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We study the nonlinear waves described by Schamel-Korteweg-de Vries equation 𝑢
𝑡
+ (𝑎𝑢

1/2
+ 𝑏𝑢)𝑢

𝑥
+ 𝛿𝑢
𝑥𝑥𝑥

= 0. Two new types
of nonlinear waves called compacton-like waves and kink-like waves are displayed. Furthermore, two kinds of new bifurcation
phenomena are revealed. The first phenomenon is that the kink waves can be bifurcated from five types of nonlinear waves which
are the bell-shape solitary waves, the blow-up waves, the valley-shape solitary waves, the kink-like waves, and the compacton-like
waves. The second phenomenon is that the periodic-blow-up wave can be bifurcated from the smooth periodic wave.

1. Introduction and Preliminary

Consider the following Schamel-Korteweg-de Vries (S-KdV)
equation [1, 2]:

𝑢
𝑡
+ (𝑎𝑢

1/2
+ 𝑏𝑢) 𝑢

𝑥
+ 𝛿𝑢
𝑥𝑥𝑥

= 0, (1)

where 𝑎, 𝑏, and 𝛿 are constants.
Equation (1) arises in plasma physics in the study of ion

acoustic solitons when electron trapping is present and also
it governs the electrostatic potential for a certain electron
distribution in velocity space. Tagare and Chakraborti [1]
showed that (1) has solitary wave solution by applying direct
integral method. Lee and Sakthivel [3] gave some exact
traveling wave solutions of (1) by using exp-functionmethod.

When 𝑏 = 0, (1) becomes the Schamel equation [4]:

𝑢
𝑡
+ 𝑎𝑢
1/2
𝑢
𝑥
+ 𝛿𝑢
𝑥𝑥𝑥

= 0. (2)

When 𝑎 = 0, (1) becomes a well-known KdV equation

𝑢
𝑡
+ 𝑏𝑢𝑢

𝑥
+ 𝛿𝑢
𝑥𝑥𝑥

= 0, (3)

which has been studied successively by many authors (e.g.,
[5–8]).

The concept of compacton, soliton with compact support
or strict localization of solitary waves, appeared in the work

of Rosenau and Hyman [9] where a genuinely nonlinear dis-
persive equation𝐾(𝑛; 𝑛) is defined by

𝑢
𝑡
+ 𝑎(𝑢
𝑛
)
𝑥
+ (𝑢
𝑛
)
𝑥𝑥𝑥

= 0. (4)

They found certain solitary wave solutions which vanish
identically outside a finite core region. These solutions are
called compactons.

Several studies have been conducted in [10–20]. The aim
of these studies was to examine if other nonlinear dispersive
equations may generate compactons structures.

In order to investigate the nonlinear waves of (1), letting
𝑐 > 0 be wave speed and substituting 𝑢 = 𝜑(𝜉)with 𝜉 = 𝑥− 𝑐𝑡
into (1), it follows that

−𝑐𝜑
󸀠
+ 𝑎𝜑
1/2
𝜑
󸀠
+ 𝑏𝜑𝜑

󸀠
+ 𝛿𝜑
󸀠󸀠󸀠
= 0. (5)

Integrating (5), we get

−𝑐𝜑 +

2

3

𝑎𝜑
3/2
+

𝑏

2

𝜑
2
+ 𝛿𝜑
󸀠󸀠
= 0. (6)

Setting 𝜑󸀠 = 𝑦 yields the following planar system:

𝜑
󸀠
= 𝑦, 𝑦

󸀠
=

𝑐

𝛿

𝜑 −

2𝑎

3𝛿

𝜑
3/2
−

𝑏

2𝛿

𝜑
2
. (7)
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Figure 1: The bifurcation phase portraits of system (7) when 𝛿 > 0.
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Figure 2: The bifurcation phase portraits of system (7) when 𝛿 < 0.

Obviously, system (7) is a Hamiltonian system with Hamilto-
nian function

𝐻(𝜑, 𝑦) = 𝑦
2
−

𝑐

𝛿

𝜑
2
+

8𝑎

15𝛿

𝜑
5/2
+

𝑏

3𝛿

𝜑
3
. (8)

If one puts

𝑓 (𝜑) =

𝑐

𝛿

𝜑 −

2𝑎

3𝛿

𝜑
3/2
−

𝑏

2𝛿

𝜑
2
,

Δ = 4𝑎
2
+ 18𝑏𝑐,

(9)

then one can see the following facts.

When Δ > 0, 𝑓(𝜑) has three zero points 𝜑
0
, 𝜑
1
, and 𝜑

2

which possess expressions

𝜑
0
= 0, 𝜑

1
= (

−2𝑎 − √Δ

3𝑏

)

2

, 𝜑
2
= (

−2𝑎 + √Δ

3𝑏

)

2

.

(10)

When Δ = 0, 𝑓(𝜑) has two zero points 𝜑
0
and 𝜑∗ which are

denoted by

𝜑
0
= 0, 𝜑

∗
=

4𝑎
2

9𝑏
2
. (11)

When Δ < 0, 𝑓(𝜑) has one zero point 𝜑
0
= 0.
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Figure 3: The graphs of orbits Γ±
1
and Γ±

2
when (a

1
) 𝛿 > 0 and (𝑎, 𝑏) ∈ 𝐴

2
, (a
2
) 𝛿 < 0 and (𝑎, 𝑏) ∈ 𝐴

2
or 𝐴
3
or 𝑙
2
, (a
3
) 𝛿 < 0 and (𝑎, 𝑏) ∈ 𝐴

1

or 𝐴
6
or 𝑙
1
(𝑎 > 0), and (a

4
) 𝛿 < 0 and (𝑎, 𝑏) ∈ 𝑙

3
.
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Figure 4: (Corresponding to Example 2). The simulation of integral curve of (6) when 𝑎 = 1/2, 𝑏 = −2/45, 𝑐 = 1, and 𝛿 = 1. (a
1
) Initial

conditions 𝜑(0) = 58.90576474 and 𝜑󸀠(0) = 38.27939786. (a
2
) Initial conditions 𝜑(0) = 58.90576474 and 𝜑󸀠(0) = −38.27939786.

Letting (𝜑, 0) be one of the singular points of system (7),
then the characteristic values at (𝜑, 0) are

𝜆 = ±√𝑓
󸀠
(𝜑). (12)

From the qualitative theory of dynamical systems, we get
the following conclusions:

(1) if 𝑓󸀠(𝜑) > 0, then (𝜑, 0) is a saddle point,

(2) if 𝑓󸀠(𝜑) < 0, then (𝜑, 0) is a center point,

(3) if 𝑓󸀠(𝜑) = 0, then (𝜑, 0) is a degenerate saddle point.

On 𝑎 − 𝑏 parametric plane, let 𝑙
1
, 𝑙
2
, and 𝑙

3
, respectively,

represent the following three curves:

𝑙
1
: 𝑏 = 0,

𝑙
2
: 𝑏 = −

16𝑎
2

75𝑐

,

𝑙
3
: 𝑏 = −

2𝑎
2

9𝑐

.

(13)

Let 𝐴
𝑖
(𝑖 = 1, 2, . . . , 6) represent the regions surrounded by

𝑙
1
, 𝑙
2
, 𝑙
3
, and the coordinate axes (see Figures 1 and 2).

According to the previous analysis, we obtain the bifurca-
tion phase portraits of system (7) as in Figures 1 and 2.
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when (a
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1
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Figure 6: (Corresponding to Example 4). The simulation of integral curve of (6) when 𝑎 = 1, 𝑏 = −157/3000, 𝑐 = 1, and 𝛿 = 1. (a
1
) Initial

conditions 𝜑(0) = 26.49502557 and 𝜑󸀠(0) = 10.49025102. (a
2
) Initial conditions 𝜑(0) = 26.49502557 and 𝜑󸀠(0) = −10.49025102.

In this paper, we study the nonlinear waves and their
bifurcations in (1) by using the bifurcationmethod of dynam-
ical systems [21–23]. We point out that there are two new
types of nonlinear waves, kink-like waves and compacton-
like waves [24–33]. Furthermore, we reveal two kinds of new
bifurcation phenomena which are introduced in the abstract.

This paper is organized as follows. In Section 2, we display
the two new types of nonlinear waves.We show the two kinds
of new bifurcation phenomena in Sections 3 and 4. A brief
conclusion is given in Section 5.

2. Two New Types of Nonlinear Waves

In this section, we display two new types of nonlinear waves
defined by (1).

2.1. Kink-Like Waves

Proposition 1. (1) When the parameters satisfy 𝛿 > 0, 𝑎 > 0,
and −16𝑎2/75𝑐 < 𝑏 < 0, (1) has a kink-like wave solution 𝑢+

𝑎
=

𝜑(𝜉) and an antikink-like wave solution𝑢−
𝑎
= 𝜑(𝜉), respectively,

which are hidden in the following equations:

∫

𝜑

𝜑1/2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
1

= 𝜉,

𝜉 ∈ (−𝜉
0

1
,∞) ,

(14)

∫

𝜑

𝜑1/2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
1

= −𝜉,

𝜉 ∈ (−∞, 𝜉
0

1
) ,

(15)
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Figure 7: (The kink wave is bifurcated from the bell-shape solitary wave). The varying process for the graph of 𝑢
𝑑
when 𝑐 > 0, 𝛿 > 0,

𝑎 > 0, 𝜆 > 0 and 𝑏 → −16𝑎
2
/75𝑐 + 0. Where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1, 𝜆 = 50 and (a) 𝑏 = −16𝑎

2
/75𝑐 + 10

−1. (b) 𝑏 = −16𝑎
2
/75𝑐 + 10

−3.
(c) 𝑏 = −16𝑎2/75𝑐 + 10−4. (d) 𝑏 = −16𝑎2/75𝑐 + 10−7.
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Figure 8: (The anti-kink wave is bifurcated from the bell-shape solitary wave). The varying process for the graph of 𝑢
𝑒
when 𝑐 > 0, 𝛿 > 0,

𝑎 > 0, 𝜆 > 0 and 𝑏 → −16𝑎
2
/75𝑐 + 0. Where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1, 𝜆 = 50 and (a) 𝑏 = −16𝑎

2
/75𝑐 + 10

−1. (b) 𝑏 = −16𝑎
2
/75𝑐 + 10

−3.
(c) 𝑏 = −16𝑎2/75𝑐 + 10−4. (d) 𝑏 = −16𝑎2/75𝑐 + 10−7.
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Figure 9: (The kink wave is bifurcated from the blow-up wave). The varying process for the graph of 𝑢
𝑑
when 𝑐 > 0, 𝛿 > 0, 𝑎 > 0, 𝜆 > 0, and

𝑏 → −16𝑎
2
/75𝑐 − 0, where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1, 𝜆 = 1, and (a) 𝑏 = −16𝑎2/75𝑐 − 10−2. (b) 𝑏 = −16𝑎2/75𝑐 − 10−4. (c) 𝑏 = −16𝑎2/75𝑐 − 10−5.

(d) 𝑏 = −16𝑎2/75𝑐 − 10−9.

where

𝜉
0

1
= ∫

𝜑1/2

0

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
1

(16)

and ℎ
1
= 𝐻(𝜑

1
, 0).

(2) When the parameters satisfy one of the following Cases.

Case 1. 𝛿 < 0, 𝑎 > 0, and −2𝑎2/9𝑐 < 𝑏 < 0,

Case 2. 𝛿 < 0, and 𝑏 > 0,

Case 3. 𝛿 < 0, 𝑎 > 0, and 𝑏 = 0,

Case 4. 𝛿 < 0, 𝑎 > 0, and 𝑏 = −2𝑎2/9𝑐.

Equation (1) has a kink-like wave solution 𝑢+
𝑏
= 𝜑(𝜉) and

an antikink-like wave solution 𝑢−
𝑏
= 𝜑(𝜉), respectively, which

are hidden in the following equations:

∫

𝜑

𝜑2/2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
2

= 𝜉,

𝜉 ∈ (−𝜉
0

2
,∞) ,

∫

𝜑

𝜑2/2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
2

= −𝜉,

𝜉 ∈ (−∞, 𝜉
0

2
) ,

(17)

where

𝜉
0

2
= ∫

𝜑2/2

0

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
2

(18)

and ℎ
2
= 𝐻(𝜑

2
, 0).

Proof. (1) Under the condition 𝛿 > 0, 𝑎 > 0, and −16𝑎2/75𝑐 <
𝑏 < 0, (𝜑

1
, 0) is a saddle point and on its left side there are two

orbits Γ±
1
connecting with it (see Figure 3(a

1
)).
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Figure 10: (The antikink wave is bifurcated from the blow-up wave). The varying process for the graph of 𝑢
𝑒
when 𝑐 > 0, 𝛿 > 0, 𝑎 > 0, 𝜆 > 0,

and 𝑏 → −16𝑎
2
/75𝑐 − 0, where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1, 𝜆 = 1, and (a) 𝑏 = −16𝑎2/75𝑐 − 10−2. (b) 𝑏 = −16𝑎2/75𝑐 − 10−4. (c) 𝑏 = −16𝑎2/75𝑐 − 10−5.

(d) 𝑏 = −16𝑎2/75𝑐 − 10−9.

In (8), letting ℎ
1
= 𝐻(𝜑

1
, 0), it follows that

Γ
±

1
: 𝑦 = ±√

𝑐

𝛿

𝜑
2
−

8𝑎

15𝛿

𝜑
5/2
−

𝑏

3𝛿

𝜑
3
+ ℎ
1

(0 < 𝜑 < 𝜑
1
) .

(19)

On Γ±
1
suppose 𝜑(0) = 𝜑

1
/2. Substituting (19) into (7) and

integrating them along Γ+
1
and Γ−
1
, respectively, we get (14)–

(16).
(2) Under one of Cases 1–4, (𝜑

2
, 0) is a saddle point and

on its left side there are two orbits Γ±
2
connecting with it (see

Figures 3(a
2
)–3(a
4
)).

In (8), letting ℎ
2
= 𝐻(𝜑

2
, 0), it follows that

Γ
±

2
: 𝑦 = ±√

𝑐

𝛿

𝜑
2
−

8𝑎

15𝛿

𝜑
5/2
−

𝑏

3𝛿

𝜑
3
+ ℎ
2

(0 < 𝜑 < 𝜑
2
) .

(20)

Similar to the proof of (1), we get the results of (2).

Next, we simulate the planar graphs of the kink-likewaves
for those data given in Example 2.

Example 2 (Corresponding to Proposition 1 (1)). Giving 𝑎 =
1/2, 𝑏 = −2/45, 𝑐 = 1, and 𝛿 = 1, we get 𝜑

1
= 117.81152949

and 𝜑(0) = 𝜑
1
/2 = 58.90576474. Note that orbits Γ±

1
have

expressions (19). From (19) we get 𝑦+
1
(0) = 38.27939786 and

𝑦
−

1
(0) = −38.27939786. These imply that Γ+

1
passes point

(𝜑(0), 𝑦
+

1
(0)) and Γ−

1
passes point (𝜑(0), 𝑦−

1
(0)). Thus letting

𝜑(0) = 𝜑
1
/2 and 𝜑󸀠(0) = 𝑦+

1
(0) as the initial conditions of (6),

we get the simulation of the integral curve which corresponds
to Γ+
1
as Figure 4(a

1
). Meanwhile, choosing 𝜑(0) = 𝜑

1
/2 and

𝜑
󸀠
(0) = 𝑦

−

1
(0) as the initial conditions of (6), we get the

simulation of the integral curve which corresponds to Γ−
1
as

in Figure 4(a
2
).

2.2. Compacton-Like Waves

Proposition 3. Let𝜑
𝑘
be an initial value when parameters and

initial value satisfy one of the following Cases.

Case 1. 𝛿 > 0, 𝑏 > 0, and 𝜑
𝑘
> 𝛾
1
,

Case 2. 𝛿 > 0, 𝑎 > 0, 𝑏 = 0, and 𝜑
𝑘
> 𝛾
1
,

Case 3. 𝛿 > 0, 𝑎 > 0, −16𝑎2/75𝑐 < 𝑏 < 0, and 𝛾
1
< 𝜑
𝑘
< 𝜑
1
,

Case 4. 𝛿 < 0, 𝑏 > 0, and 0 < 𝜑
𝑘
< 𝜑
2
,

Case 5. 𝛿 < 0, 𝑎 > 0, 𝑏 = 0, and 0 < 𝜑
𝑘
< 𝜑
2
,

Case 6. 𝛿 < 0, 𝑎 < 0, 𝑏 ≤ 0, and 𝜑
𝑘
> 0,



8 Abstract and Applied Analysis

u

o

uf

𝜉

(a)

u

o

uf

𝜉

(b)

u

o

uf

𝜉

(c)

u

o

uf

𝜉

(d)

Figure 11: (The kink wave is bifurcated from the valley-shape solitary wave).The varying process for the graph of 𝑢
𝑓
when 𝑐 > 0, 𝛿 > 0, 𝑎 > 0,

and 𝑏 → −16𝑎
2
/75𝑐 − 0, where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1/2, and (a) 𝑏 = −16𝑎2/75𝑐 − 10−3. (b) 𝑏 = −16𝑎2/75𝑐 − 10−7. (c) 𝑏 = −16𝑎2/75𝑐 − 10−8.

(d) 𝑏 = −16𝑎2/75𝑐 − 10−10.

Case 7. 𝛿 < 0, 𝑎 > 0, 𝑏 < −2𝑎2/9𝑐, and 𝜑
𝑘
> 0,

Case 8. 𝛿 < 0, 𝑎 > 0, 𝑏 = −2𝑎2/9𝑐, and 𝜑
𝑘
̸= 𝛾
2
(= 𝜑
2
),

Case 9. 𝛿 < 0, 𝑎 > 0, −2𝑎2/9𝑐 < 𝑏 < 0, and 𝜑
𝑘
> 𝛾
2
or

0 < 𝜑
𝑘
< 𝜑
2
.

Equation (1) has compacton-like wave solutions 𝑢+
𝑐
= 𝜑(𝜉)

and 𝑢−
𝑐
= 𝜑(𝜉), respectively, which are hidden in the following

equations:

∫

𝜑

𝜑𝑘/2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
𝜑𝑘

= 𝜉,

𝜉 ∈ (−𝜉
0

3
, 𝜉
0

4
) ,

∫

𝜑

𝜑𝑘/2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
𝜑𝑘

= −𝜉,

𝜉 ∈ (−𝜉
0

4
, 𝜉
0

3
) ,

(21)

where

𝜉
0

3
= ∫

𝜑𝑘/2

0

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
𝜑𝑘

,

(22)

𝜉
0

4
= 2∫

𝜑𝑘

𝜑𝑘/2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
𝜑𝑘

+ 𝜉
0

3
,

(23)

and ℎ
𝜑𝑘
= 𝐻(𝜑

𝑘
, 0).

Proof. Under one of Cases 1–9, there is an orbit Γ
𝜑𝑘

passing
point (𝜑

𝑘
, 0) (see Figure 5 (a

1
)–5(a
6
)).

In (8), letting ℎ
𝜑𝑘
= 𝐻(𝜑

𝑘
, 0), it follows that

Γ
𝜑𝑘
: 𝑦
2
=

𝑐

𝛿

𝜑
2
−

8𝑎

15𝛿

𝜑
5/2
−

𝑏

3𝛿

𝜑
3
+ ℎ
𝜑𝑘

(0 < 𝜑 < 𝜑
𝑘
) .

(24)

On Γ
𝜑𝑘

suppose 𝜑(0) = 𝜑
𝑘
/2. Substituting (24) into (7)

and integrating it along Γ
𝜑𝑘
, respectively, we obtain (21)–(23).
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Figure 12: (The antikink wave is bifurcated from the valley-shape solitary wave). The varying process for the graph of 𝑢
𝑔
when 𝑐 > 0, 𝛿 > 0,

𝑎 > 0, and 𝑏 → −16𝑎
2
/75𝑐−0, where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1/2, and (a) 𝑏 = −16𝑎2/75𝑐−10−3. (b) 𝑏 = −16𝑎2/75𝑐−10−7. (c) 𝑏 = −16𝑎2/75𝑐−10−8.

(d) 𝑏 = −16𝑎2/75𝑐 − 10−10.

𝜑𝜑1𝜑2

Γ3

y

o

Figure 13: The graph of orbit Γ
3
when 𝛿 > 0 and (𝑎, 𝑏) ∈ 𝐴

3
.

Next, we simulate the planar graphs of the compacton-
like waves for those data given in Example 4.

Example 4 (Corresponding to Proposition 3 Case (3)). Giv-
ing 𝑎 = 1/2, 𝑏 = −157/3000, 𝑐 = 1, and 𝛿 = 1, we get

𝜑
1
= 62.46353941 and 𝛾

1
= 43.51656288. Note that orbit Γ

𝜑𝑘

has expression (24). Letting 𝜑
𝑘
= (𝜑
1
+ 𝛾
1
)/2, it follows that

𝜑(0) = 26.49502557. From (24) we get 𝑦(0) = ±10.49025102.
Thus letting 𝜑(0) = 26.49502557 and 𝜑󸀠(0) = 10.49025102

as the initial conditions of (6), we get the simulation of
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Figure 14: (The kink wave is bifurcated from the kink-like wave). The varying process for the graph of 𝑢+
𝑎
when 𝑐 > 0, 𝛿 > 0, 𝑎 > 0, and

𝑏 → −16𝑎
2
/75𝑐 + 0, where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1/2, and (a) 𝑏 = −16𝑎2/75𝑐 + 10−3. (b) 𝑏 = −16𝑎2/75𝑐 + 10−4. (c) 𝑏 = −16𝑎2/75𝑐 + 10−6.

(d) 𝑏 = −16𝑎2/75𝑐 + 10−8.

the integral curve as in Figure 6(a
1
). Meanwhile, choosing

𝜑(0) = 26.49502557 and 𝜑󸀠(0) = −10.49025102 as the initial
conditions of (6), we get the simulation of the integral curve
as Figure 6(a

2
).

3. Bifurcation of the Kink Waves

In this section, we show that the kink waves can be bifurcated
from five other waves.

3.1. Bifurcation from Bell-Shape Solitary Waves

Proposition 5. For 𝑎𝑏 ̸= 0 and 𝛿 > 0, (1) has two nonlinear
wave solutions

𝑢
𝑑
= (

4𝛼𝜆

𝜆
2
𝑒
−𝜏1𝜉 − 2𝜆𝛽 + (𝛽

2
− 4𝛼) 𝑒

𝜏1𝜉
)

2

,

𝑢
𝑒
= (

4𝛼𝜆

𝜆
2
𝑒
𝜏1𝜉 − 2𝜆𝛽 + (𝛽

2
− 4𝛼) 𝑒

−𝜏1𝜉
)

2

,

(25)

where

𝛼 = 𝑝𝑞, 𝛽 = − (𝑝 + 𝑞) , 𝜏
1
=

1

2

√

𝑐

𝛿

, (26)

𝑝 = √𝛾1
=

−4𝑎 + √16𝑎
2
+ 75𝑏𝑐

5𝑏

, (27)

𝑞 =

−4𝑎 − √16𝑎
2
+ 75𝑏𝑐

5𝑏

, (28)

and 𝜆 ̸= 0 is an arbitrary real number. These solutions possess
the following properties.

(1) If 𝜆 > 0, 𝑎 > 0, and 𝑏 = −16𝑎2/75𝑐, then 𝑢
𝑑
and 𝑢

𝑒

become

𝑢
∗

𝑑
= (

4𝛼

𝜆𝑒
−𝜏1𝜉 − 2𝛽

)

2

,

𝑢
∗

𝑒
= (

4𝛼

𝜆𝑒
𝜏1𝜉 − 2𝛽

)

2

,

(29)

which represent a kink wave and an antikink wave.
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Figure 15: (The antikink wave is bifurcated from the antikink-like wave). The varying process for the graph of 𝑢−
𝑎
when 𝑐 > 0, 𝛿 > 0, 𝑎 > 0,

and 𝑏 → −16𝑎
2
/75𝑐 + 0, where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1/2, and (a) 𝑏 = −16𝑎2/75𝑐 + 10−3. (b) 𝑏 = −16𝑎2/75𝑐 + 10−4. (c) 𝑏 = −16𝑎2/75𝑐 + 10−6.

(d) 𝑏 = −16𝑎2/75𝑐 + 10−8.

In particular, when𝛼 = 𝑝𝑞 = −3𝑐/𝑏,𝛽 = −(𝑝+𝑞) = 8𝑎/5𝑏,
𝑐 = −16𝑎

2
/75𝑏, 𝜆 = 𝑎

0
, and 𝜉 = 𝑥 − 𝑐𝑡, 𝑢∗

𝑑
and 𝑢∗

𝑒
become

𝑢
1

=

16𝑎
2

0
𝑎
2

(4𝑎 exp (±(2/5)√−1/3𝑏𝛿𝑎 (𝑥+(16𝑎2/75𝑏) 𝑡))−5𝑎
0
𝑏)

2
,

(30)

which was given by Lee and Sakthivel [3]. This implies that 𝑢
1

is the special case of 𝑢
𝑑
or 𝑢
𝑒
.

(2) If 𝜆 = √𝛽2 − 4𝛼, then 𝑢
𝑑
= 𝑢
𝑒
and become

𝑢
∗

𝑑𝑒
= (

2𝛼

√𝛽
2
− 4𝛼 cosh (𝜏

1
𝜉) − 𝛽

)

2

. (31)

When (𝑎, 𝑏) belongs to one of the regions 𝐴
2
, 𝐴
6
, 𝑢∗
𝑑𝑒
rep-

resents a hyperbolic solitary wave.
In particular, when 𝛼 = 𝑝𝑞 = −3𝑐/𝑏, and 𝛽 = −(𝑝 + 𝑞) =

8𝑎/5𝑏, 𝑢∗
𝑑𝑒
becomes

𝑢
2
= (

15𝑐

4𝑎 + √16𝑎
2
+ 75𝑏𝑐 cosh ((1/2)√𝑐/𝛿𝜉)

)

2

, (32)

which was obtained by Tagare and Chakraborti [3]. This
implies that 𝑢

2
is the special case of 𝑢

𝑑
or 𝑢
𝑒
.

(3) Under one of the following Cases.

Case 1. 𝜆 > 0, 𝜆 ̸=√𝛽
2
− 4𝛼, and (𝑎, 𝑏) belongs to one of the

regions 𝐴
2
, 𝐴
6
,

Case 2. 𝜆 < 0, 𝜆 ̸= −√𝛽
2
− 4𝛼, and (𝑎, 𝑏) ∈ 𝐴

1
, 𝑢
𝑑
̸= 𝑢
𝑒
and

they represent two bell-shape solitary waves.
In particular, when (𝑎, 𝑏) ∈ 𝐴

2
in Case 1 and 𝑏 → 0 − 0,

𝑢
𝑑
and 𝑢

𝑒
become

𝑢
∘

𝑑
=

225𝑐
2

4𝑎
2
(1 + 𝑒

−𝜏1𝜉)

4
, (33)

𝑢
∘

𝑒
=

225𝑐
2

4𝑎
2
(1 + 𝑒

𝜏1𝜉)

4
, (34)

which are the solutions of the Schamel equation.
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Figure 16: (The kink wave is bifurcated from the compacton-like wave). The varying process for the graph of 𝑢+
𝑐
when 𝑐 > 0, 𝛿 > 0, 𝑎 > 0,

and 𝑏 → −16𝑎
2
/75𝑐 + 0, where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1/2, and (a) 𝑏 = −16𝑎2/75𝑐 + 10−3. (b) 𝑏 = −16𝑎2/75𝑐 + 10−4. (c) 𝑏 = −16𝑎2/75𝑐 + 10−6. (d)

𝑏 = −16𝑎
2
/75𝑐 + 10

−8.

When (𝑎, 𝑏) ∈ 𝐴
2
in Case 1 and 𝑏 → −16𝑎

2
/75𝑐 + 0, the

two bell-shape solitary waves 𝑢
𝑑
and 𝑢

𝑒
become a kink wave

and an antikink wave with the expressions (29). For the varying
process, see Figures 7 and 8.

Proof. In (8), letting ℎ
0
= 𝐻(0, 0), it follows that

𝑦 = ±√
𝑐

𝛿

𝜑
2
−

8𝑎

15𝛿

𝜑
5/2
−

𝑏

3𝛿

𝜑
3
. (35)

Substituting (35) into d𝜑/d𝜉 = 𝑦, we have

𝑑𝜑

𝑑𝜉

= ±√
𝑐

𝛿

𝜑
2
−

8𝑎

15𝛿

𝜑
5/2
−

𝑏

3𝛿

𝜑
3
. (36)

Let 𝜑 = 𝑤2, (36) becomes

2𝑤d𝑤
𝑑𝜉

= ±√
𝑐

𝛿

𝑤
4
−

8𝑎

15𝛿

𝑤
5
−

𝑏

3𝛿

𝑤
6
. (37)

Integrating (37), we have

∫

𝑤

]

𝑑𝑠

𝑠√𝑐/𝛿 − (8𝑎/15𝛿) 𝑠 − (𝑏/3𝛿) 𝑠
2

= ±

1

2

𝜉, (38)

where ] is an arbitrary constant.

Completing the previous integral and solving the equa-
tion for 𝜑, it follows that

𝜑 = (

4𝛼𝜆𝑒
∓𝜏1𝜉

𝜆
2
𝑒
∓2𝜏1𝜉 − 2𝜆𝛽𝑒

∓𝜏1𝜉 + (𝛽
2
− 4𝛼)

)

2

, (39)

where 𝜆 = 𝜆(]) is an arbitrary real number. From (39) we
obtain the solutions 𝑢

𝑑
and 𝑢

𝑒
as (25).

In (25) letting 𝑏 = −16𝑎2/75𝑐, we get (29). From (25) and
(29), we get the result (1) of Proposition 5.

When 𝜆 = √𝛽2 − 4𝛼, via (25) it follows that

𝑢
𝑑
= 𝑢
𝑒

= (

4𝛼

𝜆 (𝑒
−𝜏1𝜉 + 𝑒

𝜏1𝜉) − 2𝛽

)

2

= (

2𝛼

𝜆 cosh 𝜏
1
𝜉 − 𝛽

)

2

= 𝑢
∗

𝑑𝑒

(40)

(see (31)).
Thus, we get the result (2) of Proposition 5.
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Figure 17: (The antikink wave is bifurcated from the compacton-like wave).The varying process for the graph of 𝑢−
𝑐
when 𝑐 > 0, 𝛿 > 0, 𝑎 > 0,

and 𝑏 → −16𝑎
2
/75𝑐 + 0, where 𝑐 = 1, 𝛿 = 1, 𝑎 = 1/2, and (a) 𝑏 = −16𝑎2/75𝑐 + 10−3. (b) 𝑏 = −16𝑎2/75𝑐 + 10−4. (c) 𝑏 = −16𝑎2/75𝑐 + 10−6. (d)

𝑏 = −16𝑎
2
/75𝑐 + 10

−8.

In (38), letting ] = 𝑝 (see (27)), it follows that

𝜆 =

𝛽𝑝 + 2𝛼

𝑝

= −

2√16𝑎
2
+ 75𝑏𝑐

5𝑏

.

(41)

Letting 𝑏 → 0 − 0, then

lim
𝑏→0−0

𝛼

𝜆

= lim
𝑏→0−0

3𝑐

𝑏

⋅

5𝑏

2√16𝑎
2
+ 75𝑏𝑐

= lim
𝑏→0

15𝑐

2√16𝑎
2
+ 75𝑏𝑐

=

15𝑐

8𝑎

,

(42)

lim
𝑏→0−0

𝛽

𝜆

= lim
𝑏→0−0

−

8𝑎

5𝑏

⋅

5𝑏

2√16𝑎
2
+ 75𝑏𝑐

= −1,

(43)

lim
𝑏→0−0

𝛽
2
− 4𝛼

𝜆
2

= lim
𝑏→0−0

(

𝛽

𝜆

)

2

− 4

𝛼

𝜆

⋅

1

𝜆

= 1.

(44)

We have

lim
𝑏→0−0

𝑢
𝑑
= lim
𝑏→0−0

(

4𝛼𝜆

𝜆
2
𝑒
−𝜏1𝜉 − 2𝜆𝛽 + (𝛽

2
− 4𝛼) 𝑒

𝜏1𝜉
)

2

= lim
𝑏→0−0

(

4𝛼/𝜆

𝑒
−𝜏1𝜉 − 2 (𝛽/𝜆) + ((𝛽

2
− 4𝛼) /𝜆

2
) ⋅ 𝑒
𝜏1𝜉
)

2

= 𝑢
∘

𝑑

(45)

(see (33)).
Similarly, we have

lim
𝑏→0−0

𝑢
𝑒
= 𝑢
∘

𝑒 (46)

(see (34)).
From (41)–(46), we get result (3) of Proposition 5.
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Figure 18: (The periodic blow-up wave is bifurcated from the periodic wave). The varying process for the graph of 𝑢
ℎ
when 𝑐 > 0, 𝛿 < 0,

𝑎 > 0, 𝜂 > 0, and 𝑏 → 0 − 0, where 𝑐 = 1, 𝛿 = −1, 𝑎 = 1, 𝜂 = 1.57, and (a) 𝑏 = 0 − 0.2. (b) 𝑏 = 0 − 0.1. (c) 𝑏 = 0 − 0.05. (d) 𝑏 = 0 − 0.01.

3.2. Bifurcation from Blow-Up Waves

Proposition 6. For 𝑎𝑏 ̸= 0 and 𝛿 > 0, (1) has two nonlinear
wave solutions as 𝑢

𝑑
and 𝑢

𝑒
. These solutions possess the follow-

ing properties.

(1) Under one of the following Cases.

Case 1. 𝜆 > 0, 𝜆 ̸=√𝛽
2
− 4𝛼, and (𝑎, 𝑏) belongs to one of the

regions 𝐴
1
, 𝐴
3
,

Case 2. 𝜆 < 0, 𝜆 ̸= − √𝛽
2
− 4𝛼, and (𝑎, 𝑏) belongs to any one

of the regions 𝐴
2
, 𝐴
3
, and 𝐴

6
, 𝑢
𝑑
̸= 𝑢
𝑒
and they represent two

blow-up waves.
In particular, when (𝑎, 𝑏) ∈ 𝐴

3
in Case 1 and 𝑏 →

−16𝑎
2
/75𝑐 − 0, the two blow-up waves become a kink wave

and an antikink wave with the expressions (29). For the varying
process, see Figures 9 and 10.

Similar to the proof of Proposition 5, we get the results of
Proposition 6.

3.3. Bifurcation from Valley-Shape Solitary Waves

Proposition 7. When the parameters satisfy 𝛿 > 0 and
(𝑎, 𝑏) ∈ 𝐴

3
, (1) has two valley-shape solitary wave solutions

𝑢
𝑓
= 𝜑(𝜉) and 𝑢

𝑔
= 𝜑(𝜉), respectively, which are hidden in the

following equations:

∫

𝜑

𝜑2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
1

= 𝜉

(0 < 𝜑 < 𝜑
1
) ,

(47)

∫

𝜑

𝜑2

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
− (𝑏/3𝛿) 𝑠

3
+ ℎ
1

= −𝜉

(0 < 𝜑 < 𝜑
1
) .

(48)

In particular, when 𝑏 → −16𝑎
2
/75𝑐 − 0, the two valley-shape

solitary waves become a kink wave and an antikink wave with
the expressions (29). For the varying process, see Figures 11 and
12.

Proof. When 𝛿 > 0 and (𝑎, 𝑏) ∈ 𝐴
3
, (𝜑
1
, 0) is a saddle point

and on its left side there is an orbit Γ
3
connecting with it (see

Figure 13).
In (8), letting ℎ

1
= 𝐻(𝜑

1
, 0), it follows that

Γ
3
: 𝑦
2
=

𝑐

𝛿

𝜑
2
−

8𝑎

15𝛿

𝜑
5/2
−

𝑏

3𝛿

𝜑
3
+ ℎ
1

(0 < 𝜑 < 𝜑
1
) .

(49)
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u

o 𝜉

uh

(a)

u

o 𝜉

uh

(b)

u

o 𝜉

uh

(c)

u

o 𝜉

uh

(d)

Figure 19: (The periodic wave become the trivial wave). The varying process for the graph of 𝑢
ℎ
when 𝑐 > 0, 𝛿 < 0, 𝑎 > 0, 𝜂 < 0, and

𝑏 → −16𝑎
2
/75𝑐 + 0, where 𝑐 = 1, 𝛿 = −1, 𝑎 = 1, 𝜂 = −4.7, and (a) 𝑏 = −16𝑎2/75𝑐 + 10−2. (b) 𝑏 = −16𝑎2/75𝑐 + 10−3. (c) 𝑏 = −16𝑎2/75𝑐 + 10−4.

(d) 𝑏 = −16𝑎2/75𝑐 + 10−7.

Substituting (49) into (7) and integrating it along the orbit Γ
3
,

we get (47) and (48).
Letting 𝑏 → −16𝑎

2
/75𝑐 − 0, it follows that

lim
𝑏→−16𝑎

2
/75𝑐−0

ℎ
1
= lim
𝑏→−16𝑎

2
/75𝑐−0

𝐻(𝜑
1
, 0)

= lim
𝑏→−16𝑎

2
/75𝑐−0

−

𝑐

𝛿

𝜑
2

1
+

8𝑎

15𝛿

𝜑
5/2

1
+

𝑏

3𝛿

𝜑
3

1

= 0.

(50)

When ℎ
1
→ 0, completing the integrals in (47) and (48),

we get the kink wave solution and the antikink wave solution
as (29).

Hereto, we have completed the proof for the
Proposition 7.

3.4. Bifurcation from Kink-Like Waves

Proposition 8. When the parameters satisfy 𝛿 > 0, (𝑎, 𝑏) ∈
𝐴
2
, and 𝑏 → −16𝑎

2
/75𝑐 + 0, the kink-like wave and the

antikink-like wave, respectively, become a kink wave and an
anti-kink wave with the expressions (29).

For the varying process, see Figures 14 and 15.

Proof. Letting 𝑏 → −16𝑎
2
/75𝑐 + 0, it follows that ℎ

1
→ 0

(see (50)) and

lim
𝑏→−16𝑎

2
/75𝑐+0

𝜉
0

1

= ∫

𝜑1/2

0

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
+ (16𝑎

2
/225𝑐𝛿) 𝑠

3

= lim
]→0

∫

𝜑1/2

]

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
+ (16𝑎

2
/225𝑐𝛿) 𝑠

3

= ∞.

(51)

When ℎ
1
→ 0, and 𝜉0

1
→ ∞, completing the integrals

in (17), we get the kink wave solution and the antikink wave
solution as (29).

Hereto, we have completed the proof for the
Proposition 8.
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3.5. Bifurcation from Compacton-Like Waves

Proposition 9. When the parameters satisfy 𝛿 > 0, (𝑎, 𝑏) ∈
𝐴
2
, and 𝑏 → −16𝑎

2
/75𝑐 + 0, the two compacton-like waves

become a kinkwave and an anti-kinkwavewith the expressions
(29).

For the varying process, see Figures 16 and 17.

Proof. Letting 𝑏 → −16𝑎
2
/75𝑐 + 0, it follows that

lim
𝑏→−16𝑎

2
/75𝑐+0

ℎ
𝜑𝑘
= lim
𝑏→−16𝑎

2
/75𝑐+0

𝐻(𝜑
𝑘
, 0)

= lim
𝑏→−16𝑎

2
/75𝑐+0

−

𝑐

𝛿

𝜑
2

𝑘
+

8𝑎

15𝛿

𝜑
5/2

𝑘
+

𝑏

3𝛿

𝜑
3

𝑘

= 0,

(52)

lim
𝑏→−16𝑎

2
/75𝑐+0

𝜉
0

3

= ∫

𝜑𝑘/2

0

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
+ (16𝑎

2
/225𝑐𝛿) 𝑠

3

= lim
]→0

∫

𝜑𝑘

]

𝑑𝑠

√(𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2
+ (16𝑎

2
/225𝑐𝛿) 𝑠

3

= ∞,

(53)

lim
𝑏→−16𝑎

2
/75𝑐+0

𝜉
0

4

= lim
𝑏→−16𝑎

2
/75𝑐+0

(2∫

𝜑𝑘

𝜑𝑘/2

(𝑑𝑠)((𝑐/𝛿) 𝑠
2
− (8𝑎/15𝛿) 𝑠

5/2

− (𝑏/3𝛿) 𝑠
3
+ ℎ
𝜑𝑘
)

−1/2

)

+ 𝜉
0

3
) = ∞.

(54)

When ℎ
𝜑𝑘

→ 0, 𝜉0
3
→ ∞, and 𝜉0

4
→ ∞, completing

the integrals in (21), we get the kink wave solution and the
antikink wave solution as (29).

Hereto, we have completed the proof for the
Proposition 9.

4. Bifurcation of Smooth Periodic Wave

Proposition 10. For 𝑎𝑏 ̸= 0 and 𝛿 < 0, (1) has a nonlinear
wave solution

𝑢
ℎ
= (

−2𝛼

√𝛽
2
− 4𝛼 sin (𝜏

2
𝜉 + 𝜂) + 𝛽

)

2

, (55)

where

𝜏
2
=

1

2

√−

𝑐

𝛿

, (56)

and 𝜂 is an arbitrary real number. The solution possesses the
following properties.

(1) if (𝑎, 𝑏) belongs to any one of the regions 𝐴
1
, 𝐴
6
, then

𝑢
ℎ
represents periodic blow-up wave solution,

(2) if (𝑎, 𝑏) belongs to𝐴
2
, then 𝑢

ℎ
represents periodic wave

solution.

In particular, when 𝑏 → 0 − 0, the periodic wave becomes
a periodic blow-up wave. For the varying process, see Figure 18.
When 𝑏 → −16𝑎

2
/75𝑐+0, the periodic wave tends to a trivial

wave 𝑢 = 225𝑐2/16𝑎2. For the varying process, see Figure 19.

Proof. Completing the integral in (38), we get 𝑢
ℎ
as (55). 𝜂 =

𝜂(]) is an arbitrary real number.
When (𝑎, 𝑏) ∈ 𝐴

2
, in (38) letting ] = 𝑞 (see (28)), we have

𝜂 = arcsin
−𝛽𝑞 − 2𝛼

𝑞√𝛽
2
− 4𝛼

. (57)

Letting 𝑏 → 0 − 0, then

lim
𝑏→0−0

√
𝛽
2
− 4𝛼

𝛽
2

= lim
𝑏→0−0

√
75𝑏𝑐

16𝑎
2
+ 1 = 1,

lim
𝑏→0−0

𝜂 = lim
𝑏→0−0

arcsin
−𝛽𝑞 − 2𝛼

𝑞√𝛽
2
− 4𝛼

= lim
𝑏→0−0

arcsin( 1

√(𝛽
2
− 4𝛼) /𝛽

2

+

2

𝑞√(𝛽
2
− 4𝛼) /𝛼

2

)

= arcsin 1

=

𝜋

2

.

(58)
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We have

lim
𝑏→0−0

𝑢
ℎ
= lim
𝑏→0−0

(

−2𝛼

√𝛽
2
− 4𝛼 sin (𝜏

2
𝜉 + 𝜂) + 𝛽

)

2

= lim
𝑏→0−0

(

2𝛼/𝛽

√(𝛽
2
− 4𝛼) /𝛽

2 sin (𝜏
2
𝜉 + 𝜂) − 1

)

2

=

225𝑐
2

16𝑎
2
[cos (𝜏

2
𝜉) − 1]

2
.

(59)

Obviously, 𝑢
ℎ
will blow up when 𝜉 = 2𝑘𝜋/𝜏

2
(𝑘 ∈ 𝑧).

Hereto, we have completed the proofs for all propositions.

5. Conclusion

In this paper, we have studied the bifurcation behavior of S-
KdV equation. Twonew types of nonlinearwaves called kink-
like waves and compacton-like waves have been displayed in
Propositions 1–3. Furthermore, two kinds of new bifurcation
phenomena have been revealed. The first phenomenon is
that the kink waves can be bifurcated from five types of
nonlinear waves which have been stated in Propositions 5–9.
The second phenomenon is that the periodic blow-up wave
can be bifurcated from the periodic wave which has been
explained in Proposition 10. At the same time, we have got
three new explicit expressions for traveling waves which were
given in (25) and (55). Two previous results are our some
special cases (see (30) and (32)).
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