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Based on auxiliary equation method and Bäcklund transformations, we present an idea to find infinitely many Weierstrass and
Jacobi elliptic function solutions to some nonlinear problems. First, we give some nonlinear iterated formulae of solutions and
some elliptic function solutions to a simple auxiliary equation, which results in infinitely many Weierstrass and Jacobi elliptic
function solutions of the simple equation. Then applying auxiliary equation method to some nonlinear problems and combining
the results with exact solutions of the auxiliary equation, we obtain infinitely many elliptic function solutions to the corresponding
nonlinear problems. The employed approach is powerful and can be also applied to solve other nonlinear differential equations.

1. Introduction

Partial differential equations (PDEs) describe various nonlin-
ear phenomena in natural and applied sciences such as fluid
dynamics, plasma physics, solid state physics, optical fibers,
acoustics, mechanics, biology, and mathematical finance.
Their solution spaces are infinite dimensional and contain
diverse solution structures. It is of significant importance to
solve nonlinear PDEs from both theoretical and practi-
cal points of view. In some decades, many authors are devoted
to investigate the exact solutions to nonlinear PDEs. With
the help of exact solutions, when they exist, the mechanism
of complicated physical phenomena and dynamical processes
modeled by these nonlinear PDEs can be better understood.
They can also help to analyze the stability of these solutions
and to check numerical analysis for these nonlinear PDEs.

In recent years, reducing PDEs into ordinary differential
equations (ODEs) has been proved to be a successful idea to
generate exact solutions of nonlinear wave equations. Many
approaches to exact solutions in the literature follow such
an idea, which contain tanh-function method [1–4], sech-
function method [5, 6], homogeneous balance method [7, 8],
extended tanh-function method [9], Jacobi elliptic function
method [10], exp-functionmethod [11], 𝐹-expansionmethod
[12], and transformed rational function method [13]. The
tanh-function method and the 𝐺

󸀠
/𝐺 expansion methods are

special cases of general Frobenius’ idea [14] or the trans-
formed rational function method [13]. Recently, the multiple
exp-function was also used to present three waves in (3 + 1)
dimension [15]. There is also a generalized theory of the Bell
polynomials [16], which describe generalized bilinear differ-
ential equations [17]. Among those, auxiliary equation meth-
ods are widely used to find exact solutions (especially elliptic
solutions) of PDEs by some authors (see [1, 3, 18–24], etc.). But
inmany literatures, the authors constructed exact solutions of
PDEsmaking use of finite solutions of the auxiliary equations
employed and have not obtained infinitely many solutions,
especially Weierstrass and Jacobi elliptic solutions.

In this work, we will seek for nonlinear iterated formulae
of solutions to a simple auxiliary equation. Simultaneously, in
order to obtain infinitely many new elliptic solutions of some
nonlinear PDEs,wewill also give someWeierstrass and Jacobi
elliptic function solutions of the simple auxiliary equation.
Based on these facts, we can construct infinitely manyWeier-
strass and Jacobi elliptic function solutions of destination
equations. The obtained results are new and introduce useful
analysis for equations of identical nonlinearities.

This paper is organized as follows: in Section 2, we
provide some nonlinear iterated formulae of solutions and
some new elliptic solutions to a simple equation. In Section 3,
we give some examples to demonstrate the application of our
approach. The remainder of this paper is a discussion.
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2. Preliminaries

In this section, we try to find some nonlinear iterated formu-
lae of solutions and infinitely many Weierstrass and Jacobi
elliptic function solutions to the auxiliary equation

(
𝑑𝜂 (𝜉)

𝑑𝜉
)

2

= 𝑎𝜂 + 𝑏𝜂
2
+ 𝑐𝜂
3
. (1)

We will solve some NPDEs by the exact solutions of the
auxiliary equation; consequently we can obtain infinitely
many Weierstrass and Jacobi elliptic function solutions and
periodic and soliton solutions of destination equations.

2.1. Nonlinear Iterated Formulae of Solutions to (1). In order
to find infinitely many elliptic solutions to (1), we assume that
𝑎𝑏𝑐 ̸= 0.

By the Bäcklund transformations and a modified trunca-
tion approach, we can obtain the following nonlinear iterated
formulae of solutions; that is, if 𝑤 = 𝑤(𝜉) is a solution to (1),
then so is 𝜂 = 𝜂(𝜉):

𝜂
1

=
𝑎

𝑐𝑤
; (2)

𝜂
±

2
= ±

2𝑎 + (𝑏 ∓ √𝑏2 − 4𝑎𝑐)𝑤

∓𝑏 + √𝑏2 − 4𝑎𝑐 ∓ 2𝑐𝑤

; (3)

𝜂
±

3
= ±

∓𝑎𝑏 + 𝑎√𝑏2 − 4𝑎𝑐 + (∓𝑏
2
+ 𝑏√𝑏2 − 4𝑎𝑐 ± 2𝑎𝑐)𝑤

𝑐 [2𝑎 + (𝑏 ∓ √𝑏2 − 4𝑎𝑐)𝑤]

;

(4)

𝜂
±

4
= ± ([∓2𝑎 + (√𝑏2 − 4𝑎𝑐 ∓ 𝑏)𝑤]

× [(2𝑎𝑐 − 𝑏
2
) (√𝑏2 − 4𝑎𝑐 ± 𝑏) ± 2𝑎𝑏𝑐])

× (2𝑐 ([(2𝑎𝑐 − 𝑏
2
) (√𝑏2 − 4𝑎𝑐 ± 𝑏) ± 2𝑎𝑏𝑐]𝑤

− 𝑎√𝑏2 − 4𝑎𝑐 (𝑏 ± √𝑏2 − 4𝑎𝑐)))

−1

;

(5)

𝜂
±

5
=

−𝑎𝑏 ± 𝑎√𝑏2 − 4𝑎𝑐 − 4𝑎𝑐𝑤 − 𝑐 (𝑏 ± √𝑏2 − 4𝑎𝑐)𝑤
2

2𝑐 (𝑎 + 𝑏𝑤 + 𝑐𝑤2)
;

(6)

𝜂
±

𝑖
=

𝐴
0,𝑖

+ 𝐴
1,𝑖

𝑤 + 𝐴
2,𝑖

𝑤
2

𝐵
0,𝑖

+ 𝐵
1,𝑖

𝑤 + 𝐵
2,𝑖

𝑤2
, (𝑖 = 6, 7, 8, 9) , (7)

where

𝐴
0,6

= ∓𝑅
±

6
, 𝐴

1,6
= 1 ∓

𝑏

𝑎
𝑅
±

6
,

𝐴
2,6

= −

𝑎𝑏 (𝑏
2
− 3𝑎𝑐) ∓ (2𝑎

2
𝑐
2
− 4𝑎𝑏

2
𝑐 + 𝑏
4
) 𝑅
±

6

𝑎2𝑐 (2𝑎 ∓ 𝑏𝑅
±

6
)

,

𝐵
0,6

= 1, 𝐵
1,6

=

𝑎𝑏 ∓ (𝑏
2
− 2𝑎𝑐) 𝑅

±

6

𝑎 (2𝑎 ± 𝑏𝑅
±

6
)

,

𝐵
2,6

=

𝑎 (2𝑎
2
𝑐
2
+ 𝑏
4
− 4𝑎𝑏

2
𝑐) ∓ 𝑏 (5𝑎

2
𝑐
2
− 5𝑎𝑏

2
𝑐 + 𝑏
4
) 𝑅
±

6

𝑎2 [𝑎 (𝑏2 − 2𝑎𝑐) ∓ 𝑏 (𝑏2 − 3𝑎𝑐) 𝑅
±

6
]

,

𝑅
±

6
=

±𝑏 + √𝑏2 − 4𝑎𝑐

2𝑐
;

𝐴
0,7

= ± (𝑐 + 𝑀𝑎) 𝑅
±

7
, 𝐴

1,7
= 1,

𝐴
2,7

=

𝑎𝑀[𝑎 (𝑏
2
− 2𝑎𝑐) ± 𝑏𝑐 (3𝑎𝑐 − 𝑏

2
) 𝑅
±

7
]

𝑎𝑏 (3𝑎𝑐 − 𝑏2) ± 𝑐 (2𝑎2𝑐2 − 4𝑎𝑏2𝑐 + 𝑏4) 𝑅
±

7

,

𝐵
0,7

= −1 −
𝑎

𝑐
𝑀,

𝐵
1,7

=
−2𝑎
2
𝑀 − 𝑎𝑐 ± 𝑏𝑐 (𝑎𝑀 + 𝑐) 𝑅

±

7

𝑎𝑐2𝑅
±

7

, 𝐵
2,7

= 𝑀,

𝑅
±

7
=

±𝑏 + √𝑏2 − 4𝑐𝑎

2𝑐2
, 𝑀 is an arbitrary constant;

𝐴
0,8

= 𝑀, 𝐴
1,8

= ∓𝑅
±

8
, 𝐴

2,8
= 1 ∓

𝑏

𝑎
𝑅
±

8
,

𝐵
0,8

=
𝑐 (2𝑎 ∓ 𝑏𝑅

±

8
)𝑀

−𝑎𝑏 ± (𝑏2 − 2𝑎𝑐) 𝑅
±

8

,

𝐵
1,8

= 1, 𝐵
2,8

=
𝑐 (2𝑎 ∓ 𝑏𝑅

±

8
)

𝑎√𝑏2 − 4𝑎𝑐

,

𝑅
±

8
=

±𝑏 + √𝑏2 − 4𝑎𝑐

2𝑐
, 𝑀 is an arbitrary constant;

𝐴
0,9

= 𝑀, 𝐴
1,9

= ∓𝑁𝑅
±

9
,

𝐴
2,9

= −
𝑎 (𝑏 − 2𝑐𝑁) + ±𝑐 (𝑏𝑁 − 2𝑎) 𝑅

±

9

𝑏2 − 2𝑎𝑐 − 𝑏𝑐𝑁 ± 𝑐 (2𝑐𝑁 − 𝑏) 𝑅
±

9

,

𝐵
0,9

=
𝑐 (2𝑎 ∓ 𝑏𝑅

±

9
)𝑀

−𝑎𝑏 ± (𝑏2 − 2𝑎𝑐) 𝑅
±

9

,

𝐵
1,9

= 𝑁, 𝐵
2,9

= 1,

𝑅
±

9
=

±𝑏 + √𝑏2 − 4𝑎𝑐

2𝑐
, 𝑀, 𝑁 are two arbitrary constants;

(8)

𝜂
±

10
= ±

𝑎 (√𝑏 ∓ 2√𝑎𝑐𝑤 + 𝑤
󸀠
)

√𝑎𝑐 (√𝑏 ∓ 2√𝑎𝑐𝑤 − 𝑤󸀠)

; (9)

𝜂
±

11
= −

𝐴
1
+ 𝐴
2
𝑤 ± 𝐴

3
𝐿𝑤
󸀠

𝑐 (𝑏 + 2√𝑏2 − 3𝑎𝑐) (4𝑎2𝑐 − 𝑎𝑏2 ± 3𝐿𝑤󸀠)

, (10)

with

𝐴
1
= 18𝑎

2
𝑏
2
𝑐 − 3𝑎𝑏

4
− 24𝑎

3
𝑐
2

+ 3𝑎𝑏 (4𝑎𝑐 − 𝑏
2
)√𝑏2 − 3𝑎𝑐,

𝐴
2
= 2𝑎𝑐 (4𝑎𝑐 − 𝑏

2
) (𝑏 + 2√𝑏2 − 3𝑎𝑐) ,

𝐴
3
= 6𝑎𝑐 − 𝑏

2
+ 𝑏√𝑏2 − 3𝑎𝑐,

𝐿 =
1

3
√(𝑏2 − 4𝑎𝑐) [9𝑎𝑏𝑐 − 2𝑏3 + 2 (3𝑎𝑐 − 𝑏2)√𝑏2 − 3𝑎𝑐];

(11)



Abstract and Applied Analysis 3

𝜂
±

12
= −

𝐴
1
+ 𝐴
2
𝑤 ± 𝐴

3
𝐿𝑤
󸀠

𝑐 (−𝑏 + 2√𝑏2 − 3𝑎𝑐) (4𝑎2𝑐 − 𝑎𝑏2 ± 3𝐿𝑤󸀠)

,

(12)

with

𝐴
1
= −18𝑎

2
𝑏
2
𝑐 + 3𝑎𝑏

4
+ 24𝑎

3
𝑐
2

− 3𝑎𝑏 (4𝑎𝑐 − 𝑏
2
)√𝑏2 − 3𝑎𝑐,

𝐴
2
= 2𝑎𝑐 (4𝑎𝑐 − 𝑏

2
) (−𝑏 + 2√𝑏2 − 3𝑎𝑐) ,

𝐴
3
= −6𝑎𝑐 + 𝑏

2
+ 𝑏√𝑏2 − 3𝑎𝑐,

𝐿 =
1

3
√(𝑏2 − 4𝑎𝑐) [9𝑎𝑏𝑐 − 2𝑏3 − 2 (3𝑎𝑐 − 𝑏2)√𝑏2 − 3𝑎𝑐];

(13)

𝜂
±

13
=

𝐴
1
+ 𝐴
2
𝑤 ± 𝐴

3
𝑤
󸀠

𝐵
1
± 𝐵
2
𝑤󸀠

, (14)

with

𝐴
1
= − 6𝑎 [(−𝑏 + √𝑏2 − 3𝑎𝑐) (4𝑏

4
− 27𝑎𝑏

2
𝑐 + 36𝑎

2
𝑐
2
)

+ 6𝑎𝑏𝑐 (𝑏
2
− 6𝑎𝑐) ] ,

𝐴
2
= 27𝑀𝐿

2
, 𝐴

3
=

9

𝑐
(−𝑏 + √𝑏2 − 3𝑎𝑐)𝑀𝐿,

𝐵
1
= 8 (−𝑏 + √𝑏2 − 3𝑎𝑐) (27𝑎

2
𝑏𝑐
2
− 15𝑎𝑏

3
𝑐 + 2𝑏

5
)

+ 6𝑎𝑐 (4𝑏
4
− 27𝑎𝑏

2
𝑐 + 36𝑎

2
𝑐
2
) ,

𝐵
2
= 27𝑀𝐿,

𝐿 =
2

𝑐

√𝑏 (2𝑏2 − 9𝑎𝑐) − 2(𝑏2 − 3𝑎𝑐)
3/2

,

𝑀 = 𝑐
2
[(−𝑏 + √𝑏2 − 3𝑎𝑐) (6𝑎𝑐 − 2𝑏

2
) − 3𝑎𝑏𝑐] ;

(15)

𝜂
±

14
=

𝐴
1
+ 𝐴
2
𝑤 ± 𝐴

3
𝑤
󸀠

𝐵
1
± 𝐵
2
𝑤󸀠

, (16)

with

𝐴
1
= 6𝑎 [(𝑏 + √𝑏2 − 3𝑎𝑐) (4𝑏

4
− 27𝑎𝑏

2
𝑐 + 36𝑎

2
𝑐
2
)

− 6𝑎𝑏𝑐 (𝑏
2
− 6𝑎𝑐) ] ,

𝐴
2
= 27𝑀𝐿

2
, 𝐴

3
= −

9

𝑐
(𝑏 + √𝑏2 − 3𝑎𝑐)𝑀𝐿,

𝐵
1
= − 8 (𝑏 + √𝑏2 − 3𝑎𝑐) (27𝑎

2
𝑏𝑐
2
− 15𝑎𝑏

3
𝑐 + 2𝑏

5
)

+ 6𝑎𝑐 (4𝑏
4
− 27𝑎𝑏

2
𝑐 + 36𝑎

2
𝑐
2
) ,

𝐵
2
= 27𝑀𝐿,

𝐿 =
2

𝑐

√𝑏 (2𝑏2 − 9𝑎𝑐) + 2(𝑏2 − 3𝑎𝑐)
3/2

,

𝑀 = −𝑐
2
[(𝑏 + √𝑏2 − 3𝑎𝑐) (6𝑎𝑐 − 2𝑏

2
) + 3𝑎𝑏𝑐] ;

(17)

𝜂
15

=

√𝑎𝑐 (𝑎 + 𝑏𝑤 + 𝑐𝑤
2
+ √𝑏 − 2√𝑎𝑐𝑤

󸀠
)

𝑐 (−𝑎 − 𝑏𝑤 − 𝑐𝑤2 + √𝑏 − 2√𝑎𝑐𝑤󸀠)

; (18)

𝜂
16

=

√𝑎𝑐 (𝑎 + 𝑏𝑤 + 𝑐𝑤
2
− √𝑏 + 2√𝑎𝑐𝑤

󸀠
)

𝑐 (𝑎 + 𝑏𝑤 + 𝑐𝑤2 + √𝑏 + 2√𝑎𝑐𝑤󸀠)

. (19)

Above, we have given finitely many nonlinear iterated
formulae of solutions to (1). In fact, it is possible to obtain
infinitely many ones by substituting one into another repeat-
edly. Here, it should be pointed out that the previous iterative
procedure can be done finite times for some formulae but
infinite times for some other ones. For example, substituting
(3) into (2) we can obtain a new nonlinear iterated formula:

𝜂
±

2-1 = ±

𝑎 [∓𝑏 + √𝑏2 − 4𝑎𝑐 ∓ 2𝑐𝑤]

𝑐 [2𝑎 + (𝑏 ∓ √𝑏2 − 4𝑎𝑐)𝑤]

, (20)

but repeating the procedure again will result in (3) itself; sub-
stituting 𝜂

−

2
into 𝜂

−

2-1 results in 𝑎/𝑐𝑤; substituting 𝜂
+

2
into 𝜂

−

2-1
results in 𝑤 and so on. But for solutions 𝜂

±

10
and so forth, the

iterative procedure are infinite For instance, substituting 𝜂
±

2

or 𝜂
±

5
into 𝜂

±

10
and iterating the results by 𝜂

±

10
can generate

infinitely many iterated formulae of solutions.

2.2. Infinitely Many Weierstrass Elliptic Function Solutions to
(1). Let ℘(𝜉) = ℘(𝜉; 𝑔

2
, 𝑔
3
) be the Weierstrass elliptic func-

tion satisfying

℘
󸀠2

(𝜉) = 4℘
3

(𝜉) − 𝑔
2
℘ (𝜉) − 𝑔

3
, (21)

where 𝑔
2
, 𝑔
3
are real parameters and called invariants [25],

and ℘
󸀠
(𝜉) denotes the first-order derivative. It follows from

(21) that the second-order derivative is

℘
󸀠󸀠

(𝜉) = 6℘
2

(𝜉) − 𝑔
2
. (22)

From the last previous two equations, we will give some
Weierstrass elliptic function solutions to (1), among which
there aremany new solutions different from those in [26] and
some latter references. In fact, in [26] the author considered
the following auxiliary equation:

(
𝑑𝜃

𝑑𝜉
)

2

= 𝑑
0
+ 𝑑
2
𝜃
2
+ 𝑑
4
𝜃
4
, (23)

but this equation can be converted into (1) by the transforma-
tion 𝜂(𝜉) = 𝜃

2
(𝜉), with 𝑎 = 4𝑑

0
, 𝑏 = 4𝑑

2
, and 𝑐 = 4𝑑

4
.
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From (21) and (22), we have the following Weierstrass
elliptic function solutions to (1).

(i) When 𝑔
2
= (𝑏
2
− 3𝑎𝑐)/12, 𝑔

3
= 𝑏(9𝑎𝑐 − 2𝑏

2
)/432, then

𝜂 =
3𝑎

12℘ (𝜉) − 𝑏
,
12℘ (𝜉) − 𝑏

3𝑐
; (24)

or
𝜂

=

𝐿
1
℘ (𝜉) − (𝑏 (5𝑎𝑐 − 𝑏

2
) 𝐿
1
+ 𝑎 (6𝑎𝑐 − 𝑏

2
)) /12𝑐 (2𝑎 + 𝑏𝐿

1
)

℘ (𝜉) − (2 (3𝑎𝑐 − 𝑏2) 𝐿
1
− 𝑎𝑏) /12 (2𝑎 + 𝑏𝐿

1
)

,

𝑎 (℘ (𝜉) − (2 (3𝑎𝑐 − 𝑏
2
) 𝐿
1
− 𝑎𝑏) /12 (2𝑎 + 𝑏𝐿

1
))

𝑐 (𝐿
1
℘ (𝜉) − (𝑏 (5𝑎𝑐 − 𝑏2) 𝐿

1
+ 𝑎 (6𝑎𝑐 − 𝑏2)) /12𝑐 (2𝑎 + 𝑏𝐿

1
))

,

(25)

where 𝐿
1
= (−𝑏 ± √𝑏2 − 4𝑎𝑐)/2𝑐.

(ii) When 𝑔
2

= −11𝑎𝑐/64 − (𝑏
2
+ 5𝑏𝐿

2
)/48, 𝑔

3
= 5𝑏
3
/

3456 − 𝑎𝑏𝑐/512 + 7(𝑏
2
− 3𝑎𝑐)𝐿

2
/1152, then

𝜂 =
3𝑎 (12℘ (𝜉) + 𝑏 + 2𝐿

2
)

(12℘ (𝜉) + 𝐿
2
)
2

,
(12℘ (𝜉) + 𝐿

2
)
2

3𝑐 (12℘ (𝜉) + 𝑏 + 2𝐿
2
)
,

(26)

where 𝐿
2
= (−5𝑏 ± 3√𝑏2 − 4𝑎𝑐)/8.

(iii) When 𝑔
2

= 𝑏
2
/192 + 𝑎𝑐/16 and 𝑔

3
= 𝑏(36𝑎𝑐 − 𝑏

2
)/

13824, then

𝜂 =
576℘
󸀠2

(𝜉)

𝑐(24℘ (𝜉) + 𝑏)
2
,
𝑎(24℘ (𝜉) + 𝑏)

2

576℘󸀠2 (𝜉)
, (27)

𝑏
2
− 36𝑎𝑐 − 96𝑏℘ (𝜉) + 2304℘

2
(𝜉)

24𝑐 (24℘ (𝜉) + 𝑏)
,

24𝑎 (24℘ (𝜉) + 𝑏)

𝑏2 − 36𝑎𝑐 − 96𝑏℘ (𝜉) + 2304℘2 (𝜉)
,

(28)

(𝐿
3
℘ (𝜉) − 𝐴

1
)
2

𝐿
3
(℘ (𝜉) + 𝐵

1
)
2
,

𝑎𝐿
3
(℘ (𝜉) + 𝐵

1
)
2

𝑐(𝐿
3
℘ (𝜉) − 𝐴

1
)
2

(29)

with 𝐴
1
= (4𝑎𝑏 + (12𝑎𝑐 − 𝑏

2
)𝐿
3
)/48(𝑏 + 2𝑐𝐿

3
), 𝐵
1
= (4𝑎𝑏 −

(12𝑎𝑐−5𝑏
2
)𝐿
3
)/48(2𝑎+𝑏𝐿

3
), and 𝐿

3
= (−𝑏±√𝑏2 − 4𝑎𝑐)/2𝑐;

𝜂 =

𝐿
3
(℘ (𝜉) − 𝐴

2
)
2

(℘ (𝜉) − 𝐵
2
)
2

,

𝑎(℘ (𝜉) − 𝐵
2
)
2

𝑐𝐿
3
(℘ (𝜉) − 𝐴

2
)
2

(30)

with𝐴
2
= (𝑎(12𝑎𝑐−𝑏

2
)+𝑏(8𝑎𝑐−𝑏

2
)𝐿
3
)/48[(2𝑎𝑐−𝑏

2
)𝐿
3
−𝑎𝑏],

𝐵
2
= (𝑎𝑏(5𝑏

2
−16𝑎𝑐)+(5𝑏

4
+12𝑎
2
𝑐
2
−21𝑎𝑏

2
𝑐)𝐿
3
)/48[𝑎(2𝑎𝑐−

𝑏
2
) + 𝑏(3𝑎𝑐 − 𝑏

2
)𝐿
3
], and 𝐿

3
= (−𝑏 ± √𝑏2 − 4𝑎𝑐)/2𝑐; or

𝜂 =

(𝐴
3
℘ (𝜉) + 𝐵

3
+ 𝐸℘
󸀠
(𝜉))
2

(𝐴
4
℘ (𝜉) + 𝐵

4
− 𝐷℘󸀠 (𝜉))

2
,

𝑎(𝐴
4
℘ (𝜉) + 𝐵

4
− 𝐷℘
󸀠
(𝜉))
2

𝑐(𝐴
3
℘ (𝜉) + 𝐵

3
+ 𝐸℘󸀠 (𝜉))

2

(31)

with 𝐴
3

= 𝐷(2𝑎𝐷
2
+ 𝑏𝐸
2
)𝐿, 𝐵
3

= (𝐷/48)(12𝑎𝑐𝐸
2
− 𝑏
2
𝐸
2
+

4𝑎𝑏𝐷
2
)𝐿, 𝐴
4
= 𝐸(𝑏𝐷

2
+ 2𝑐𝐸

2
)𝐿, and 𝐵

4
= (𝐸/48)(12𝑎𝑐𝐷

2
−

𝑏
2
𝐷
2
+ 4𝑏𝑐𝐸

2
)𝐿, where 𝐿 = ±(1/2√𝑐𝐸4 + 𝑏𝐸2𝐷2 + 𝑎𝐷4), and

𝐷, 𝐸 are two arbitrary constants.
Note that in any pair of solutions, the latter can be

obtained from the former through formula (2). Indeed,
combining solutions (24)–(31) with the nonlinear iterated
formulae (2)–(20) and their infinitely many derivatives can
yield infinitelymanyWeierstrass elliptic function solutions of
(1).

2.3. Infinitely Many Jacobi Elliptic Function Solutions to (1).
Assume that 𝐾, 𝐶, and 𝐷 are arbitrary constants, and 𝑚 ∈

(0, 1) is the elliptic modulus; then (1) has the following Jacobi
elliptic solutions.

(I) 𝑎 = 4𝐾, 𝑏 = −4(1 + 𝑚
2
), 𝑐 = 4𝑚

2
/𝐾,

𝜂 = 𝐾cd(𝜉, 𝑚)
2

, 𝐾sn(𝜉, 𝑚)
2

,

𝐾

𝑚2
dc(𝜉, 𝑚)

2

,
𝐾

𝑚2
ns(𝜉, 𝑚)

2

.

(32)

Indeed, the former two solutions and the latter two ones can
transform each other by formula (2). In what follows, we omit
the solutions that can be generated by formula (2).

(II) 𝑎 = 4𝐾(1 − 𝑚
2
), 𝑏 = −4(1 − 2𝑚

2
), 𝑐 = −4𝑚

2
/𝐾,

𝜂 = 𝐾cn(𝜉, 𝑚)
2

, 𝐾 (1 − 𝑚
2
) sd (𝜉, 𝑚)

2

. (33)

(III) 𝑎 = −4𝐾(1 − 𝑚
2
), 𝑏 = 4(2 − 𝑚

2
), 𝑐 = −4/𝐾,

𝜂 = 𝐾dn(𝜉, 𝑚)
2

, −𝐾cs(𝜉, 𝑚)
2

. (34)

(IV) 𝑎 = 𝐾(𝑚
2
− 1), 𝑏 = 2(1 + 𝑚

2
), 𝑐 = (𝑚

2
− 1)/𝐾,

𝜂
±

= 𝐾[nd (𝜉, 𝑚) ± 𝑚 sd (𝜉, 𝑚)]
2

,

− 𝐾[nc (𝜉, 𝑚) ± (𝜉,𝑚)]
2

,

𝐾

1 − 𝑚2
[dn (𝜉, 𝑚) ± 𝑚cn (𝜉, 𝑚)]

2

,

𝐾

𝑚2 − 1
[cs (𝜉, 𝑚) ± ds (𝜉, 𝑚)]

2

.

(35)

(V) 𝑎 = ((𝐶
2
− 𝐷
2
)/𝐾)(𝑚

2
− 1), 𝑏 = 2(1 + 𝑚

2
), 𝑐 =

−(𝐾/(𝐶
2
− 𝐷
2
))(𝑚
2
− 1),

𝜂
±

=
[𝐷cn (𝜉, 𝑚) + 𝐶dn (𝜉, 𝑚)]

2

𝐾[1 ± √1 + 𝐶2(1 − 𝑚2)/(𝐷2 − 𝐶2)sn(𝜉, 𝑚)]
2
.

(36)

(VI) 𝑎 = 𝐾, 𝑏 = 2(−2 + 𝑚
2
), 𝑐 = 𝑚

4
/𝐾,

𝜂
±

=
𝐾cn(𝜉, 𝑚)

2

[√1 − 𝑚2 ± dn (𝜉, 𝑚)]
2
,

𝐾sn(𝜉, 𝑚)
2

[1 ± dn (𝜉, 𝑚)]
2
,

𝐾

𝑚2
[cd (𝜉, 𝑚) ± 𝑖√1 − 𝑚2 sd (𝜉, 𝑚)]

2

,

−
𝐾

𝑚2
[cn (𝜉, 𝑚) ± 𝑖sn (𝜉, 𝑚)]

2

.

(37)
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(VII) 𝑎 = 𝐾𝑚
2
/(𝐶
2
− 𝐷
2
), 𝑏 = 2(−2 + 𝑚

2
), 𝑐 = (𝐶

2
−

𝐷
2
)𝑚
2
/𝐾,

𝜂
±

= − (𝐾[𝐶 + 𝐷dn (𝜉, 𝑚)]
2

)

× ((𝐶
2
− 𝐷
2
)
2

× [

[

cn (𝜉, 𝑚) ± √
𝐷
2
𝑚
2

𝐷2 − 𝐶2
− 1sn (𝜉, 𝑚)]

]

2

)

−1

.

(38)

(VIII) 𝑎 = 𝐾, 𝑏 = 2(1 − 2𝑚
2
), 𝑐 = 1/𝐾,

𝜂
±

= 𝐾[ns (𝜉, 𝑚) ± cs (𝜉, 𝑚)]
2

,

𝐾[𝑚sn (𝜉, 𝑚) ± 𝑖dn (𝜉, 𝑚)]
2

,

𝐾[dc (𝜉, 𝑚) ± √1 − 𝑚2 (𝜉, 𝑚)]

2

,

𝐾[𝑚cd (𝜉, 𝑚) ± 𝑖√1 − 𝑚2nd (𝜉, 𝑚)]

2

.

(39)

(IX) 𝑎 = 𝐾𝑚
2
/(𝐶
2
− 𝐷
2
), 𝑏 = 2(1 − 2𝑚

2
), 𝑐 = (𝐶

2
−

𝐷
2
)𝑚
2
/𝐾,

𝜂
±

= −

𝐾[dn (𝜉, 𝑚) ± √𝐷2/ (𝐷2 − 𝐶2) − 𝑚2sn (𝜉, 𝑚)]

2

[𝐶 + 𝐷cn (𝜉, 𝑚)]
2

.

(40)

(X) 𝑎 = 𝐾(1 − 𝑚)
2, 𝑏 = 2(1 + 6𝑚 + 𝑚

2
), 𝑐 = (1 − 𝑚)

2
/𝐾,

𝜂
±

= −
𝐾[1 ± √𝑚sn (𝜉, 𝑚)]

2

[1 ∓ √𝑚sn (𝜉, 𝑚)]
2

. (41)

(XI) 𝑎± = ±16𝐾𝑚, 𝑏± = −4(1±6𝑚+𝑚
2
), 𝑐± = (1±𝑚)

2
/𝐾,

𝜂
±

=

𝐾[1 ∓ 𝑚sn(𝜉, 𝑚)
2

]
2

cn(𝜉, 𝑚)
2dn(𝜉, 𝑚)

2
,
𝐾[ns (𝜉, 𝑚) ± 𝑚sn (𝜉, 𝑚)]

2

(1 − 𝑚)
2

.

(42)

(XII) 𝑎
±

= ±16𝐾√1 − 𝑚2, 𝑏± = 4(2 − 𝑚
2
± 6√1 − 𝑚2),

𝑐
±

= 4(2 − 𝑚
2
± 2√1 − 𝑚2)/𝐾,

𝜂
±

= −

𝐾[cn(𝜉, 𝑚)
2

± √1 − 𝑚2sn(𝜉, 𝑚)
2

]
2

dn(𝜉, 𝑚)
2

,

−

𝐾[dn (𝜉, 𝑚) ± √1 − 𝑚2nd (𝜉, 𝑚)]
2

2 − 𝑚2 ± 2√1 − 𝑚2
,

𝐾

𝑚4sn(𝜉, 𝑚)
2

× [(1 − 𝑚
2
∓ √1 − 𝑚2) nc (𝜉, 𝑚) + 𝑚

2cn (𝜉, 𝑚)]

2

,

𝐾

𝑚4sn(𝜉, 𝑚)
2cn(𝜉, 𝑚)

2
[dn(𝜉, 𝑚)

2

∓ √1 − 𝑚2]

2

.

(43)
Combining solutions (32)–(43) with the nonlinear iter-

ated formulae (2)–(20) and their derivatives can give
infinitely many Jacobi elliptic function solutions of (1), and
these solutions can be degenerated to solutions with hyper-
bolic or trigonometric functions as long as letting 𝑚 go to 1
or 0.

3. Infinitely Many Elliptic Solutions of
Some Nonlinear PDEs

Now we apply auxiliary equation methods to some nonlinear
PDEs and obtain their infinitely many elliptic function solu-
tions.

Example 1. First we consider the Kadomtsev-Petviashvili
(KP) equation

(𝑢
𝑡
− 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

)
𝑥
+ 3𝑢
𝑦𝑦

= 0, (44)
which was introduced in 1970 [27] and is of both physical and
mathematical interests. By using the wave variable 𝜉 = 𝛼𝑥 +

𝛽𝑦 + 𝛾𝑡 and integrating twice, the KP equation (44) can be
converted to the ODE

𝛼
4
𝑢
󸀠󸀠

+ (𝛼𝛾 + 3𝛽
2
) 𝑢 − 3𝛼

2
𝑢
2
= 0, (45)

if we let the integration constants be zeros.
Assume that the solutions of (45) have the following form:

𝑢 (𝜉) =
𝑎
0
+ 𝑎
1
𝜂 (𝜉) + 𝑎

2
𝜂
2
(𝜉)

𝑏
0
+ 𝑏
1
𝜂 (𝜉)

, (46)

where 𝜂(𝜉) satisfies (1), 𝑎
𝑖
(𝑖 = 0, 1, 2) and 𝑏

𝑗
(𝑗 = 0, 1) are

constants to be determinated. Substituting (46) into (45) and
equating corresponding coefficients of 𝜂(𝜉) to zero yield an
algebraic system of 𝑎

𝑖
, 𝑏
𝑗
, 𝛼, 𝛽, and 𝛾. Solving this system with

the aid of Maple, we obtain the following solutions of (45):

𝑢I (𝜉) = 𝛼
2
(

𝑏 ± √𝑏2 − 3𝑎𝑐

6
+

𝑐𝜂 (𝜉)

2
) ,

𝑢II (𝜉) = 𝛼
2
(

𝑏 ± √𝑏2 − 3𝑎𝑐

6
+

𝑎

2𝜂 (𝜉)
) ,

𝑢III (𝜉) =

𝑐𝛼
2
[𝑎 + 2𝑏𝜂 (𝜉) + 3𝑐𝜂

2
(𝜉)]

2 [𝑏 ∓ √𝑏2 − 3𝑎𝑐 + 3𝑐𝜂 (𝜉)]

,

(47)

where 𝜂(𝜉) satisfies (1), with 𝛾 = (−3𝛽
2
±𝛼
4√𝑏2 − 3𝑎𝑐)/𝛼, and

𝛼, 𝛽, 𝑎, 𝑏, and 𝑐 are arbitrary constants.

𝑢IV (𝜉) = 𝛼
2
(

𝑏 ± √𝑏2 + 12𝑎𝑐

6
+

𝑎

2𝜂 (𝜉)
+

𝑐𝜂 (𝜉)

2
) ,

(48)
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where 𝜂(𝜉) satisfies (1), with 𝛾 = (−3𝛽
2
±𝛼
4√𝑏2 + 12𝑎𝑐)/𝛼, 𝛼,

𝛽, 𝑎, 𝑏, 𝑐 are arbitrary constants.
Now substituting the solutions 𝜂’s of (1) into (47) and (48),

we obtain immediately infinitelymanyWeierstrass and Jacobi
elliptic solutions of (44), and these elliptic solutions can be
degenerated to solutions with hyperbolic or trigonometric
functions as long as letting 𝑚 go to 1 or 0.

For instance, from (48), (6), (9), and (24) (or (35)) we can
obtain infinitely manyWeierstrass or Jacobi elliptic solutions
of (44) as follows:

𝑢
𝑛
(𝑥, 𝑦, 𝑡) = 𝛼

2
(

𝑏 ± √𝑏2 + 12𝑎𝑐

6
+

𝑎

2𝜂
𝑛

+
𝑐𝜂
𝑛

2
) ,

(𝑛 = 1, 2, . . .) ,

𝜂
±

𝑛+1
= ±

𝑎 (√𝑏 ∓ 2√𝑎𝑐𝜂
𝑛
+ 𝜂
󸀠

𝑛
)

√𝑎𝑐 (√𝑏 ∓ 2√𝑎𝑐𝜂
𝑛
− 𝜂󸀠
𝑛
)

,

𝜂
±

1
= ±

𝑎 (√𝑏 ∓ 2√𝑎𝑐𝑤
1
+ 𝑤
󸀠

1
)

√𝑎𝑐 (√𝑏 ∓ 2√𝑎𝑐𝑤
1
− 𝑤
󸀠

1
)

,

𝑤
1
=

−𝑎𝑏 ± 𝑎√𝑏2 − 4𝑎𝑐 − 4𝑎𝑐𝑤
0
− 𝑐 (𝑏 ± √𝑏2 − 4𝑎𝑐)𝑤

2

0

2𝑐 (𝑎 + 𝑏𝑤
0
+ 𝑐𝑤
2

0
)

.

(49)

(i) For Weierstrass elliptic function solutions,

𝑤
0
=

3𝑎

12℘ (𝜉; 𝑔
2
, 𝑔
3
) − 𝑏

, (50)

with

𝑔
2
=

𝑏
2
− 3𝑎𝑐

12
, 𝑔

3
=

𝑏 (9𝑎𝑐 − 2𝑏
2
)

432
, (51)

where 𝑎, 𝑏, and 𝑐 are arbitrary constants.
(ii) For Jacobi elliptic function solutions,

𝑤
0
= −𝐾[nc (𝜉, 𝑚) ± sc (𝜉, 𝑚)]

2

, (52)

with

𝑎 = 𝐾 (𝑚
2
− 1) , 𝑏 = 2 (1 + 𝑚

2
) , 𝑐 =

(𝑚
2
− 1)

𝐾
,

𝛾 =

−3𝛽
2
± 𝛼
4√(2 + 2𝑚2)

2

+ 12(𝑚2 − 1)
2

𝛼
,

𝜉 = 𝛼𝑥 + 𝛽𝑦 + 𝛾𝑡,

(53)

where 𝛼, 𝛽, and 𝐾 are arbitrary constants and 𝑚 ∈

(0, 1) is the elliptic modulus. If 𝑚 tends to 1 or 0, we
can also obtain multiple soliton or periodic solutions.

Example 2. Next we investigate infinitely many elliptic func-
tion solutions to a negative order KdV equation

(
𝑢
𝑥𝑥

𝑢
)
𝑡

+ 2𝑢𝑢
𝑥
= 0, (54)

which actually comes from the negative KdV hierarchy and
can be transformed to the Camassa-Holm equation through a
gauge transform (see [28]).The negative order KdV equation
(54) will be transformed to the ODE

𝛼𝛾𝑢
󸀠󸀠

+ 𝑢
3
+ 𝜆𝑢 = 0 (55)

upon using wave variable 𝜉 = 𝛼𝑥 + 𝛾𝑡 and integrating once,
where 𝜆 is a integration constant to be determinated. Similar
to the procedure of Example 1, one can get solutions of (55)
as follows,

𝑢 (𝜉) = ±

√𝛼𝛾 [−𝑏 + 2(−1)
𝑗−1

√𝑎𝑐] [√𝑎𝑐 − (−1)
𝑗−1

𝑐𝜂 (𝜉)]

√2 [√𝑎𝑐 + (−1)
𝑗−1

𝑐𝜂 (𝜉)]

,

(𝑗 = 1, 2) ,

(56)

where 𝜂(𝜉) satisfies (1), with 𝜆 = 𝛼𝛾𝑏/2, 𝛼, 𝛾, 𝑎, 𝑏, 𝑐 are
arbitrary constants.

Similarly, substituting the solutions 𝜂’s of (1) into (56),
we obtain infinitely many Weierstrass and Jacobi elliptic
solutions of (54), among which including hyperbolic and
trigonometric functions solutions as long as letting 𝑚 go to
1 or 0.

For instance, from (56), (3), (9) and (27) (or (34)) we can
obtain infinitely manyWeierstrass or Jacobi elliptic solutions
of (54) as follows

𝑢
𝑛
(𝑥, 𝑡) = ±

√𝛼𝛾 [−𝑏 + 2(−1)
𝑗−1

√𝑎𝑐] [√𝑎𝑐 − (−1)
𝑗−1

𝑐𝜂
𝑛
]

√2 [√𝑎𝑐 + (−1)
𝑗−1

𝑐𝜂
𝑛
]

,

𝜂
𝑛+1

= ±

𝑎 (√𝑏 ∓ 2√𝑎𝑐𝜂
𝑛
+ 𝜂
󸀠

𝑛
)

√𝑎𝑐 (√𝑏 ∓ 2√𝑎𝑐𝜂
𝑛
− 𝜂󸀠
𝑛
)

,

(𝑛 = 0, 1, 2, . . . , 𝑗 = 1, 2) ,

𝜂
±

1
= ±

𝑎 (√𝑏 ∓ 2√𝑎𝑐𝑤
1
+ 𝑤
󸀠

1
)

√𝑎𝑐 (√𝑏 ∓ 2√𝑎𝑐𝑤
1
− 𝑤
󸀠

1
)

,

𝑤
±

1
= ±

2𝑎 + (𝑏 ∓ √𝑏2 − 4𝑎𝑐)𝑤
0

∓𝑏 + √𝑏2 − 4𝑎𝑐 ∓ 2𝑐𝑤
0

,

(57)

(i) for Weierstrass elliptic function solutions,

𝑤
0
=

576℘
󸀠2

(𝜉; 𝑔
2
, 𝑔
3
)

𝑐(24℘ (𝜉; 𝑔
2
, 𝑔
3
) + 𝑏)

2
, (58)
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with

𝑔
2
=

𝑏
2

192
+

𝑎𝑐

16
, 𝑔

3
=

𝑏 (36𝑎𝑐 − 𝑏
2
)

13824
, (59)

where 𝑎, 𝑏 and 𝑐 are arbitrary constants;
(ii) for Jacobi elliptic function solutions,

𝑤
0
= −𝐾cs(𝜉, 𝑚)

2
, (60)

with

𝑎 = 4𝐾 (−1 + 𝑚
2
) , 𝑏 = 4 (2 − 𝑚

2
) , 𝑐 = −

4

𝐾
,

𝜆 =

𝛼𝛾 (8 − 4𝑚
2
)

2
,

(61)

where 𝛼, 𝛾,𝐾 are arbitrary constants and𝑚 ∈ (0, 1) is
the elliptic modulus. If 𝑚 tends to 1 or 0, we can also
obtain multiple soliton or periodic solutions.

Example 3. We consider the two-dimensional Davey-Stew-
artson equation

𝑖𝑢
𝑡
+ 𝑢
𝑥𝑥

− 𝑢
𝑦𝑦

− 2|𝑢|
2
𝑢 − 2𝑢V = 0,

V
𝑥𝑥

+ V
𝑦𝑦

+ 2(|𝑢|
2
)
𝑥𝑥

= 0.

(62)

This equation is completely integrable and often used to
describe the long time evolution of a two-dimensional wave
packet [29, 30]. In recent years, various methods such as
inverse scattering, Darboux transformation, variable separa-
tion, and Bäcklund transformation have been used to solve
the equation, respectively. In this work, we try to deal with
(62) by new idea and give it infinitely many Weierstrass and
Jacobi elliptic-like solutions.

For our purpose, we introduce the following transforma-
tions:

𝑢 (𝑥, 𝑡) = 𝑈 (𝜉) 𝑒
𝑖𝜃
,

V (𝑥, 𝑡) = 𝑉 (𝜉) ,

𝜃 = 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑡,

𝜉 = 𝑘𝑥 + 𝑑𝑦 − 2 (𝑝𝑘 − 𝑑𝑞) 𝑡.

(63)

Then system (62) is reduced to the following system of ordi-
nary differential equations:

(𝑞
2
− 𝑝
2
− 𝑟)𝑈 + (𝑘

2
− 𝑑
2
)𝑈
󸀠󸀠

− 2𝑈
3
− 2𝑈𝑉 = 0,

(𝑘
2
+ 𝑑
2
)𝑉
󸀠󸀠

+ 2𝑘
2
(𝑈
2
)
󸀠󸀠

= 0.

(64)

Integrating the second equation in (64) and neglecting the
constants of integration we find that

𝑉 = −
2𝑘
2

𝑘2 + 𝑑2
𝑈
2
. (65)

Substituting (65) into the first equation of the system leads to

𝑈
󸀠󸀠

+
𝑞
2
− 𝑝
2
− 𝑟

𝑘2 − 𝑑2
𝑈 +

2

𝑘2 + 𝑑2
𝑈
3
= 0, (66)

where prime denotes differentiationwith respect to 𝜉. Further
multiplying (66) by 𝑈

󸀠
(𝜉) and integrating it, we obtain that

𝑈
󸀠2

+
𝑞
2
− 𝑝
2
− 𝑟

𝑘2 − 𝑑2
𝑈
2
+

1

𝑘2 + 𝑑2
𝑈
4
− 𝐻 = 0, (67)

which is regrouped as follows:

𝑈
󸀠2

= −
1

𝑘2 + 𝑑2
𝑈
4
+

𝑝
2
+ 𝑟 − 𝑞

2

𝑘2 − 𝑑2
𝑈
2
+ 𝐻, (68)

where 𝐻 is an arbitrary constant of integration.
In order to write (68) in a simple form that we want, let

us introduce the following transformation:

𝜂 (𝜉) = 𝑈
2

(𝜉) . (69)
Then (68) can be written as (1) with

𝑎 = 4𝐻, 𝑏 =

4 (𝑝
2
+ 𝑟 − 𝑞

2
)

𝑘2 − 𝑑2
, 𝑐 = −

4

𝑘2 + 𝑑2
. (70)

Now from the solutions 𝜂’s of (1) and taking into account
(63), (65), and (69), we obtain infinitelymanyWeierstrass and
Jacobi elliptic-like solutions to the two-dimensional Davey-
Stewartson equation (62) as follows:

𝑢
𝑛
(𝑥, 𝑡) = 𝑈

𝑛
(𝜉) 𝑒
𝑖𝜃
, V

𝑛
(𝑥, 𝑡) = −

2𝑘
2

𝑘2 + 𝑑2
𝑈
2

𝑛
(𝜉) ,

(𝑛 = 1, 2, . . .) ,

𝑈
2

𝑛
(𝜉) = 𝜂

𝑛
(𝜉) ,

(71)

where 𝜃 = 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑡, 𝜉 = 𝑘𝑥 + 𝑑𝑦 − 2(𝑝𝑘 − 𝑑𝑞)𝑡; taking
account of (70), 𝑝, 𝑞, 𝑟, 𝑘, 𝑑, and 𝐻 satisfy the relations such
that (1) has an elliptic solution.

For instance, from (6), (9), and (24) (or (35)) we can
obtain infinitely manyWeierstrass or Jacobi elliptic-like solu-
tions to the two-dimensional Davey-Stewartson equation
(62) as follows:

𝑢
𝑛
(𝑥, 𝑡) = 𝑈

𝑛
(𝜉) 𝑒
𝑖𝜃
, V

𝑛
(𝑥, 𝑡) = −

2𝑘
2

𝑘2 + 𝑑2
𝑈
2

𝑛
(𝜉) ,

(𝑛 = 0, 1, 2, . . .) ,

𝑈
2

𝑛
(𝜉) = 𝜂

𝑛
(𝜉) ,

𝜂
𝑛+1

= −

𝑎 (√𝑏 + 2√𝑎𝑐𝜂
𝑛
+ 𝜂
󸀠

𝑛
)

√𝑎𝑐 (√𝑏 + 2√𝑎𝑐𝜂
𝑛
− 𝜂󸀠
𝑛
)

,

𝜂
0
= (−𝑎𝑏 ± 𝑎√𝑏2 − 4𝑎𝑐 − 4𝑎𝑐𝑤

0

− 𝑐 (𝑏 ± √𝑏2 − 4𝑎𝑐)𝑤
2

0
)

× (2𝑐 (𝑎 + 𝑏𝑤
0
+ 𝑐𝑤
2

0
))
−1

.

(72)
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(i) For Weierstrass elliptic function solutions,

𝑤
0
= −

𝑘
2
+ 𝑑
2

3
(6℘ (𝜉; 𝑔

2
, 𝑔
3
) −

𝑝
2
+ 𝑟 − 𝑞

2

𝑘2 − 𝑑2
) , (73)

with

𝜃 = 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑡,

𝜉 = 𝑘𝑥 + 𝑑𝑦 − 2 (𝑝𝑘 − 𝑑𝑞) 𝑡,

𝑔
2
=

4𝐻

𝑘2 + 𝑑2
+

4(𝑝
2
+ 𝑟 − 𝑞

2
)
2

3(𝑘2 − 𝑑2)
2

,

𝑔
3
=

4 (𝑞
2
− 𝑝
2
− 𝑟)

27 (𝑘2 − 𝑑2)
(

(𝑝
2
+ 𝑟 − 𝑞

2
)
2

(𝑘2 − 𝑑2)
2

+
9𝐻

𝑘2 + 𝑑2
) ,

𝑎 = 4𝐻, 𝑏 =

4 (𝑝
2
+ 𝑟 − 𝑞

2
)

𝑘2 − 𝑑2
, 𝑐 = −

4

𝑘2 + 𝑑2
,

(74)

where 𝑝, 𝑞, 𝑟, 𝑘, 𝑑, and 𝐻 are arbitrary real constants.

(ii) For Jacobi elliptic function solutions,

𝑤
0
=

1

4
(𝑘
2
+ 𝑑
2
) (1 − 𝑚

2
) (nd (𝜉, 𝑚) ± 𝑚 sd (𝜉, 𝑚))

2

,

(75)

with

𝜃 = 𝑝𝑥 + 𝑞𝑦 + 𝑟𝑡,

𝜉 = 𝑘𝑥 + 𝑑𝑦 − 2 (𝑝𝑘 − 𝑑𝑞) 𝑡,

𝑎 = −
1

4
(1 − 𝑚

2
)
2

(𝑘
2
+ 𝑑
2
) ,

𝑏 = 2 (1 + 𝑚
2
) , 𝑐 = −

4

𝑘2 + 𝑑2
,

𝑟 =
1

2
(1 + 𝑚

2
) (𝑘
2
− 𝑑
2
) + 𝑞
2
− 𝑝
2
,

(76)

where 𝑑, 𝑘, 𝑝, and 𝑞 are arbitrary constants and 𝑚 ∈

(0, 1) is the elliptic modulus. If 𝑚 tends to 1 or 0, we
can also obtain multiple soliton or periodic solutions.

4. Discussion

In this paper, we have obtained some nonlinear iterated for-
mulae of solutions to the simple equation (1) and its infinitely
many Weierstrass and Jacobi elliptic function solutions.
Based on this fact, we can obtain infinitely many Weierstrass
and Jacobi elliptic function solutions of some nonlinear
equations. Our results suggest that the proposed method is
reliable and effective to find infinitely many elliptic solutions
to some nonlinear problems. The method is concise, and it
can also be applied to other kinds of nonlinear equations in
mathematical physics.
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