
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 793810, 8 pages
http://dx.doi.org/10.1155/2013/793810

Research Article
Borel Directions and Uniqueness of Meromorphic Functions

Keyu Zhang,1,2 HongYan Xu,3 and Hongxun Yi1

1 School of Mathematics, Shandong University, Jinan, Shandong 250100, China
2Department of Mathematics, Qilu Normal University, Jinan, Shandong 250013, China
3Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi 333403, China

Correspondence should be addressed to Keyu Zhang; sduzky@163.com

Received 15 April 2013; Accepted 23 July 2013

Academic Editor: Paul Eloe

Copyright © 2013 Keyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the relationship between Borel directions and uniqueness of meromorphic functions and obtain some results of
meromorphic functions sharing four distinct values IM and one set in an angular domain containing a Borel line. Our result is an
improvement of a recent theorem given by Long and Wu (2012).

1. Introduction and Main Results

We use C to denote the open complex plane, ̂C (= C⋃{∞})

to denote the extended complex plane, andΩ (⊂ C) to denote
an angular domain.The fundamental results and the standard
notations of the Nevanlinna value distribution theory of
meromorphic functions will be used in [1, 2]. In addition, the
order of meromorphic function 𝑓 is defined by

𝜌 = 𝜌 (𝑓) = lim sup
𝑟→∞

log𝑇 (𝑟, 𝑓)

log 𝑟

. (1)

Let 𝑆 be a set of distinct elements in ̂C and Ω := {𝑧 : 𝛼 ≤

arg 𝑧 ≤ 𝛽} ⊆ C. Define

𝐸 (𝑆, Ω, 𝑓)

= ⋃

𝑎∈𝑆

{𝑧 ∈ Ω | 𝑓

𝑎
(𝑧) = 0, counting multiplicities} ,

𝐸 (𝑆, Ω, 𝑓)

= ⋃

𝑎∈𝑆

{𝑧 ∈ Ω | 𝑓

𝑎
(𝑧) = 0, ignoring multiplicities} ,

(2)

where 𝑓

𝑎
(𝑧) = 𝑓(𝑧) − 𝑎 if 𝑎 ∈ C and 𝑓

∞
(𝑧) = 1/𝑓(𝑧).

Let 𝑓 and 𝑔 be two nonconstant meromorphic functions
in C. If 𝐸(𝑆, Ω, 𝑓) = 𝐸(𝑆, Ω, 𝑔), then we say 𝑓 and 𝑔 share

the set 𝑆 CM (counting multiplicities) in Ω. If 𝐸(𝑆, Ω, 𝑓) =

𝐸(𝑆, Ω, 𝑔), then we say 𝑓 and 𝑔 share the set 𝑆 IM (ignoring
multiplicities) in Ω. In particular, when 𝑆 = {𝑎}, 𝑎 ∈

̂C,
we say 𝑓 and 𝑔 share the value 𝑎 CM in Ω if 𝐸(𝑆, Ω, 𝑓) =

𝐸(𝑆, Ω, 𝑔), and we say 𝑓 and 𝑔 share the value 𝑎 IM in Ω if
𝐸(𝑆, Ω, 𝑓) = 𝐸(𝑆, Ω, 𝑔). When Ω = C, we give the simple
notation as before, 𝐸(𝑆, 𝑓), 𝐸(𝑆, 𝑓), and so on (see [3]).

Nevanlinna (see [4]) proved the following well-known
theorems.

Theorem1 (see [4]). If𝑓 and𝑔 are two nonconstantmeromor-
phic functions that share five distinct values 𝑎

1
, 𝑎

2
, 𝑎

3
, 𝑎

4
, 𝑎

5

IM in C, then 𝑓(𝑧) ≡ 𝑔(𝑧).

Theorem 2 (see [4]). If 𝑓 and 𝑔 are two distinct noncon-
stant meromorphic functions that share four distinct values
𝑎

1
, 𝑎

2
, 𝑎

3
, 𝑎

4
CM in C, then 𝑓 is a Möbius transformation of

𝑔, two of the shared values, say 𝑎

1
and 𝑎

2
, are Picard values,

and the cross ratio (𝑎

1
, 𝑎

2
, 𝑎

3
, 𝑎

4
) = −1.

After their very work, many investigations studied the
uniqueness of meromorphic functions with shared values
in the whole complex plane (see [5]). Zheng studied the
uniqueness problem under the condition that five values and
four values are shared in some angular domain in C around
2003 (see [6, 7]). It is an interesting topic to investigate
the uniqueness with shared values in the angular domain;
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see [3, 6–12].Thebasic notations anddefinitions ofmeromor-
phic functions in an angular domain will be introduced as
follows (see [1, 6, 7]).

Let 𝑓 be a meromorphic function on the angular domain
Ω(𝛼, 𝛽) = {𝑧 : 𝛼 ≤ arg 𝑧 ≤ 𝛽} and 0 < 𝛽 − 𝛼 ≤ 2𝜋. Define

𝐴

𝛼,𝛽
(𝑟, 𝑓) =

𝜔

𝜋

∫

𝑟

1

(

1

𝑡

𝜔
−

𝑡

𝜔

𝑟

2𝜔
)

× {log+ 




𝑓 (𝑡𝑒

𝑖𝛼

)











+ log+ 




𝑓 (𝑡𝑒

𝑖𝛽

)











}

𝑑𝑡

𝑡

,

𝐵

𝛼,𝛽
(𝑟, 𝑓) =

2𝜔

𝜋𝑟

𝜔
∫

𝛽

𝛼

log+ 




𝑓 (𝑟𝑒

𝑖𝜃

)











sin𝜔 (𝜃 − 𝛼) 𝑑𝜃,

𝐶

𝛼,𝛽
(𝑟, 𝑓) = 2 ∑

1<
|
𝑏𝜇|<𝑟

(

1

|𝑏

𝜇
|

𝜔
−

|𝑏

𝜇
|

𝜔

𝑟

2𝜔
) sin𝜔 (𝜃

𝜇
− 𝛼) ,

𝑆

𝛼,𝛽
(𝑟, 𝑓) = 𝐴

𝛼,𝛽
(𝑟, 𝑓) + 𝐵

𝛼,𝛽
(𝑟, 𝑓) + 𝐶

𝛼,𝛽
(𝑟, 𝑓) ,

(3)

where 𝜔 = 𝜋/(𝛽 − 𝛼) and 𝑏

𝜇
= |𝑏

𝜇
|𝑒

𝑖𝜃𝜇
(𝜇 = 1, 2, . . .) are

the poles of 𝑓 on Ω(𝛼, 𝛽) counted according to their
multiplicities. 𝑆

𝛼,𝛽
(𝑟, 𝑓) is called the Nevanlinna’s angular

characteristic, and 𝐶

𝛼,𝛽
(𝑟, 𝑓) is called the angular counting

function of the poles of 𝑓 on Ω(𝛼, 𝛽), and 𝐶

𝛼,𝛽
(𝑟, 𝑓) is the

reduced function of 𝐶

𝛼,𝛽
(𝑟, 𝑓). Similarly, when 𝑎 ̸=∞, we

will use the notations 𝐴

𝛼,𝛽
(𝑟, 1/(𝑓 − 𝑎)), 𝐵

𝛼,𝛽
(𝑟, 1/(𝑓 − 𝑎)),

𝐶

𝛼,𝛽
(𝑟, 1/(𝑓 − 𝑎)), 𝑆

𝛼,𝛽
(𝑟, 1/(𝑓 − 𝑎)), and so on.

It is well known that angular distribution is an interesting
topic of value distribution of meromorphic function in
complex analysis, and Borel directions played an important
role in the topic of angular distribution (see [13–24]). Valiron
[16] proved that every meromorphic function of finite order
𝜌 > 0 has at least one Borel direction of order 𝜌. Chuang [25]
investigated the existence of Borel direction of meromorphic
function of infinite order. To state the Chuang’s results, we
will introduce the definition as follows.

Definition 3 (see [25]). Let 𝑓 be a meromorphic function of
infinite order, 𝜌(𝑟) is a real function satisfying the following
conditions:

(i) 𝜌(𝑟) is continuous, nondecreasing for 𝑟 ≥ 𝑟

0
and

𝜌(𝑟) → ∞ as 𝑟 → ∞;
(ii)

lim
𝑟→∞

log𝑈 (𝑅)

log𝑈 (𝑟)

= 1, 𝑅 = 𝑟 +

𝑟

log𝑈 (𝑟)

, (4)

where 𝑈(𝑟) = 𝑟

𝜌(𝑟)

(𝑟 ≥ 𝑟

0
);

(iii)

lim sup
𝑟→∞

log𝑇 (𝑟, 𝑓)

log𝑈 (𝑟)

= 1. (5)

Then 𝜌(𝑟) is called infinite order of meromorphic
function 𝑓. This definition is given by Chuang [25].

Let 𝜌(𝑟) be infinite order of meromorphic function 𝑓; we
will denote by 𝑀(𝜌(𝑟)) the set of meromorphic function 𝑔

satisfying lim sup
𝑟→∞

(log𝑇(𝑟, 𝑔)/𝜌(𝑟) log 𝑟) ≤ 1; that is,

𝑀(𝜌 (𝑟)) := {𝑔 : lim sup
𝑟→∞

log𝑇 (𝑟, 𝑔)

𝜌 (𝑟) log 𝑟

≤ 1} . (6)

Let 𝛼 < 𝛽, 𝛽 − 𝛼 < 2𝜋, 𝑟 > 0, and Ω(𝛼, 𝛽, 𝑟) := {𝑧 :

𝛼 ≤ arg 𝑧 ≤ 𝛽, 0 < |𝑧| ≤ 𝑟}. The definition of Borel direction
of meromorphic functions 𝑓 of infinite order 𝜌(𝑟) is given as
follows.

Definition 4 (see [25]). Let 𝑓 be meromorphic functions of
infinite order 𝜌(𝑟); if for any 𝜀 (0 < 𝜀 < 𝜋), the equality

lim sup
𝑟→∞

log 𝑛 (Ω (𝜃 − 𝜀, 𝜃 + 𝜀, 𝑟) , 𝑓 = 𝑎)

𝜌 (𝑟) log 𝑟

= 1 (7)

holds for any complex number 𝑎 ∈

̂C, at most except two
exceptions, where 𝑛(Ω(𝜃 − 𝜀, 𝜃 + 𝜀, 𝑟), 𝑓 = 𝑎) is the counting
function of zeros of the function 𝑓−𝑎 in the angular domain
Ω(𝜃 − 𝜀, 𝜃 + 𝜀), counting multiplicities, then the ray arg 𝑧 =

𝜃 is called a Borel direction of 𝜌(𝑟) order of meromorphic
function 𝑓.

Remark 5. Chuang [25] proved that every meromorphic
function 𝑓 of infinite order 𝜌(𝑟) has at least one Borel direc-
tion of infinite order 𝜌(𝑟).

In 2012, Long and Wu [26] investigated the problem
concerning Borel direction and shared value ofmeromorphic
functions and obtained the following theorems.

Theorem 6 (see [26, Theorem 1.1]). Let 𝑓 be a meromorphic
function of infinite order 𝜌(𝑟), and let 𝑔 ∈ 𝑀(𝜌(𝑟)), arg 𝑧 =

𝜃 (0 ≤ 𝜃 < 2𝜋) be one Borel direction of 𝜌(𝑟) order of mero-
morphic function 𝑓; let 𝑎

𝑖
∈

̂C (𝑖 = 1, 2, 3, 4, 5) be five distinct
complex numbers. If 𝑓 and 𝑔 share 𝑎

𝑖
(𝑖 = 1, 2, 3, 4, 5) IM in

the angular domain Ω(𝜃 − 𝜀, 𝜃 + 𝜀) for any 𝜀 (0 < 𝜀 < 𝜋), then
𝑓 ≡ 𝑔.

Theorem 7 (see [26, Theorem 1.2]). Let 𝑓 be a meromorphic
function of infinite order 𝜌(𝑟), and let 𝑔 ∈ 𝑀(𝜌(𝑟)), arg 𝑧 =

𝜃 (0 ≤ 𝜃 < 2𝜋) be one Borel direction of 𝜌(𝑟) order of mero-
morphic function 𝑓; let 𝑎

𝑖
∈

̂C (𝑖 = 1, 2, 3, 4) be four distinct
complex numbers. If 𝑓 and 𝑔 share 𝑎

𝑖
(𝑖 = 1, 2, 3, 4) CM in the

angular domain Ω(𝜃 − 𝜀, 𝜃 + 𝜀) for any 𝜀 (0 < 𝜀 < 𝜋), then 𝑓 is
a Möbius transformation of 𝑔.

Thus, a question arises naturally: could the nature of shar-
ing the values 𝛼

𝑖
be further relaxed in Theorems 6 and 7?

In this paper, we will deal with the above question and
obtain the following result which is an improvement of
Theorem 6.

Theorem 8. Let 𝑓 be a meromorphic function of infinite order
𝜌(𝑟), and let 𝑔 ∈ 𝑀(𝜌(𝑟)), arg 𝑧 = 𝜃 (0 ≤ 𝜃 < 2𝜋) be one Borel
direction of 𝜌(𝑟) order of meromorphic function 𝑓; we assume
that 𝑓 and 𝑔 share four distinct values 𝑎

𝑗
(𝑗 = 1, 2, 3, 4) IM in
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Ω(𝜃 − 𝜀, 𝜃 + 𝜀), and 𝐸(𝑆, Ω(𝜃 − 𝜀, 𝜃 + 𝜀), 𝑓) ⊂ 𝐸(𝑆, Ω(𝜃 − 𝜀, 𝜃 +

𝜀), 𝑔), for any 𝜀 (0 < 𝜀 < 𝜋), where 𝑆 = {𝑏

1
, . . . , 𝑏

𝑚
}, 𝑚 ≥ 1

and 𝑏

1
, . . . , 𝑏

𝑚
∈

̂C \ {𝑎

1
, 𝑎

2
, 𝑎

3
, 𝑎

4
}. Then 𝑓 and 𝑔 share all

values CM; thus, it follows that either 𝑓 ≡ 𝑔 or 𝑓 is a Möbius
transformation of 𝑔. Furthermore, if the number of the values
in 𝑆 is odd, then 𝑓 ≡ 𝑔.

Remark 9. The special case 𝑚 = 1 of this theorem immedi-
ately yields Theorem 6. In fact, when 𝑚 = 1, set 𝑆 = {𝑎

5
}.

If 𝑓, 𝑔 share 𝑎

5
IM, which implies 𝐸(𝑆, Ω(𝜃 − 𝜀, 𝜃 + 𝜀), 𝑓) ⊂

𝐸(𝑆, Ω(𝜃 − 𝜀, 𝜃 + 𝜀), 𝑔), then byTheorem 8, we can get 𝑓 ≡ 𝑔.

2. Some Lemmas

To prove our result, we require the following lemmas.

Lemma 10 (see [27]). Let 𝑓 be a nonconstant meromorphic
function on Ω(𝛼, 𝛽). Then for arbitrary complex number 𝑎, we
have

𝑆

𝛼,𝛽
(𝑟,

1

𝑓 − 𝑎

) = 𝑆

𝛼,𝛽
(𝑟, 𝑓) + 𝜀 (𝑟, 𝑎) , (8)

where 𝜀(𝑟, 𝑎) = 𝑂(1) as 𝑟 → ∞.

Lemma 11 (see [7, 28]). Suppose that 𝑓 is a nonconstant
meromorphic function in one angular domainΩ(𝛼, 𝛽)with 0 <

𝛽 − 𝛼 ≤ 2𝜋; then, for arbitrary 𝑞 distinct 𝑎

𝑗
∈

̂C (1 ≤ 𝑗 ≤ 𝑞),
we have

(𝑞 − 2) 𝑆

𝛼,𝛽
(𝑟, 𝑓) ≤

𝑞

∑

𝑗=1

𝐶

𝛼,𝛽
(𝑟,

1

𝑓 − 𝑎

𝑗

) + 𝑅

𝛼,𝛽
(𝑟, 𝑓) , (9)

where the term𝐶

𝛼,𝛽
(𝑟, 1/(𝑓−𝑎

𝑗
))will be replaced by𝐶

𝛼,𝛽
(𝑟, 𝑓)

when some 𝑎

𝑗
= ∞ and

𝑅

𝛼,𝛽
(𝑟, 𝑓) = 𝐴

𝛼,𝛽
(𝑟,

𝑓



𝑓

) + 𝐵

𝛼,𝛽
(𝑟,

𝑓



𝑓

)

+

𝑞

∑

𝑗=1

{𝐴

𝛼,𝛽
(𝑟,

𝑓



𝑓 − 𝑎

𝑗

) + 𝐵

𝛼,𝛽
(𝑟,

𝑓



𝑓 − 𝑎

𝑗

)}

+ 𝑂 (1) .

(10)

Lemma 12 (see [27, Page 138]). Let 𝑓 be a nonconstant mero-
morphic function in the whole complex plane C. Given one
angular domain on Ω(𝛼, 𝛽). Then, for any 1 ≤ 𝑟 < 𝑅, we have

𝐴

𝛼,𝛽
(𝑟,

𝑓



𝑓

) ≤ 𝐾{(

𝑅

𝑟

)

𝜔

∫

𝑅

1

log+𝑇 (𝑟, 𝑓)

𝑡

1+𝜔
𝑑𝑡

+ log+ 𝑟

𝑅 − 𝑟

+ log 𝑅

𝑟

+ 1} ,

(11)

𝐵

𝛼,𝛽
(𝑟,

𝑓



𝑓

) ≤

4𝜔

𝑟

𝜔
𝑚(𝑟,

𝑓



𝑓

) , (12)

where𝜔 = 𝜋/(𝛽−𝛼) and𝐾 is a positive constant not depending
on 𝑟 and 𝑅.

Remark 13. Nevanlinna conjectured that

𝐴

𝛼,𝛽
(𝑟,

𝑓



𝑓

) + 𝐵

𝛼,𝛽
(𝑟,

𝑓



𝑓

) = 𝑜 (𝑆

𝛼,𝛽
(𝑟, 𝑓)) (13)

when 𝑟 tends to +∞ outside an exceptional set of finite linear
measure, and he proved that 𝐴

𝛼,𝛽
(𝑟, 𝑓



/𝑓) + 𝐵

𝛼,𝛽
(𝑟, 𝑓



/𝑓) =

𝑂(1)when the function𝑓 is meromorphic inC and has finite
order. In 1975, Goldberg [28] constructed a counter example
to show that (13) is not valid.

Remark 14. From Lemmas 11 and 12, we can get the following
conclusion:

𝑅

𝛼,𝛽
(𝑟, 𝑓) = {

𝑂 (1) , 𝑓 is of finite order,
𝑂 (log𝑈 (𝑟)) , 𝑟 ∉ 𝐸, 𝑓 is of infinite order,

(14)

where 𝑅

𝛼,𝛽
(𝑟, 𝑓) is stated as in (10), 𝑈(𝑟) = 𝑟

𝜌(𝑟)

, 𝜌(𝑟) is
infinite order of meromorphic function 𝑓, and 𝐸 is a set of
finite linear measure.

Remark 15. From the definition of 𝐴

𝛼,𝛽
(𝑟, 𝑓), 𝐵

𝛼,𝛽
(𝑟, 𝑓),

𝐶

𝛼,𝛽
(𝑟, 𝑓), 𝑆

𝛼,𝛽
(𝑟, 𝑓), and Lemmas 10–12, we can see that the

properties of𝐶
𝛼,𝛽

(𝑟, 𝑓), (𝐴+𝐵)

𝛼,𝛽
(𝑟, 𝑓), and 𝑆

𝛼,𝛽
(𝑟, 𝑓) are the

same as for the more familiar quantities𝑁(𝑟, 𝑓),𝑚(𝑟, 𝑓), and
𝑇(𝑟, 𝑓), respectively.

Lemma 16 (see [29]). Let 𝑓 be meromorphic function of
infinite order 𝜌(𝑟). Then the ray arg 𝑧 = 𝜃 is one Borel direction
of𝜌(𝑟) order ofmeromorphic function𝑓 if and only if𝑓 satisfies
the equality

lim sup
𝑟→∞

log 𝑆

𝜃−𝜖,𝜃+𝜖
(𝑟, 𝑓)

𝜌 (𝑟) log 𝑟

= 1, (15)

for any 𝜖 (0 < 𝜖 < 𝜋/2).

By using the same argument as in [8, Lemma 1] and [5],
we can get the lemma below easily.

Lemma 17. Suppose that 𝑓 is a nonconstant meromorphic
function with infinite order 𝜌(𝑟), and the ray arg 𝑧 = 𝜃 is one
Borel direction of 𝜌(𝑟) order of meromorphic function 𝑓. Let
𝑃(𝑓) = 𝑎

0
𝑓

𝑝

+ 𝑎

1
𝑓

𝑝−1

+ ⋅ ⋅ ⋅ + 𝑎

𝑝
(𝑎

0
̸= 0) be a polynomial of

𝑓 with degree 𝑝, where the coefficients 𝑎

𝑗
(𝑗 = 0, 1, . . . , 𝑝) are

constants, and let 𝑏

𝑗
(𝑗 = 1, 2, . . . , 𝑞) be 𝑞 (𝑞 ≥ 𝑝 + 1) distinct

finite complex numbers. Then for any 𝜀 (0 < 𝜀 < 𝜋/2),

(𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀
(𝑟,

𝑃 (𝑓) ⋅ 𝑓



(𝑓 − 𝑏

1
) (𝑓 − 𝑏

2
) ⋅ ⋅ ⋅ (𝑓 − 𝑏

𝑞
)

)

= 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) .

(16)

Lemma 18. Suppose that 𝑓 is a nonconstant meromorphic
function with infinite order 𝜌(𝑟), and the ray arg 𝑧 = 𝜃 is one
Borel direction of 𝜌(𝑟) order of meromorphic function 𝑓. We
assume that for any for any 𝜀 (0 < 𝜀 < 𝜋/2), 𝑓 and 𝑔 share
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four distinct values 𝑎

𝑗
(𝑗 = 1, 2, 3, 4) IM in angular domain

Ω(𝜃 − 𝜀, 𝜃 + 𝜀) and 𝑓 ̸≡ 𝑔. Let

Ψ = 𝑓



𝑔



(𝑓 − 𝑔)

2

× ((𝑓 − 𝑎

1
) (𝑓 − 𝑎

2
) (𝑓 − 𝑎

3
) (𝑓 − 𝑎

4
)

× (𝑔 − 𝑎

1
) (𝑔 − 𝑎

2
)

× (𝑔 − 𝑎

3
) (𝑔 − 𝑎

4
))

−1

.

(17)

Then, 𝑆
𝜃−𝜀,𝜃+𝜀

(𝑟, Ψ) = 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔).

Proof. Since the ray arg 𝑧 = 𝜃 is one Borel direction of
meromorphic function 𝑓 of 𝜌(𝑟) order, thus, for any 𝜀 (0 <

𝜀 < 𝜋/2), we can assume that 𝑧

0
∈ Ω(𝜃 − 𝜀, 𝜃 + 𝜀) and

𝑓(𝑧

0
) = 𝑎

1
(or 𝑎

2
, 𝑎

3
, 𝑎

4
) with multiplicity 𝑝 and 𝑔(𝑧

0
) = 𝑎

1

(or 𝑎

2
, 𝑎

3
, 𝑎

4
) with multiplicity 𝑞. From (17), we can get

Ψ (𝑧) = 𝑂 ((𝑧 − 𝑧

0
)

2min(𝑝,𝑞)−2
) . (18)

Hence, Ψ is analytic in Ω(𝜃 − 𝜀, 𝜃 + 𝜀). By Lemmas 12 and 17,
we have

𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, Ψ) = (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀
(𝑟, Ψ)

≤ (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀

× (𝑟,

𝑓



(𝑓 − 𝑎

2
) (𝑓 − 𝑎

3
) (𝑓 − 𝑎

4
)

)

+ (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀

× (𝑟,

𝑓



(𝑓 − 𝑎

1
) (𝑓 − 𝑎

2
) (𝑓 − 𝑎

3
)

)

+ (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀

× (𝑟,

𝑓



(𝑓 − 𝑎

1
) (𝑓 − 𝑎

2
) (𝑓 − 𝑎

3
) (𝑓 − 𝑎

4
)

)

+ (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀

× (𝑟,

𝑓



𝑃

1
(𝑓)

(𝑓 − 𝑎

1
) (𝑓 − 𝑎

2
) (𝑓 − 𝑎

3
) (𝑓 − 𝑎

4
)

)

+ (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀

× (𝑟,

𝑔



(𝑔 − 𝑎

2
) (𝑔 − 𝑎

3
) (𝑔 − 𝑎

4
)

)

+ (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀

× (𝑟,

𝑔



(𝑔 − 𝑎

1
) (𝑔 − 𝑎

2
) (𝑔 − 𝑎

3
)

)

+ (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀

× (𝑟,

𝑔



(𝑔 − 𝑎

1
) (𝑔 − 𝑎

2
) (𝑔 − 𝑎

3
) (𝑔 − 𝑎

4
)

)

+ (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀

× (𝑟,

𝑔



𝑃

2
(𝑔)

(𝑔 − 𝑎

1
) (𝑔 − 𝑎

2
) (𝑔 − 𝑎

3
) (𝑔 − 𝑎

4
)

)

+ 𝑂 (1)

= 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) ,

(19)

where 𝑃

1
(𝑓) is a polynomial of degree no more than 2 in 𝑓

and 𝑃

2
(𝑔) is a polynomial of degree no more than 2 in 𝑔.

Thus, we complete the proof of this lemma.

3. Proof of Theorem 8

Proof. Since 𝑓 is a meromorphic function of infinite order
𝜌(𝑟) and arg 𝑧 = 𝜃 (0 ≤ 𝜃 < 2𝜋) is one Borel direction of 𝜌(𝑟)

order of the meromorphic function 𝑓, by Lemma 16, we can
get for any 𝜀 (0 < 𝜀 < 𝜋)

lim sup
𝑟→∞

log 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓)

𝜌 (𝑟) log 𝑟

= 1. (20)

And since 𝑔 ∈ 𝑀(𝜌(𝑟)), we have

lim sup
𝑟→∞

log 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔)

𝜌 (𝑟) log 𝑟

≤ 1. (21)

Set 𝑅(𝑟) = 𝑂(𝜌(𝑟) log 𝑟) as 𝑟 → ∞, 𝑟 ∉ 𝐸 where 𝐸 is a set of
finite linearmeasure; then𝑅(𝑟) = 𝑜(𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓)) as 𝑟 → ∞,

𝑟 ∉ 𝐸.
Since 𝑓 and 𝑔 share four distinct values 𝑎

𝑗
(𝑗 = 1, 2, 3, 4)

IM in Ω(𝜃 − 𝜀, 𝜃 + 𝜀), suppose that 𝑓 ̸≡ 𝑔 and none of the
𝑎

𝑗
(𝑗 = 1, 2, 3, 4) is ∞. By Lemma 11, we have

2𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) ≤

4

∑

𝑗=1

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

) + 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓)

≤ 𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑔

) + 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓)

≤ 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔)

+ 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) ,

(22)

and by interchanging 𝑓 and 𝑔, we can get that

𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) = 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) + 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) ,

𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) = 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) .

(23)

Thus, it follows 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) = 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) = 𝑅(𝑟) and

4

∑

𝑗=1

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

) = 2𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝑅 (𝑟) . (24)
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Let Ψ be the function expressed in Lemma 18. Then, Ψ ̸≡

0. By Lemma 11 and (24), for any 𝑏

𝑗
∈ 𝑆 (𝑗 = 1, 2, . . . , 𝑚), we

have

3𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) ≤

4

∑

𝑗=1

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

)

+ 𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑏

𝑗

) + 𝑅

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓)

≤ 2𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑏

𝑗

)

+ 𝑅 (𝑟) ;

(25)

that is,

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑏

𝑗

) = 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝑅 (𝑟) . (26)

Similarly, we have

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑏

𝑗

) = 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) + 𝑅 (𝑟) . (27)

From (26) and (27), it follows

(𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑏

𝑗

) = 𝑅 (𝑟) ,

(𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑏

𝑗

) = 𝑅 (𝑟) ,

(28)

for any 𝑏

𝑗
∈ 𝑆 (𝑗 = 1, 2, . . . , 𝑚).

Set

Ψ

1
:=

(𝑔 − 𝑏

1
) ⋅ ⋅ ⋅ (𝑔 − 𝑏

𝑚
)

(𝑓 − 𝑏

1
) ⋅ ⋅ ⋅ (𝑓 − 𝑏

𝑚
)

⋅ (

𝑔



(𝑓 − 𝑔)

(𝑔 − 𝑎

1
) ⋅ ⋅ ⋅ (𝑔 − 𝑎

4
)

)

𝑚

,

Ψ

2
:=

(𝑓 − 𝑏

1
) ⋅ ⋅ ⋅ (𝑓 − 𝑏

𝑚
)

(𝑔 − 𝑏

1
) ⋅ ⋅ ⋅ (𝑔 − 𝑏

𝑚
)

⋅ (

𝑓



(𝑓 − 𝑔)

(𝑓 − 𝑎

1
) ⋅ ⋅ ⋅ (𝑓 − 𝑎

4
)

)

𝑚

.

(29)

By Lemma 17 and (28), we can get that

(𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑏

𝑗

⋅

𝑔



(𝑓 − 𝑔) (𝑔 − 𝑏

𝑗
)

(𝑔 − 𝑎

1
) ⋅ ⋅ ⋅ (𝑔 − 𝑎

4
)

) = 𝑅 (𝑟) ,

(𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑏

𝑗

⋅

𝑓



(𝑓 − 𝑔) (𝑓 − 𝑏

𝑗
)

(𝑓 − 𝑎

1
) ⋅ ⋅ ⋅ (𝑓 − 𝑎

4
)

) = 𝑅 (𝑟) .

(30)

Thus, it follows that (𝐴 + 𝐵)

𝜃−𝜀,𝜃+𝜀
(𝑟, Ψ

𝑗
) = 𝑅(𝑟), 𝑗 = 1, 2.

From (28), we see that “almost all” of poles and 𝑏

𝑗
-points of

𝑓 and 𝑔 in the angular domain Ω(𝜃 − 𝜀, 𝜃 + 𝜀) are simple.
Since 𝑓, 𝑔 share the four distinct values 𝑎

𝑗
, 𝑗 = 1, 2, 3, 4 in the

angular domain Ω(𝜃 − 𝜀, 𝜃 + 𝜀) and 𝐸(𝑆, Ω(𝜃 − 𝜀, 𝜃 + 𝜀), 𝑓) ⊂

𝐸(𝑆, Ω(𝜃 − 𝜀, 𝜃 + 𝜀), 𝑔), we can easily get that 𝐶
𝜃−𝜀,𝜃+𝜀

(𝑟, Ψ

1
) =

𝑅(𝑟). Therefore, we have

𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, Ψ

1
) = 𝑅 (𝑟) . (31)

Since Ψ

1
Ψ

2
≡ Ψ

𝑚, we can have

𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, Ψ

2
) = 𝑅 (𝑟) . (32)

Let Ξ𝑝𝑞
Ω

(𝑎

𝑗
) be the set of those 𝑎

𝑗
-points of 𝑓 and 𝑔 in the

angular domain Ω(𝜃 − 𝜀, 𝜃 + 𝜀) in which the multiplicities of
𝑓 and 𝑔 at these points are 𝑝 and 𝑞, respectively. For any 𝑧

0
∈

Ξ

𝑝𝑞

Ω
(𝑎

1
), by simple computation, we have

Ψ

1
(𝑧

0
) = (𝑞 ⋅

𝑓



(𝑧

0
) − 𝑔



(𝑧

0
)

(𝑎

1
− 𝑎

2
) (𝑎

1
− 𝑎

3
) (𝑎

1
− 𝑎

4
)

)

𝑚

,

Ψ

2
(𝑧

0
) = (𝑝 ⋅

𝑓



(𝑧

0
) − 𝑔



(𝑧

0
)

(𝑎

1
− 𝑎

2
)(𝑎

1
− 𝑎

3
)(𝑎

1
− 𝑎

4
)

)

𝑚

.

(33)

Hence,

1

𝑞

𝑚
Ψ

1
(𝑧

0
) −

1

𝑝

𝑚
Ψ

2
(𝑧

0
) = 0. (34)

Similarly, we can see that (34) holds for any 𝑧

0
∈ Ξ

𝑝𝑞

Ω
(𝑎

𝑗
), 𝑗 =

2, 3, 4.
Now, two cases will be considered below.

Case 1. Suppose that Ψ

𝑝𝑞

:= (1/𝑞

𝑚

)Ψ

1
− (1/𝑝

𝑚

)Ψ

2
̸≡ 0, for

all positive integers 𝑝, 𝑞.
First, we use𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟, 1/(𝑓−𝑎

𝑗
)) to denote the counting

function of 𝑓 in Ω(𝜃 − 𝜀, 𝜃 + 𝜀) with respect to the set
Ξ

𝑝𝑞

Ω
(𝑎

𝑗
), and we also use 𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟, 1/(𝑓 − 𝑎

𝑗
)) to denote the

corresponding reduced counting function. Thus, we have

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

) =

∞

∑

𝑝,𝑞=1

𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

) ,

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

) =

∞

∑

𝑝,𝑞=1

𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

) .

(35)

From the above two equations and (28)–(32), we can see
that 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, Ψ

𝑝𝑞

) = 𝑅(𝑟). And by (34) each zero of 𝑓 − 𝑎

𝑗

is a zero of Ψ𝑝𝑞, so with the help of Lemma 10 and Ψ

𝑝𝑞

̸≡ 0,
we can get

𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

) ≤ 𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

Ψ

𝑝𝑞
) ≤ 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

Ψ

𝑝𝑞
)

≤ 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, Ψ

𝑝𝑞

) + 𝑂 (1) = 𝑅 (𝑟) ,

(36)
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for some 𝑝, 𝑞. Since 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) = 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) + 𝑅(𝑟), it

follows

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

) = ∑

max
(
𝑝,𝑞

)
≥5

𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

)

+ 𝑅 (𝑟, 𝑓)

≤

1

5

∑

max
(
𝑝,𝑞

)
≥5

𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

)

+

1

5

∑

max
(
𝑝,𝑞

)
≥5

𝐶

𝑝𝑞

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑎

𝑗

)

+ 𝑅 (𝑟)

≤

1

5

(𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑓 − 𝑎

𝑗

)

+ 𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑎

𝑗

)) + 𝑅 (𝑟)

≤

2

5

𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝑅 (𝑟) ,

𝑗 = 1, 2, 3, 4.

(37)

From the above inequality and (24), we can get

2𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) ≤

8

5

𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑓) + 𝑅 (𝑟) . (38)

Since 𝑓 is of infinite order 𝜌(𝑟) and 𝑅(𝑟) = 𝑂(𝜌(𝑟) log 𝑟), we
can get a contradiction to (38).
Case 2. Suppose that Ψ

𝑝𝑞

:= (1/𝑞

𝑚

)Ψ

1
− (1/𝑝

𝑚

)Ψ

2
≡ 0, for

some positive integers𝑝, 𝑞. From the definitions ofΨ
1
andΨ

2
,

we have

(

𝑝

𝑞

)

𝑚

⋅

(𝑔 − 𝑏

1
)

2

⋅ ⋅ ⋅ (𝑔 − 𝑏

𝑚
)

2

(𝑓 − 𝑏

1
)

2

⋅ ⋅ ⋅ (𝑓 − 𝑏

𝑚
)

2

≡ (

𝑓



(𝑔 − 𝑎

1
) ⋅ ⋅ ⋅ (𝑔 − 𝑎

4
)

𝑔


(𝑓 − 𝑎

1
) ⋅ ⋅ ⋅ (𝑓 − 𝑎

4
)

)

𝑚

.

(39)

Next, we take the following two subcases into considera-
tion.
Subcase 2.1. Suppose that 𝑝 ̸= 𝑞. Without loss of generality, we
may assume that𝑝 < 𝑞. For some two positive integers𝑝

1
and

𝑞

1
, if 𝑧
1
∈ Ξ

𝑝1𝑞1

Ω
(𝑎

𝑗
) for some 𝑗 ∈ {1, 2, 3, 4}, then (39) implies

that 𝑝/𝑞 = 𝑝

1
/𝑞

1
. Hence, 𝑞

1
> 𝑝

1
≥ 1, and 𝑞

1
≥ 2 which

means that any 𝑎

𝑗
-points (𝑗 = 1, 2, 3, 4) of 𝑔 in Ω(𝜃 − 𝜀, 𝜃 + 𝜀)

are multiple. By Lemma 11 and (24), we can get

2𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) =

4

∑

𝑗=1

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑎

𝑗

) + 𝑅 (𝑟)

≤

1

2

4

∑

𝑗=1

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑎

𝑗

) + 𝑅 (𝑟)

≤ 2𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) + 𝑅 (𝑟) ;

(40)

it follows that

𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, 𝑔) = 𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑎

𝑗

) + 𝑅 (𝑟) , (41)

𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑎

𝑗

) = 2𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟,

1

𝑔 − 𝑎

𝑗

) + 𝑅 (𝑟) .

(42)

From (41) and (42), we can see that “almost all” of 𝑎

𝑗
-

points of 𝑔 have multiplicity 2, and “almost all” of 𝑎

𝑗
-points

of 𝑓 are simple in Ω(𝜃 − 𝜀, 𝜃 + 𝜀). Without loss of generality,
we may assume that 𝑓 and 𝑔 attain the values 𝑎

3
and 𝑎

4
in

Ω(𝜃 − 𝜀, 𝜃 + 𝜀). Set

Φ

1
:=

2𝑓



(𝑓 − 𝑎

4
)

(𝑓 − 𝑎

1
) (𝑓 − 𝑎

2
) (𝑓 − 𝑎

3
)

−

𝑔



(𝑔 − 𝑎

4
)

(𝑔 − 𝑎

1
) (𝑔 − 𝑎

2
) (𝑔 − 𝑎

3
)

,

Φ

2
:=

2𝑓



(𝑓 − 𝑎

3
)

(𝑓 − 𝑎

1
) (𝑓 − 𝑎

2
) (𝑓 − 𝑎

4
)

−

𝑔



(𝑔 − 𝑎

3
)

(𝑔 − 𝑎

1
) (𝑔 − 𝑎

2
) (𝑔 − 𝑎

4
)

.

(43)

Since Φ

𝑖
(𝑖 = 1, 2) is analytic at the poles of 𝑓 and of 𝑔

and also at those common 𝑎

𝑗
-points of 𝑓 and 𝑔 which have

multiplicity 1 with respect to𝑓 andmultiplicity 2 with respect
to 𝑔, by Lemma 17, we have 𝑆

𝜃−𝜀,𝜃+𝜀
(𝑟, Φ

𝑖
) = 𝑅(𝑟), 𝑖 = 1, 2. If

Φ

𝑖
̸≡ 0, then𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟, 1/(𝑔−𝑎

4
)) ≤ 𝐶

𝜃−𝜀,𝜃+𝜀
(𝑟, 1/𝜙

1
) = 𝑅(𝑟),

which contradicts to (41). Then, Φ
1

≡ 0. Similarly, we have
Φ

2
≡ 0. Therefore, from the definitions of Φ

1
and Φ

2
, we

have

(

𝑓 − 𝑎

4

𝑓 − 𝑎

3

)

2

≡ (

𝑔 − 𝑎

4

𝑔 − 𝑎

3

)

2

. (44)

Since 𝑓 ̸≡ 𝑔, from (44), we have

𝑓 − 𝑎

4

𝑓 − 𝑎

3

≡ −

𝑔 − 𝑎

4

𝑔 − 𝑎

3

, (45)

which implies that 𝑓 and 𝑔 share 𝑎

3
, 𝑎

4
CM in Ω(𝜃 − 𝜀, 𝜃 + 𝜀).

Since𝑓 and𝑔 assume the value 𝑎

3
, there exist positive integers
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𝑝

1
, 𝑞

1
such that Ξ𝑝1𝑞1

Ω
(𝑎

3
) ̸= 0. From the considerations above

we get 𝑞

1
> 𝑝

1
, contradicting the fact that 𝑓 and 𝑔 share 𝑎

3

CM.
Subcase 2.2. Suppose that 𝑝 = 𝑞.

In this subcase, (39) becomes

(𝑔 − 𝑏

1
)

2

⋅ ⋅ ⋅ (𝑔 − 𝑏

𝑚
)

2

(𝑓 − 𝑏

1
)

2

⋅ ⋅ ⋅ (𝑓 − 𝑏

𝑚
)

2
≡ (

𝑓



(𝑔 − 𝑎

1
) ⋅ ⋅ ⋅ (𝑔 − 𝑎

4
)

𝑔


(𝑓 − 𝑎

1
) ⋅ ⋅ ⋅ (𝑓 − 𝑎

4
)

)

𝑚

.

(46)

which implies that 𝑓 and 𝑔 share the four values 𝑎

𝑗
(𝑗 =

1, 2, 3, 4) CM in Ω(𝜃 − 𝜀, 𝜃 + 𝜀). Then by applyingTheorem 7,
𝑔 is a Möbius transformation of 𝑓. Furthermore, two of the
four values, say 𝑎

1
, 𝑎
2
, are Picard exceptional values of 𝑓 and

𝑔 in Ω(𝜃 − 𝜀, 𝜃 + 𝜀). Set

Λ

1
:=

𝑓



(𝑓 − 𝑎

4
)

(𝑓 − 𝑎

1
) (𝑓 − 𝑎

2
) (𝑓 − 𝑎

3
)

−

𝑔



(𝑔 − 𝑎

4
)

(𝑔 − 𝑎

1
) (𝑔 − 𝑎

2
) (𝑔 − 𝑎

3
)

,

Λ

2
:=

𝑓



(𝑓 − 𝑎

3
)

(𝑓 − 𝑎

1
) (𝑓 − 𝑎

2
) (𝑓 − 𝑎

4
)

−

𝑔



(𝑔 − 𝑎

3
)

(𝑔 − 𝑎

1
) (𝑔 − 𝑎

2
) (𝑔 − 𝑎

4
)

.

(47)

Similar to the discussion in Subcase 2.1 forΛ

1
,Λ
2
, we can get

𝑓 − 𝑎

3

𝑓 − 𝑎

4

≡ −

𝑔 − 𝑎

3

𝑔 − 𝑎

4

. (48)

We define the Möbius transformations 𝑇, 𝐻, and 𝐽 by

𝑇 (𝜔) :=

𝑤 − 𝑎

3

𝑤 − 𝑎

4

, 𝐻 (𝑤) := −𝑤, 𝐽 := 𝑇

−1

∘ 𝐻 ∘ 𝑇.

(49)

Then, we have

𝑇 ∘ 𝑓 = −𝑇 ∘ 𝑔; hence, 𝑔 = 𝐽 ∘ 𝑓. (50)

Obviously, 𝑎
3
and 𝑎

4
are the fixed points of 𝐽. Therefore, there

exist no fixed points of 𝐽 in the set 𝑆. Let some 𝑏 ∈ 𝑆 be given.
Then, in vies of 𝑏 ̸= 𝑎

1
, 𝑎

2
, there exists a 𝑧

0
∈ C such that 𝑏 =

𝑓(𝑧

0
), and from𝐸(𝑆, Ω(𝜃−𝜀, 𝜃+𝜀), 𝑓) ⊆ 𝐸(𝑆, Ω(𝜃−𝜀, 𝜃+𝜀), 𝑔)

we obtain

𝐽 (𝑏) = 𝐽 (𝑓 (𝑧

0
)) = 𝑔 (𝑧

0
) ∈ 𝑆. (51)

So 𝑆 is invariant under 𝐽. Furthermore, we have 𝐽∘𝐽 = 𝐼where
𝐼 denotes the identical transformation.Hence, 𝑆must contain
an even number of values. Thus, the proof of Theorem 8 is
completed.
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Borel des fonctions méromorphes,” Scientia Sinica, vol. 16, pp.
465–482, 1973.

[23] G. H. Zhang, “CommonBorel directions ofmeromorphic func-
tions and their successive derivatives or integrals. III,” Acta
Mathematica Sinica. Shuxue Xuebao, vol. 20, no. 4, pp. 237–247,
1977.

[24] Q. D. Zhang, “𝑇 direction and Borel direction of meromorphic
functions of finite and positive order,”ActaMathematica Sinica.
Chinese Series, vol. 50, no. 2, pp. 413–419, 2007.

[25] C. T. Chuang, Singular Direction of Meromorpic Functions,
Science Press, Beijing, China, 1982.

[26] J. R. Long and P. C. Wu, “Borel directions and uniqueness of
meromorphic functions,”Chinese Annals of Mathematics A, vol.
33, no. 3, pp. 261–266, 2012.

[27] A. A. Goldberg and I. V. Ostrovskĭı, The Distribution of Values
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