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We mainly focus on the convergence of the sequence of fixed points for some different sequences of contraction mappings or fuzzy
metrics in fuzzy metric spaces. Our results provide a novel research direction for fixed point theory in fuzzy metric spaces as well
as a substantial extension of several important results from classical metric spaces.

1. Introduction

Fixed point theory of classical metric spaces plays an impor-
tant role in general topology. In 1988, Grabiec [1] first
extended fixed point theorems of Banach and Edelstein to
fuzzy metric spaces in the sense of Kramosil and Michalek.
Since then, many authors had dedicated themselves to the
study of fixed point theory in fuzzy metric spaces [2–18].
Besides, some authors extended fixed point theory to other
types of fuzzy metric spaces in recent years. For instance,
Alaca et al. [19] extended the well-known fixed point theo-
rems of Banach and Edelstein to intuitionistic fuzzy metric
spaces with the help of Grabiec’s work. Simultaneously,
Mohamad [20] and Razani [21] proved the existence of fixed
point for a nonexpansivemapping of intuitionistic fuzzymet-
ric spaces and the intuitionistic Banach fixed point theorem
in complete intuitionistic fuzzy metric spaces, respectively.
Later, Ćirić et al. [22] investigated the existence of fixed points
for a class of asymptotically nonexpansive mappings in an
arbitrary intuitionistic fuzzymetric space. On the other hand,
Adibi et al. [23] extended a commonfixed point theorem to𝐿-
fuzzy metric spaces and proved a coincidence point theorem
and a fixed point theorem for compatible mappings of type
(𝑃) in these spaces. In 2008, Ješić and Babačev [24] further
studied some common fixed point theorems for a pair of
𝑅-weakly commuting mappings with nonlinear contractive
condition in intuitionistic fuzzy metric spaces and 𝐿-fuzzy

metric spaces. In the same year, Park et al. [25] extended
some common fixed point theorems for five mappings to𝑀-
fuzzy metric spaces. Up to now, one can see that the majority
of papers mainly focus on the existence of fixed points for
different mappings in different fuzzymetric spaces. However,
the aim of this paper is to show that the convergence of the
sequence of fixed points to some sequences of contraction
mappings or fuzzy metrics satisfies certain conditions in
fuzzy metric spaces.

2. Preliminaries

Now, we begin with some basic concepts and lemmas. Let N
denote the set of all positive integers.

Definition 1 (Schweizer and Sklar [26]). A binary operation
∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular
norm (shortly, continuous 𝑡-norm) if it satisfies the following
conditions:

(TN-1) ∗ is commutative and associative;

(TN-2) ∗ is continuous;

(TN-3) 𝑎 ∗ 1 = 𝑎 for every 𝑎 ∈ [0, 1];

(TN-4) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 whenever 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑, and
𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1].
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In particular, a t-norm∗ is said to be positive [27] if 𝑎∗𝑏 >

0 whenever 𝑎, 𝑏 ∈ (0, 1].
We redefine the notion of a fuzzymetric space by append-

ing the following condition (FM-6) based on the one in the
sense of George and Veeramani [2].

Definition 2. A fuzzy metric space is an ordered triple (𝑋,

𝑀, ∗) such that 𝑋 is a (nonempty) set, ∗ is a continuous t-
norm, and 𝑀 is a fuzzy set on 𝑋 × 𝑋 × (0,∞) satisfying the
following conditions, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑠, 𝑡 > 0:

(FM-1) 𝑀(𝑥, 𝑦, 𝑡) > 0;
(FM-2) 𝑀(𝑥, 𝑦, 𝑡) = 1 if and only if 𝑥 = 𝑦;
(FM-3) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀(𝑦, 𝑥, 𝑡);
(FM-4) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 + 𝑠);
(FM-5) 𝑀(𝑥, 𝑦, ⋅) : (0,∞) → (0, 1] is continuous;
(FM-6) lim

𝑡→∞
𝑀(𝑥, 𝑦, 𝑡) = 1.

Definition 3 (Grabiec [1] andVasuki andVeeramani [17]). Let
(𝑋,𝑀, ∗) be a fuzzy metric space. Then

(a) a sequence {𝑥
𝑛
} is said to converge to 𝑥 in 𝑋, denoted

by 𝑥
𝑛

→ 𝑥, if and only if lim
𝑛→∞

𝑀(𝑥
𝑛
, 𝑥, 𝑡) = 1 for

all 𝑡 > 0; that is, for each 𝑟 ∈ (0, 1) and 𝑡 > 0, there
exists an 𝑛

0
∈ N such that 𝑀(𝑥

𝑛
, 𝑥, 𝑡) > 1 − 𝑟 for all

𝑛 ≥ 𝑛
0
;

(b) a sequence {𝑥
𝑛
} in 𝑋 is a G-Cauchy sequence if and

only if lim
𝑛→∞

𝑀(𝑥
𝑛+𝑝

, 𝑥
𝑛
, 𝑡) = 1 for any 𝑝 > 0 and

𝑡 > 0;
(c) the fuzzy metric space (𝑋,𝑀, ∗) is called G-complete

if every G-Cauchy sequence is convergent.

Definition 4 (Grabiec [1]). Let (𝑋,𝑀, ∗) be a fuzzy metric
space. Amapping𝑇 : 𝑋 → 𝑋 is called a contractionmapping
if there exists 𝑘 ∈ (0, 1) such that

𝑀(𝑇𝑥, 𝑇𝑦, 𝑘𝑡) ≥ 𝑀(𝑥, 𝑦, 𝑡) (1)

for every 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0.

According to fuzzy Banach contraction theorem of com-
plete fuzzy metric space in the sense of Grabiec [1], we can
obtain the following lemma.

Lemma 5. Let (𝑋,𝑀, ∗) be a G-complete fuzzy metric space.
If 𝑇 : 𝑋 → 𝑋 is a contraction mapping, then 𝑇 has a unique
fixed point.

Definition 6. Let (𝑋,𝑀, ∗) be a fuzzy metric space and let
{𝑇
𝑛
} be a sequence of self-mappings on 𝑋. 𝑇

0
: 𝑋 → 𝑋 is

a given mapping. The sequence {𝑇
𝑛
} is said to converge point-

wise to 𝑇
0
if for each 𝑟 ∈ (0, 1) and 𝑥

0
∈ 𝑋, there exists an

𝑛
0
∈ N such that

𝑀(𝑇
𝑛
𝑥
0
, 𝑇
0
𝑥
0
, 𝑡) > 1 − 𝑟 (2)

for all 𝑛 ≥ 𝑛
0
and 𝑡 > 0.

Definition 7. Let (𝑋,𝑀, ∗) be a fuzzymetric space and let {𝑇
𝑛
}

be a sequence of self-mappings on 𝑋. 𝑇
0
: 𝑋 → 𝑋 is a given

mapping. The sequence {𝑇
𝑛
} is said to converge uniformly to

𝑇
0
if for each 𝑟 ∈ (0, 1) and 𝑡 > 0, there exists an 𝑛

0
∈ N such

that

𝑀(𝑇
𝑛
𝑥, 𝑇
0
𝑥, 𝑡) > 1 − 𝑟 (3)

for all 𝑛 ≥ 𝑛
0
and 𝑥 ∈ 𝑋.

Definition 8. Let (𝑋,𝑀, ∗) be a fuzzy metric space. A
sequence of self-mappings {𝑇

𝑛
} is uniformly equicontinuous

if for each 𝑟 ∈ (0, 1), there exists an 𝜖 ∈ (0, 1) such that
𝑀(𝑥, 𝑦, 𝑠) > 1 − 𝜖 implies 𝑀(𝑇

𝑛
𝑥, 𝑇
𝑛
𝑦, 𝑡) > 1 − 𝑟 for every

𝑥, 𝑦 ∈ 𝑋, 𝑛 ∈ N, and 𝑠, 𝑡 > 0.

Definition 9 (George and Veeramani [2]). Let (𝑋,𝑀, ∗) be
a fuzzy metric space. The open ball 𝐵(𝑥, 𝑟, 𝑡) and closed ball
𝐵[𝑥, 𝑟, 𝑡] with center 𝑥 ∈ 𝑋 and radius 𝑟, 0 < 𝑟 < 1, 𝑡 > 0,
respectively, are defined as follows:

𝐵 (𝑥, 𝑟, 𝑡) = {𝑦 ∈ 𝑋 : 𝑀 (𝑥, 𝑦, 𝑡) > 1 − 𝑟} ,

𝐵 [𝑥, 𝑟, 𝑡] = {𝑦 ∈ 𝑋 : 𝑀 (𝑥, 𝑦, 𝑡) ≥ 1 − 𝑟} .

(4)

Lemma 10 (George and Veeramani [2]). Every open (closed)
ball is an open (a closed) set.

Definition 11 (Gregori and Romaguera [3]). A fuzzy metric
space (𝑋,𝑀, ∗) is a compact space if (𝑋, 𝜏

𝑀
) is a compact

topological space, where 𝜏
𝑀

is a topology induced by the
fuzzy metric 𝑀.

Based on the corresponding conclusions stated in [2], we
can easily obtain the following lemma.

Lemma 12. Every closed subset 𝐴 of a compact fuzzy metric
space (𝑋,𝑀, ∗) is compact.

Lemma 13. Let (𝑋,𝑀, ∗) be a fuzzy metric space and let {𝑇
𝑛
}

be a sequence of self-mappings on 𝑋. 𝑇
0

: 𝑋 → 𝑋 is a con-
traction mapping of 𝑋; that is, there exists 𝑘 ∈ (0, 1) such
that 𝑀(𝑇

0
𝑥, 𝑇
0
𝑦, 𝑘𝑡) ≥ 𝑀(𝑥, 𝑦, 𝑡) for every 𝑥, 𝑦 ∈ 𝑋. 𝐴 is a

compact subset of𝑋. If {𝑇
𝑛
} converges pointwise to 𝑇

0
in𝐴 and

it is a uniformly equicontinuous sequence, then the sequence
{𝑇
𝑛
} converges uniformly to 𝑇

0
in 𝐴.

Proof. For each 𝑟 ∈ (0, 1), we may choose an appropriate 𝑟

such that (1 − 𝑟) ∗ (1 − 𝑟) ∗ (1 − 𝑟) > 1 − 𝑟. Since {𝑇
𝑛
} is

uniformly equicontinuous, there exists 𝜖 ∈ (0, 1) (𝜖 ≤ 𝑟) such
that 𝑀(𝑥, 𝑦, 𝑠) > 1 − 𝜖 ⇒ 𝑀(𝑇

𝑛
𝑥, 𝑇
𝑛
𝑦, 𝑡) > 1 − 𝑟 for every

𝑥, 𝑦 ∈ 𝑋, 𝑠, 𝑡 > 0, and 𝑛 ∈ N. For the foregoing 𝜖, we fix 𝑠 > 0.
Define C = {𝐵(𝑥, 𝜖, 𝑠) : 𝑥 ∈ 𝐴}. By Lemma 10, C is a family
of open sets of 𝐴. Obviously,C constitutes an open covering
of 𝐴; that is, 𝐴 ⊂ ⋃𝐵(𝑥, 𝜖, 𝑠). Since 𝐴 is compact, there exist
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ 𝐴 such that 𝐴 ⊂ ⋃

𝑚

𝑖=1
𝐵(𝑥
𝑖
, 𝜖, 𝑠). For every

𝑥
𝑖
∈ 𝐴 (𝑖 = 1, 2, . . . , 𝑚), since {𝑇

𝑛
} converges pointwise to 𝑇

0

in𝐴, for 𝑟 ∈ (0, 1), there exist 𝑛
𝑖
∈ N (𝑖 = 1, 2, . . . , 𝑚) such that

𝑀(𝑇
𝑛
𝑥
𝑖
, 𝑇
0
𝑥
𝑖
, 𝑡) > 1 − 𝑟 for all 𝑛 ≥ 𝑛

𝑖
. Set 𝑛∗ = max{𝑛

𝑖
: 𝑖 =

1, 2, . . . , 𝑚}. Clearly, 𝑛∗ depends only on 𝑟. For every 𝑥 ∈ 𝑋,
there is an 𝑖

0
∈ {1, 2, . . . , 𝑚} such that 𝑥 ∈ 𝐵(𝑥

𝑖0
, 𝜖, 𝑠). Then
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we have 𝑀(𝑥, 𝑥
𝑖0
, 𝑠) > 1 − 𝜖 ⇒ 𝑀(𝑇

𝑛
𝑥, 𝑇
𝑛
𝑥
𝑖0
, 𝑡) > 1 − 𝑟 for

all 𝑛 ∈ N. Thus, for all 𝑛 ≥ 𝑛
∗,

𝑀(𝑇
𝑛
𝑥, 𝑇
0
𝑥, (2𝑡 + 𝑘𝑠))

≥ 𝑀(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑥
𝑖0
, 𝑡) ∗ 𝑀(𝑇

𝑛
𝑥
𝑖0
, 𝑇
0
𝑥, 𝑡 + 𝑘𝑠)

≥ 𝑀(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑥
𝑖0
, 𝑡) ∗ 𝑀(𝑇

𝑛
𝑥
𝑖0
, 𝑇
0
𝑥
𝑖0
, 𝑡)

∗ 𝑀(𝑇
0
𝑥
𝑖0
, 𝑇
0
𝑥, 𝑘𝑠)

≥ 𝑀(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑥
𝑖0
, 𝑡) ∗ 𝑀(𝑇

𝑛
𝑥
𝑖0
, 𝑇
0
𝑥
𝑖0
, 𝑡) ∗ 𝑀(𝑥

𝑖0
, 𝑥, 𝑠)

≥ (1 − 𝑟) ∗ (1 − 𝑟) ∗ (1 − 𝜖)

≥ (1 − 𝑟) ∗ (1 − 𝑟) ∗ (1 − 𝑟) > 1 − 𝑟.

(5)

Hence, the sequence {𝑇
𝑛
} converges uniformly to𝑇

0
in𝐴.

Definition 14. A fuzzy metric space (𝑋,𝑀, ∗) in which every
point has a compact neighborhood is called locally compact.

Definition 15. Let (𝑋,𝑀
0
, ∗) be a fuzzy metric space and let

{𝑀
𝑛
} be a sequence of fuzzymetrics on𝑋.The sequence {𝑀

𝑛
}

is said to upper semiconverge uniformly to 𝑀
0
if for each 𝑟 ∈

(0, 1) and 𝑡 > 0, there exists an 𝑛
0
∈ N such that𝑀

𝑛
(𝑥, 𝑦, 𝑡) ≥

𝑀
0
(𝑥, 𝑦, 𝑡) and 𝑀

0
(𝑥, 𝑦, 𝑡)/𝑀

𝑛
(𝑥, 𝑦, 𝑡) > 1 − 𝑟 for all 𝑛 ≥ 𝑛

0
,

𝑥, 𝑦 ∈ 𝑋.

3. Main Results

Theorem16. Let (𝑋,𝑀, ∗) be aG-complete fuzzymetric space
and let {𝑇

𝑛
} be a sequence of self-mappings on𝑋 where t-norm

𝑎 ∗ 𝑏 = min{𝑎, 𝑏}. 𝑇
0
is a contraction mapping of 𝑋; that is,

there exists 𝑘
0
∈ (0, 1) such that𝑀(𝑇

0
𝑥, 𝑇
0
𝑦, 𝑘
0
𝑡) ≥ 𝑀(𝑥, 𝑦, 𝑡)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, and satisfying 𝑇
0
𝑥
0
= 𝑥
0
. If there exists

at least a fixed point 𝑥
𝑛
for each 𝑇

𝑛
(𝑛 ∈ N) and the sequence

{𝑇
𝑛
} converges uniformly to 𝑇

0
, then 𝑥

𝑛
→ 𝑥
0
.

Proof. Suppose that 𝑥
𝑛
󴀀󴀂󴀠 𝑥
0
; namely, there exist 𝑡

0
> 0 and

𝑟
0
∈ (0, 1) such that for any 𝑛 ∈ N there is a 𝑘(𝑛) > 𝑛 satisfying

𝑀(𝑥
𝑘(𝑛)

, 𝑥
0
, 𝑡
0
) < 1 − 𝑟

0
. Fix a number ℎ ∈ (𝑘

0
, 1). According

to the condition (FM-6) of Definition 2, for 𝑡
0

> 0, we can
find an appropriate 𝑝 ∈ N such that 𝑀(𝑥

𝑛
, 𝑥
0
, 𝑡
0
(ℎ/𝑘
0
)
𝑝
) >

1 − 𝑟
0
for any 𝑛 ∈ N. Since the sequence {𝑇

𝑛
} converges

uniformly to 𝑇
0
, we can make 𝑛

0
sufficiently large such that

𝑀(𝑇
𝑛
𝑥
𝑛
, 𝑇
0
𝑥, 𝑡) > 1 − 𝑟

0
for all 𝑛 ≥ 𝑛

0
, 𝑡 > 0. Now for 𝑛 ≥ 𝑛

0
,

we have

1 − 𝑟
0
> 𝑀(𝑥

𝑘(𝑛)
, 𝑥
0
, 𝑡
0
)

= 𝑀(𝑇
𝑘(𝑛)

𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
0
, 𝑡
0
)

≥ 𝑀(𝑇
𝑘(𝑛)

𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
𝑘(𝑛)

, (1 − ℎ) 𝑡
0
)

∗ 𝑀(𝑇
0
𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
0
, ℎ𝑡
0
)

≥ 𝑀(𝑇
𝑘(𝑛)

𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
𝑘(𝑛)

, (1 − ℎ) 𝑡
0
)

∗ 𝑀(𝑥
𝑘(𝑛)

, 𝑥
0
,
𝑡
0
ℎ

𝑘
0

)

≥ 𝑀(𝑇
𝑘(𝑛)

𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
𝑘(𝑛)

, (1 − ℎ) 𝑡
0
)

∗ 𝑀(𝑇
𝑘(𝑛)

𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
𝑘(𝑛)

,
𝑡
0
(1 − ℎ) ℎ

𝑘
0

)

∗ 𝑀(𝑥
𝑘(𝑛)

, 𝑥
0
, 𝑡
0
(

ℎ

𝑘
0

)

2

)

≥ 𝑀(𝑇
𝑘(𝑛)

𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
𝑘(𝑛)

, (1 − ℎ) 𝑡
0
)

∗ 𝑀(𝑇
𝑘(𝑛)

𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
𝑘(𝑛)

,
𝑡
0
(1 − ℎ) ℎ

𝑘
0

)

∗ ⋅ ⋅ ⋅ ∗ 𝑀(𝑇
𝑘(𝑛)

𝑥
𝑘(𝑛)

, 𝑇
0
𝑥
𝑘(𝑛)

, 𝑡
0
(1 − ℎ) (

ℎ

𝑘
0

)

𝑝−1

)

∗ 𝑀(𝑥
𝑘(𝑛)

, 𝑥
0
, 𝑡
0
(

ℎ

𝑘
0

)

𝑝

)

≥ (1 − 𝑟
0
) ∗ (1 − 𝑟

0
) ∗ ⋅ ⋅ ⋅ ∗ (1 − 𝑟

0
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝

∗ (1 − 𝑟
0
)

= 1 − 𝑟
0
.

(6)

This leads to a contradiction. Hence, 𝑥
𝑛

→ 𝑥
0
.

Theorem 17. Let (𝑋,𝑀, ∗) be aG-complete fuzzymetric space
where t-norm is positive. If 𝑇

0
: 𝑋 → 𝑋 is a self-mapping of𝑋

and 𝑇
𝑚

0
is a contraction mapping for a certain positive integer

𝑚, then 𝑇
0
has a unique fixed point.

Proof. First of all, if 𝑚 = 1, the theorem is evident. In addi-
tion, if 𝑚 ≥ 2, according to Lemma 5, we need only to prove
that 𝑇

0
is a contraction mapping. Since 𝑇

𝑚

0
is a contraction

mapping, there is 𝑘
0
∈ (0, 1) such that 𝑀(𝑇

𝑚

0
𝑥, 𝑇
𝑚

0
𝑦, 𝑘
𝑚

0
𝑡) ≥

𝑀(𝑥, 𝑦, 𝑡) for every 𝑥, 𝑦 ∈ 𝑋, and 𝑡 > 0. Define another fuzzy
metric 𝑀̃(𝑥, 𝑦, 𝑡) on 𝑋 using 𝑀(𝑥, 𝑦, 𝑡) as follows:

𝑀̃ (𝑥, 𝑦, 𝑡)

= 𝑀 (𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑇
0
𝑥, 𝑇
0
𝑦, 𝑘𝑡)

∗ 𝑀(𝑇
2

0
𝑥, 𝑇
2

0
𝑦, 𝑘
2
𝑡) ∗ ⋅ ⋅ ⋅ ∗ 𝑀(𝑇

𝑚−1

0
𝑥, 𝑇
𝑚−1

0
𝑦, 𝑘
𝑚−1

𝑡) .

(7)

Actually, it is easy to verify that the foregoing two fuzzy
metrics are equivalent. Meantime, we claim that 𝑇

0
is a con-

traction mapping with respect to the fuzzy metric 𝑀̃(𝑥, 𝑦, 𝑡),
since

𝑀̃ (𝑇
0
𝑥, 𝑇
0
𝑦, 𝑘
0
𝑡)

= 𝑀 (𝑇
0
𝑥, 𝑇
0
𝑦, 𝑘𝑡) ∗ 𝑀(𝑇

2

0
𝑥, 𝑇
2

0
𝑦, 𝑘
2
𝑡)

∗ 𝑀(𝑇
3

0
𝑥, 𝑇
3

0
𝑦, 𝑘
3
𝑡) ∗ ⋅ ⋅ ⋅ ∗ 𝑀 (𝑇

𝑚

0
𝑥, 𝑇
𝑚

0
𝑦, 𝑘
𝑚
𝑡)

≥ 𝑀 (𝑇
0
𝑥, 𝑇
0
𝑦, 𝑘𝑡) ∗ 𝑀(𝑇

2

0
𝑥, 𝑇
2

0
𝑦, 𝑘
2
𝑡)

∗ 𝑀(𝑇
3

0
𝑥, 𝑇
3

0
𝑦, 𝑘
3
𝑡) ∗ ⋅ ⋅ ⋅ ∗ 𝑀 (𝑥, 𝑦, 𝑡) = 𝑀̃ (𝑥, 𝑦, 𝑡) .

(8)
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Corollary 18. Let (𝑋,𝑀, ∗) be a G-complete fuzzy metric
space and let {𝑇

𝑛
} be a sequence of self-mappings on 𝑋 where

t-norm 𝑎 ∗ 𝑏 = min{𝑎, 𝑏}. 𝑇
0

: 𝑋 → 𝑋 is a self-mapping
of 𝑋, and 𝑇

𝑚

0
is a contraction mapping for a certain positive

integer 𝑚. If there exists at least a fixed point 𝑥
𝑛
for each

𝑇
𝑛
(𝑛 ∈ N) and the sequence {𝑇

𝑛
} converges uniformly to 𝑇

0
,

then 𝑥
𝑛

→ 𝑥
0
= 𝑇
0
𝑥
0
.

Proof. It follows fromTheorems 16 and 17.

Theorem 19. Let (𝑋,𝑀, ∗) be a locally compact fuzzy metric
space and let {𝑇

𝑛
} be a sequence of self-mappings on 𝑋. 𝑇

0
:

𝑋 → 𝑋 is a contraction mapping; that is, there exists a 𝑘
0
∈

(0, 1) such that𝑀(𝑇
0
𝑥, 𝑇
0
𝑦, 𝑘
0
𝑡) ≥ 𝑀(𝑥, 𝑦, 𝑡) for all 𝑥, 𝑦 ∈ 𝑋,

𝑡 > 0. If the following conditions are satisfied:

(i) 𝑇
𝑚

𝑛
is a contraction mapping for a certain 𝑚 = 𝑚(𝑛),

(ii) {𝑇
𝑛
} converges pointwise to 𝑇

0
and {𝑇

𝑛
} is a uniformly

equicontinuous sequence,
(iii) 𝑇

𝑛
𝑥
𝑛
= 𝑥
𝑛
, 𝑛 = 0, 1, 2, 3, . . .,

then the sequence {𝑥
𝑛
} converges to 𝑥

0
; that is, 𝑥

𝑛
→ 𝑥
0
.

Proof. For each 𝜖 ∈ (0, 1), we choose 𝑟 ∈ (0, 1) such that
(1− 𝑟)∗ (1− 𝑟) ≥ 1− 𝜖. If given 𝑥

0
∈ 𝑋, we may assume that 𝑟

is sufficiently small such that 𝐾(𝑥
0
, 𝑟) = {𝑥 : 𝑀(𝑥, 𝑥

0
, 𝑡) ≥

1 − 𝑟} is a compact subset of 𝑋. By Lemma 13, since {𝑇
𝑛
}

is uniformly equicontinuous and pointwise convergent on
𝐾(𝑥
0
, 𝑟), we know that {𝑇

𝑛
} converges uniformly to 𝑇

0
on

the compact subset 𝐾(𝑥
0
, 𝑟). Then, for the foregoing 𝑟, there

exists 𝑛
𝜖

∈ N such that 𝑀(𝑇
𝑛
𝑥, 𝑇
0
𝑥, (1 − 𝑘

0
)𝑡) > 1 − 𝑟 for

all 𝑛 ≥ 𝑛
𝜖
, 𝑡 > 0, and 𝑥 ∈ 𝐾(𝑥

0
, 𝑟). In addition, since 𝑇

0
is a

contraction mapping, we have 𝑀(𝑇
0
𝑥, 𝑇
0
𝑦, 𝑘
0
𝑡) ≥ 𝑀(𝑥, 𝑦, 𝑡)

for all 𝑥, 𝑦 ∈ 𝐾(𝑥
0
, 𝑟). Thus, for all 𝑛 ≥ 𝑛

𝜖
and 𝑥 ∈ 𝐾(𝑥

0
, 𝑟),

we can obtain

𝑀(𝑇
𝑛
𝑥, 𝑥
0
, 𝑡) = 𝑀 (𝑇

𝑛
𝑥, 𝑇
0
𝑥
0
, 𝑡)

≥ 𝑀 (𝑇
𝑛
𝑥, 𝑇
0
𝑥, (1 − 𝑘

0
) 𝑡)∗𝑀(𝑇

0
𝑥, 𝑇
0
𝑥
0
, 𝑘
0
𝑡)

≥ 𝑀 (𝑇
𝑛
𝑥, 𝑇
0
𝑥, (1 − 𝑘

0
) 𝑡) ∗ 𝑀(𝑥, 𝑥

0
, 𝑡)

≥ (1 − 𝑟) ∗ (1 − 𝑟) ≥ 1 − 𝜖.

(9)

Therefore, for all 𝑛 ≥ 𝑛
𝜖
, 𝐾(𝑥

0
, 𝑟) is an invariant set for

𝑇
𝑛
. Since 𝑇

𝑚

𝑛
is a contraction mapping for a certain positive

integer 𝑚 = 𝑚(𝑛), it follows that the fixed point 𝑥
𝑛
of 𝑇
𝑛
is

contained in the set 𝐾(𝑥
0
, 𝑟), when 𝑛 ≥ 𝑛

𝜖
. By the definition

of𝐾(𝑥
0
, 𝑟), we have𝑀(𝑥

𝑛
, 𝑥
0
, 𝑡) ≥ 1 − 𝑟 for all 𝑛 ≥ 𝑛

𝜖
. In fact,

although 𝑟 should satisfy the foregoing condition, it may be
sufficiently small. Hence, we can obtain 𝑥

𝑛
→ 𝑥
0
.

In addition, if t-norm 𝑎∗𝑏 = 𝑎 ⋅ 𝑏, then we can obtain the
following some important conclusions.

Lemma20. Let (𝑋,𝑀
0
, ∗) be a G-complete fuzzymetric space

and let 𝐴 be a compact subset of𝑋 where t-norm 𝑎 ∗ 𝑏 = 𝑎 ⋅ 𝑏.
{𝑀
𝑛
} and {𝑇

𝑛
} are a sequence of fuzzy metrics and a sequence

of self-mappings on 𝑋, respectively. If they satisfy the following
conditions:

(i) {𝑀
𝑛
} upper semiconverges uniformly to 𝑀

0
,

(ii) 𝑇
𝑛
is a contraction mapping for the fuzzy metric 𝑀

𝑛
,

𝑛 = 0, 1, 2, . . .,
(iii) {𝑇

𝑛
} converges pointwise to 𝑇

0
,

then {𝑇
𝑛
} converges uniformly to 𝑇

0
in 𝐴 with regard to the

fuzzy metric 𝑀
0
.

Proof. For each 𝜖 ∈ (0, 1), choose 𝑟 ∈ (0, 1) such that (1 − 𝑟) ∗

(1 − 𝑟) > 1 − 𝜖. Since {𝑀
𝑛
} upper semiconverges uniformly

to 𝑀
0
, there exists 𝑛

𝑟
∈ N such that 𝑀

𝑛
(𝑥, 𝑦, 𝑡) ≥ 𝑀

0
(𝑥, 𝑦, 𝑡)

and 𝑀
0
(𝑥, 𝑦, 𝑡)/𝑀

𝑛
(𝑥, 𝑦, 𝑡) > 1 − 𝑟 for all 𝑛 ≥ 𝑛

𝑟
, 𝑡 > 0.

Choose 𝑥, 𝑦 in 𝑋 such that 𝑀
0
(𝑥, 𝑦, 𝑡) > 1 − 𝑟 for each 𝑡 > 0.

Then, for all 𝑛 ≥ 𝑛
𝑟
, we have

𝑀
0
(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦, 𝑡) =

𝑀
0
(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦, 𝑡)

𝑀
𝑛
(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦, 𝑡)

∗ 𝑀
𝑛
(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦, 𝑡)

≥ (1 − 𝑟) ∗ 𝑀
𝑛
(𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦, 𝑡)

≥ (1 − 𝑟) ∗ 𝑀
𝑛
(𝑥, 𝑦,

𝑡

𝑘
𝑛

) (𝑘
𝑛
∈ (0, 1))

≥ (1 − 𝑟) ∗ 𝑀
0
(𝑥, 𝑦,

𝑡

𝑘
𝑛

)

≥ (1 − 𝑟) ∗ (1 − 𝑟) > 1 − 𝜖.

(10)

Therefore, the sequence {𝑇
𝑛
} (𝑛 ≥ 𝑛

𝑟
) is uniformly equicon-

tinuous in 𝐴 with regard to the fuzzy metric 𝑀
0
. Since

{𝑇
𝑛
} is pointwise convergent and 𝐴 is a compact subset of

𝑋, according to Lemma 13, it follows that the subsequence
{𝑇
𝑛
} (𝑛 ≥ 𝑛

𝑟
) converges uniformly to 𝑇

0
in 𝐴. Hence, {𝑇

𝑛
}

converges uniformly to 𝑇
0
in 𝐴.

Theorem 21. Let (𝑋,𝑀
0
, ∗) be a locally compact fuzzy metric

space where t-norm 𝑎 ∗ 𝑏 = 𝑎 ⋅ 𝑏. If {𝑀
𝑛
} and {𝑇

𝑛
} satisfy the

following conditions:

(i) {𝑀
𝑛
} upper semiconverges uniformly to 𝑀

0
,

(ii) 𝑇
𝑛
is a contraction mapping for the fuzzy metric 𝑀

𝑛
,

𝑛 = 0, 1, 2, . . .,
(iii) {𝑇

𝑛
} converges pointwise to 𝑇

0
,

(iv) 𝑇
𝑛
𝑥
𝑛
= 𝑥
𝑛
, 𝑛 = 0, 1, 2, . . .,

then the sequence of fixed points {𝑥
𝑛
} of {𝑇

𝑛
} converges to the

fixed point 𝑥
0
of 𝑇
0
; that is, 𝑥

𝑛
→ 𝑥
0
.

Proof. For each 𝜖 ∈ (0, 1), choose 𝑟 ∈ (0, 1) such that (1 −

𝑟) ∗ (1 − 𝑟) ≥ 1 − 𝜖. Meantime, for 𝑥
0

∈ 𝑋, we may make 𝑟

sufficiently small such that𝐾(𝑥
0
, 𝑟) = {𝑥 : 𝑀(𝑥, 𝑥

0
, 𝑡) ≥ 1−𝑟}

is compact in 𝑋 for each 𝑡 > 0. By Lemma 20, we know that
{𝑇
𝑛
} converges uniformly to 𝑇

0
in𝐾(𝑥

0
, 𝑟)with respect to the

fuzzymetric𝑀
0
.Then, for every 𝑥 ∈ 𝑋, there exists an 𝑛

𝑟
∈ N
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such that 𝑀
0
(𝑇
𝑛
𝑥, 𝑇
0
𝑥, 𝑡) > 1 − 𝑟 for all 𝑛 ≥ 𝑛

𝑟
, 𝑡 > 0. Thus,

when 𝑛 ≥ 𝑛
𝑟
, for all 𝑥 ∈ 𝐾(𝑥

0
, 𝑟), we have

𝑀
0
(𝑇
𝑛
𝑥, 𝑥
0
, (1 + 𝑘

0
) 𝑡)

≥ 𝑀
0
(𝑇
𝑛
𝑥, 𝑇
0
𝑥, 𝑡) ∗ 𝑀

0
(𝑇
0
𝑥, 𝑥
0
, 𝑘
0
𝑡)

≥ 𝑀
0
(𝑇
𝑛
𝑥, 𝑇
0
𝑥, 𝑡) ∗ 𝑀

0
(𝑇
0
𝑥, 𝑇
0
𝑥
0
, 𝑘
0
𝑡)

≥ 𝑀
0
(𝑇
𝑛
𝑥, 𝑇
0
𝑥, 𝑡) ∗ 𝑀

0
(𝑥, 𝑥
0
, 𝑡)

≥ (1 − 𝑟) ∗ (1 − 𝑟) ≥ 1 − 𝜖.

(11)

Therefore,𝐾(𝑥
0
, 𝑟) is an invariant set in𝑋with regard to𝑀

0
.

Since 𝑇
𝑛
is still a contraction mapping restricted to 𝐾(𝑥

0
, 𝑟)

concerning on 𝑀
𝑛
, one can see that the fixed point is also

included in𝐾(𝑥
0
, 𝑟). Apparently, for all 𝑛 ≥ 𝑛

𝑟
, we can obtain

𝑀(𝑥
𝑛
, 𝑥
0
, 𝑡) ≥ 1 − 𝑟. Since 𝑟 is sufficiently small, it can easily

be shown that {𝑥
𝑛
} converges to 𝑥

0
; that is, 𝑥

𝑛
→ 𝑥
0
. This

completes the proof.

Theorem 22. Let (𝑋,𝑀
0
, ∗) be a compact fuzzy metric space

where t-norm 𝑎∗𝑏 = 𝑎 ⋅𝑏. The sequences {𝑀
𝑛
} and {𝑇

𝑛
} satisfy

the following conditions:
(i) {𝑀

𝑛
} upper semiconverges uniformly to 𝑀

0
;

(ii) 𝑇
𝑛
is a contraction mapping for the fuzzy metric 𝑀

𝑛
,

𝑛 = 0, 1, 2, . . .;
(iii) {𝑇

𝑛
} converges pointwise to 𝑇

0
.

If every mapping 𝑇
𝑛
(𝑛 ∈ N) has a fixed point 𝑥

𝑛
and there is

a subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} which converges to 𝑥

0
, then 𝑇

0
𝑥
0
=

𝑥
0
.

Proof. Let𝐾 denote the closure of the set {𝑥
𝑛𝑘
}. By Lemma 12,

we can easily know that 𝐾 is a compact set. According to
Lemma 20, it follows that the subsequence {𝑇

𝑛𝑘
} converges

uniformly to 𝑇
0
in 𝐾 with regard to 𝑀

0
. Obviously, {𝑇

𝑛𝑘
𝑥
𝑛𝑘
}

converges to 𝑇
0
𝑥
0
. Hence, 𝑇

0
𝑥
0
= 𝑥
0
.

Theorem 23. Let (𝑋,𝑀, ∗) be a fuzzy metric space. {𝑇
𝑛
} is a

sequence of contraction mappings and satisfying 𝑇
𝑛
𝑥
𝑛

= 𝑥
𝑛

(𝑛 = 1, 2, 3, . . .). 𝑇
0
: 𝑋 → 𝑋 is a contraction mapping. If {𝑇

𝑛
}

is a pointwise convergent sequence with respect to 𝑇
0
and the

subsequence {𝑥
𝑛𝑘
} of {𝑥

𝑛
} converges to 𝑥

0
, then 𝑇

0
has a fixed

point 𝑥
0
= 𝑇
0
𝑥
0
.

Proof. For each 𝜖 ∈ (0, 1), choose 𝑟 ∈ (0, 1) such that (1 −

𝑟) ∗ (1 − 𝑟) ≥ 1 − 𝜖. Since {𝑥
𝑛𝑘
} is a convergent subsequence

and {𝑇
𝑛
} is a pointwise convergent sequence, for a given 𝑥

0
,

we may choose 𝐾
𝑟

∈ N such that 𝑀(𝑥
𝑛𝑘
, 𝑥
0
, 𝑡) ≥ 1 − 𝑟 and

𝑀(𝑇
𝑛𝑘
𝑥
0
, 𝑇
0
𝑥
0
, 𝑡) ≥ 1 − 𝑟 for all 𝑘 ≥ 𝐾

𝑟
, 𝑡 > 0. For every 𝑛 ∈

N ∪ {0}, we denote by 𝑙
𝑛
(𝑙
𝑛
∈ (0, 1)) the contraction constant

of 𝑇
𝑛
. Thus, for all 𝑘 ≥ 𝐾

𝑟
, we have

𝑀(𝑥
𝑛𝑘
, 𝑇
0
𝑥
0
, (𝑙
𝑛𝑘

+ 1) 𝑡)

= 𝑀(𝑇
𝑛𝑘
𝑥
𝑛𝑘
, 𝑇
0
𝑥
0
, (𝑙
𝑛𝑘

+ 1) 𝑡) 𝑙
𝑛𝑘

∈ (0, 1)

≥ 𝑀(𝑇
𝑛𝑘
𝑥
𝑛𝑘
, 𝑇
𝑛𝑘
𝑥
0
, 𝑙
𝑛𝑘
𝑡) ∗ 𝑀(𝑇

𝑛𝑘
𝑥
0
, 𝑇
0
𝑥
0
, 𝑡)

≥ 𝑀(𝑥
𝑛𝑘
, 𝑥
0
, 𝑡) ∗ 𝑀(𝑇

𝑛𝑘
𝑥
0
, 𝑇
0
𝑥
0
, 𝑡)

≥ (1 − 𝑟) ∗ (1 − 𝑟) ≥ 1 − 𝜖.

(12)

Therefore, the subsequence {𝑥
𝑛𝑘
} converges to 𝑇

0
𝑥
0
. Accord-

ing to the uniqueness of limit, it follows that 𝑥
0
= 𝑇
0
𝑥
0
; that

is, 𝑥
0
is a fixed point of 𝑇

0
.
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