider the boundary-value
problem

𝜀𝑦
󸀠󸀠

(𝑥) + 𝑦
󸀠

(𝑥 − 𝛿) − 𝑦 (𝑥) = 0, 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 1, 𝑦 (1) = 1.
(42)

The exact solution of this problem is given by

𝑦 (𝑥) =
(1 − 𝑒

𝑚

) 𝑒
𝑘𝑥

+ (𝑒
𝑘

− 1) 𝑒
𝑚𝑥

𝑒𝑘 − 𝑒𝑚
, (43)

where

𝑘 =
−1 + √1 + 4 (𝜀 − 𝛿)

2 (𝜀 − 𝛿)
, 𝑚 =

−1 − √1 + 4 (𝜀 − 𝛿)

2 (𝜀 − 𝛿)
.

(44)

For some values of 𝜀 = 2𝛿, the corrected approximate
solutions 𝑦𝜀,𝛿

𝑁,𝑀

(𝑥) are compared with the exact solution in
Figures 3(a) and 3(b).

Example 4 (see [14]). Finally, we consider the problem

𝜀𝑦
󸀠󸀠

(𝑥) + 0.25𝑦
󸀠

(𝑥 − 𝛿) − 𝑦 (𝑥) = 0, 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 1, 𝑦 (1) = 0.
(45)

Figure 4(a) displays the corrected approximate solutions
𝑦
𝜀,𝛿

𝑁,𝑀

(𝑥) for 𝜀 = 0.5, 𝛿 = 2
−2, and various values of 𝑁

and𝑀. The estimated error functions for these approximate
solutions are shown in Figure 4(b). It is seen from Figure 4(b)
that the absolute errors decrease while value of 𝑁 increases.
In Figure 4(c), we show the corrected approximate solutions
𝑦
𝜀

𝑁,𝑀

(𝑥) for 𝑁 = 18, 𝑀 = 19, and different values of 𝜀 =
0.5𝛿. Figure 4(d) shows the estimated error functions for the
approximate solutions in Figure 4(c).

6. Conclusions

In this paper, a numerical scheme based on the exponential
functions and the collocation points is presented for the
singularly perturbed delay differential equations. Numerical
examples are given to demonstrate the applicability and the
efficiency of the method. Since the exact solutions of the
problems in Examples 1, 2, and 4 are not available, we
have computed the estimated maximum absolute errors. For
Examples 1 and 2, the maximum absolute errors for some
values of 𝜀, 𝛿, 𝑁, and 𝑀 are tabulated in Tables 1 and 2.
Also, the approximate solutions for different values of 𝜀, 𝛿,𝑁,
and𝑀 are compared with the exact solution. It is seen from
Figure 3(a) that the accuracies of the approximate solutions
increase while 𝑁 and𝑀 increase. However, when values of
𝜀 and 𝛿 are increased, it is observed from Tables 1 and 2 and
Figure 4(c) that the errors usually increase. In addition, the
estimated absolute error functions are shown in Figure 4(b)
for Example 3. It is seen from Figure 4(b) that the errors
decrease as 𝑁 and 𝑀 increase. Moreover, the approximate
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Figure 4: For (45), (a) graph of the approximate solutions for 𝜀 = 2−2, 𝛿 = 2𝜀, and various values of𝑁 and𝑀, (b) comparison of the estimated
error functions for 𝜀 = 2−2, 𝛿 = 2𝜀, and various values of𝑁 and𝑀, (c) graph of the approximate solutions for 𝜀 = 2−2, 2−3, 2−5, 2−7, 𝛿 = 2𝜀,
𝑁 = 18, and𝑀 = 19, and (d) graph of the estimated error functions for 𝜀 = 2−2, 2−3, 2−5, and 2−7, 𝛿 = 2𝜀,𝑁 = 18, and𝑀 = 19.

solutions can be very easily obtained using the software
programs.
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