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In this paper, modifying the set of variational inequality and extending the nonexpansive mapping of hybrid steepest descent
method to nonexpansive semigroups, we introduce a new iterative scheme by using the viscosity hybrid steepest descent method
for finding a common element of the set of solutions of a system of equilibrium problems, the set of fixed points of an infinite family
of strictly pseudocontractive mappings, the set of solutions of fixed points for nonexpansive semigroups, and the sets of solutions
of variational inequality problems with relaxed cocoercive mapping in a real Hilbert space. We prove that the sequence converges
strongly to a common element of the above sets under some mild conditions. The results shown in this paper improve and extend

the recent ones announced by many others.

1. Introduction

Let H be a real Hilbert space with inner product (-,-) and
inducednorm | - ||. Let C be a nonempty closed convex subset
of Handlet F: CxC — R be abifunction. We consider the
following equilibrium problem (EP) which is to find x* € C
such that

EP: F(x",y) >0, VyeC. (1)

The set of solutions of EP is denoted by EP(F).

Let {F, i = 1,2,..., N} be a finite family of bifunctions
from C x C into R, where R is the set of real numbers. The
system of equilibrium problems for {F,, F,, ..., Fy} is to find
a common element x* € C such that

F (x*,y)=20, VyeC,
F,(x",y)>0, VyeC,

)
Fy(x",y)=0, VyeC.

We denote the set of solutions of (2) by ﬂi\]: 1 SEP(F,), where
SEP(F,) is the set of solutions to the equilibrium problems,
that is,

F.(x",y) >0, VyeC. (3)

If N = 1, then the problem (2) is reduced to the
equilibrium problems.

If N = 1and F(x*,y) = (Tx",y — x"), then the
problem (2) is reduced to the variational inequality problems
of finding x* € C such that

(Tx*,y-x") >0, VyeC. (4)
The set of solutions of (4) is denoted by VI(C, T').

The equilibrium problem is very general in the sense that
it includes, as special cases, fixed point problems, variational
inequality problems, optimization problems, Nash equilib-
rium problems in noncooperative games, and numerous
problems in physics, economics, and others. Some methods
have been proposed to solve VI(C, T), EP(F), and SEP(F,);
see, for example, [1-29] and references therein. Formulations



(2) extend this formulism to such problems, covering in
particular various forms of feasibility problems [30, 31].

Definition 1. One-parameter family mapping I' = {T'(t) : t €
R*} from C into itself is said to be a nonexpansive semigroup
on C if it satisfies the following conditions:
(1) T(0)x = x forall x € C,

(ii) T(s +t) = T(s)T(t) for all s, t € RY,

(iii) for each x € C, the mapping T'(¢)x is continuous,

(iv) IT)x-T@®)yll < llx -yl forallx,y € Candt € R".
Remark 2. We denote by F(I') the set of all common fixed

points of T, that is, F(I') := N,cp+ F(T(t)) = {x € C: T(t)x =
x}.

Let B: C — H be a nonlinear mapping. Now, we recall
the following definitions.

(1) B is said to be monotone if

(Bx-By,x—y) >0, Vx,ye€C. (5)

(2) B: C — Cis called w-Lipschitzian if there exists a
positive constant w such that

|Bx-By| <w|x-y|, VxyeC. 6)

(3) B is said to be #-strongly monotone if there exists a
positive constant # such that

(Bx-By,x-y) 2nx-y|’, VxyeC. 7)

(4) Bis said to be nonexpansive if

|Bx - By| <|x-y[. VxyeC. (8)

And F(B) denotes the set of fixed points of the
mapping B, that is, F(B) = {x € C : Bx = x}.

(5) B: C — Cis said to be k-strictly pseudocontractive
mapping if there exists a constant 0 < k < 1 such that

I Byl < e s 0 -Bx-a =B,
Vx, y € C.

(6) B is said to be a-inverse-strongly monotone if there
exists a constant « > 0 such that

(Bx-By,x-y) > a|Bx-By|’, Vx,yeC. (10)

(7) B is said to be relaxed (u, v)-cocoercive if there exist
positive real numbers u, v such that

(Bx— By, x - y) 2 (-u) |Bx - By|’
(11
+v||x - y||2, Vx,y € C.
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(8) Alinear bounded operator B is strong positive if there
exists a constant y > 0 with the property

(Bx,x) > yllx|>, VxeC. (12)

(9) A set-valued mapping Q H — 2" is called
monotone if forall x,y € H, f € Qxand g € Qy
imply (x -y, f - g) 2 0.

(10) A monotone mappingQ : H — 2™ is called maximal
if the graph G(Q) of Q is not properly contained in
the graph of any other monotone mapping. It is well
known that a monotone mapping Q is maximal if and
onlyif for (x, f) € HxH, {x-y, f —g) = 0 for every
(y,9) € G(Q) implies f € Qx.

Iterative methods for nonexpansive mappings have
recently been applied to solve convex minimization prob-
lems. Convex minimization problems have a great impact
and influence on the development of almost all branches of
pure and applied sciences. A typical problem is to minimize
a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H:

0(x) = % (Ax,x) — (x,b), VxeF(S), (13)

where A is a linear bounded operator, F(S) is the fixed point
set of a nonexpansive mapping S, and b is a given point in H
[16].

For finding a common element of the set of fixed points
of nonexpansive mappings and the set of the variational
inequalities, in 2006, Marino and Xu [16] introduced the
general iterative method and proved that for a given x,, € H,
the sequence {x,} generated by the algorithm

xn+1 = (XHYf ('xn) + (I - (XHB) Tx?’l’ (14)

where T is a self-nonexpansive mapping on H, f is an a-
contraction of H into itself (ie., [[f(x) — f(WI < «lx -
yl,Vx,y € Hand a € (0,1)), {«,} c (0, 1) satisfies certain
conditions, and B is strongly positive bounded linear operator
on H and converges strongly to fixed point x™ of T which is
the unique solution to the following variational inequality:

((yf =B)x",x" = x) <0,

which is the optimality condition for the minimization
problem

Vx € E(T), (15)

1
i —(B > - >
B P9 ) w

where £ is a potential function for rf (i.e., H(x) = rf(x) for
z € H).

Takahashi and Toyoda [32] introduced the following
iterative scheme:

xq € C,
(17)
Xpt1 = YnXn T+ (1 - Vn) SPC (xn - (anxn) >
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where B is a §-inverse-strongly monotone mapping, {y,} is
a sequence in (0, 1), and {a,} is a sequence in (0, 2§). They
showed that if F(S) N VI(C, B) #0, then the sequence {x,}
generated by (17) converges weakly to some z € F(S) n
VI(C, B).

Yamada [33] introduced the following iterative scheme
called the hybrid steepest descent method:

Xy = SX, + o, uBSx,, neN, (18)
where x; = x € H,{a,} € (0,1),andlet B: H — H be
a strongly monotone and Lipschitz continuous mapping and
@ is a positive real number. He proved that the sequence {x,}
generated by (18) converges strongly to the unique solution of
E(S) N VI(C, B).

Let C be a nonempty closed convex subset of H. Given
r > 0 the operators J* : H — C defined by

Jhx = {zeC:F(z,y)+l(y—z,z—x)zo, VyeC}>
r
19)

are called the resolvent of F (see [19]). It is shown in [19]
that under suitable hypotheses on F (to be stated precisely
in Section2), J¥ : H — C is single-valued and firmly
nonexpansive and satisfied F( ]f ) = EP(F),Vr > 0.

For finding a common element of EP(F) N F(S), S.
Takahashi and W. Takahashi [23] introduced an iterative
scheme by the viscosity approximation method for finding
a common element of the set of solution (1) and the set of
fixed points of a nonexpansive mapping in a Hilbert space.
LetS : C — H be a nonexpansive mapping. Starting with
arbitrary initial point x, € H, define sequences {x,} and {u,}
recursively by

F(un’y)+l<y_un’un_xn>20’ Vy€C>
Tn (20)

X1 =0, f (x,)+ (1 -,)Su,, VneN.
They proved that under certain appropriate conditions
imposed on {«,} and {r,}, the sequences {x,} and {u,}
converge strongly to z € F(S) n EP(F), where z =
Pesynep(r) f(2):

In 2012, Chamnarnpan and Kumam [34] introduced
the following explicit viscosity scheme with respect to W-
mappings for an infinite family of nonexpansive mappings

Xps1 = snrf (xn) + ﬁnxn + ((1 - ﬁn) I- snA) Wn]fxn' (21)

They prove that sequence {x,} and J© converge strongly to
z € (N;2,F(T,)) N EP(F), where z is an equilibrium point for
F and is the unique solution of the variational inequality

((rf —A)z,x-2z) <0, Vxe ﬁF (T,)NEP(F). (22)

n=1

In 2012, Kangtunyakarn [35] modify the set of variational
inequality to construct a new iterative scheme for finding
a common element of the set of fixed point problems of

infinite family of k; pseudocontractive mappings and the set
of equilibrium problem and two sets of variational inequality
problems. Let

Fi (ﬁ (F (n)}) n (ﬁSEP <Fk>>

i=1

(23)
NVI(C,A)nVI(C,B).

Starting with arbitrary initial point x, € C, define sequences
{x,,} and {u,,} recursively by

F(un,y)+l(y—un,un—xn> >0, VyeC,
r

n
Xn+1 :(xnu"'(l _“n)SnPC(I_V(aA+(1 _a)B)un)>

Vn € N,
(24)

where {S, : C — C} is the sequence defined by (37), A, B
is « and B-inverse-strongly monotone mapping, respectively,
a € (0,1),0 < r < min{2,2f} and {r,} < [a,b] C
(0, min{2e, 28}). Under certain appropriate conditions they
proved that the sequences {x,} and {u,} converge strongly to
z € F, where z = Ppu.

Let A, : C — H be a mapping, fori = 1,2,...,N. By
modification of (4), for §; € (0, 1), we have

N N
VI (c, ZaiA,) = <|x* €C: <y - x*,ZSiA,-x*> >0,
i=1

i=1

N
Vyec,ZS,.:1}.

i=1

(25)

In this paper, motivated by the above results, we extend
the nonexpansive mapping of hybrid steepest descent method
(18) to nonexpansive semigroups and introduce a new iter-
ative scheme for finding a common element of the set of
solutions of a system of equilibrium problems, the set of fixed
points of an infinite family of strictly pseudocontractive map-
pings, the set of solutions of fixed points for nonexpansive
semigroups, and the set of solutions of variational inequality
problems for relaxed cocoercive mapping in a real Hilbert
space by the hybrid steepest descent method. The results
shown in this paper improve and extend the recent ones
announced by many others.

2. Preliminaries

Throughout this paper, we always assume that C is a
nonempty closed convex subset of a Hilbert space H. We
write x,, — x to indicate that the sequence {x,} converges
weakly to x. x,, — x implies that {x,} converges strongly to
x. We denote by N and R the sets of positive integers and real
numbers, respectively. For any x € H, there exists a unique
nearest point in C, denoted by P.x, such that

li-Pexl<lx-sl, vyec. o



Such a P is called the metric projection of H onto C. It is
known that P is nonexpansive. Furthermore, for x € H and
uecC,

u=Pxe (x-uu-y)>0, VyeC. (27)

It is widely known that H satisfies Opial’s condition [8], that
is, for any sequence {x,} with x,, — x, the inequality

nli—{%o inf ||xn - x|| < nli—{%o inf ||xn - y|| (28)

holds for every y € H with y # x.

In order to solve the equilibrium problem for a bifunction
F : CxC — R, we assume that F satisfies the following
conditions:

(A1) F(x,x) =0,Vx € C,

(A2) F is monotone, that is, F(x, y) + F(y,x) < 0,Vx, y €
C:

(A3) lim; | F(tz + (1 - t)x, ) < F(x, y),Vx, 3,z € C,

(A4) For each x € C,y — F(x,y) is convex and lower
semicontinuous.

Let us recall the following lemmas which will be useful for
our paper.

Lemma 3 (see [19]). Let F be a bifunction from C x C into R
satisfying (Al), (A2), (A3), and (A4). Then, for any r > 0 and
x € H, there exists z € C such that

F(Z,y)+l(y—z,z—x)20, Vy eC. (29)
r

Furthermore, if]rFx ={zeC:Flz,y)+(/r)(y-2z,2-x) >
0,Vy € C}, then the following hold:

1) ]f is single-valued,

(2) JF is firmly nonexpansive, that i,

]fx—]fy“zs <]fx—]fy,x—y>, Vx,y € H, (30)

(3) FU;) = EP(F),
(4) EP(F) is closed and convex.
Lemma 4 (see [12]). Let C be a nonempty bounded closed and

convex subset of a real Hilbert space H. LetT = {T(s) : s € R"}
from C be a nonexpansive semigroup on C, then for all h > 0,

%J:T(S)xds—T(h)(% LtT(s)xds) =0.

lim sup
t= 00y ec

(31)

Lemma 5 (see [13]). Let C be a nonempty bounded closed and
convex subset of a real Hilbert space H, let {x,} be a sequence,
and let T = {T(s) : s € R} from C be a nonexpansive

Abstract and Applied Analysis

semigroup on C, if the following conditions are satisfied:
(@) x, =z
(ii) lim sup, _, . limsup, _, JIIT(s)x, — x,[ = 0,
then, z € F(I).

Lemma 6 (see [36]). In a Hilbert space H, there holds the
inequality

lx+y|” <lxl> +2 (. x+y), VxyeH (32

Lemma 7 (see [16]). Assume A be a strongly positive linear
bounded operator on H with coefficienty > 0 and 0 < p >
A", then |I - pAll < 1 - py.

Lemma 8 (see [37]). Let B be a monotone mapping of C into
H and let Now, be the normal cone to C at w, € C, that is,

New, ={w € H: (0, —w,,w) >0, Vw, €C},  (33)

and define a mapping Q on C by
Bw, + Nocw,, w, €C,
= 34
Qo {0, w, ¢C. (34)

Then Q is maximal monotone and 0 € Quw, if and only if,
(Bw;,w; — w,) =0 forall w, € C.

Lemma 9 (see [27]). Let {x,} and {y,} be bounded sequences
in a Banach space E and {y,} be a sequence in [0, 1] satisfying
the following condition:

0< nango infy, < nango supy, < 1. (35)
Suppose that x,., = y.x, + (1 — y)y,,n = 0 and
lirnn—»oo Sup("yn+l_yn”_”‘xn+l _xn") <0. Then hmn—>oo”yn_

x,ll = 0.

Lemma 10 (see [28]). Assume that {a,} is a sequence of
nonnegative real numbers such that

a, <(1-b)a,+¢, n=0, (36)

where {b,} is a sequence in (0,1) and {6,} is a sequence in R,
such that

(i) 210:01 bi = 00,

(ii) lim sup(c,/b,) < 0or Y2, Ic,| < co.

n— 00

Then, lim a, =0.

n—00"n

Let C be a nonempty closed convex subset of a Hilbert
space H. Let {T;};°, be mapping of C into self. For all j =
1,2,..., let pj = (oc{,océ,océ) € I xIxIwherel =[0,1] and
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ol +af + ocg = 1. For every n € N, we define the mapping

S, : C — Casfollows:

Un,n+1 = I’
n n n
Un,n = ‘xl TnUn,n+1 + “2Un,n+1 + “31’
U, = & T U, U i
nk = 0 LUy ey + U gy + 51, (37)

) 2 2
U, = ThU, 5+ U, 5 + a3l

1 1 1
S, =U, 1 = oqTU,, + U, , + a5l

This mapping is called S-mapping generated by Ty, . .
Prs-evs P

., T, and

Lemma 11 (see [38]). Let C be a nonempty closed convex
subset of a Hilbert space H. Let {T;};°) be a k;-strict pseudo-
contractive mapping of C into self with k = sup;k; and let
pj = (oc{,(xé,(xé) € I xIxIwherel =][0,1], oc{ +(xé +océ =1,

o +od <b<l,andoal,al,al € (x,1) forall j = 1,2,.... For

everyn € N, let S, and S-mapping generated by T\, T,, ..., T,
and py, pys...p, and Ty, T, ..., and py, p,, ..., respectively.
Then, for every x € C and k € N, the limit lim
exists.

n%ooUn,kx

In view of the previous lemma, we will define the mapping
§:C — Casfollows:

Sx:= lim S,x = nlln(}oU"Jx’ x e C. (38)

n— o0

Remark 12 (see [38]). Foreachn € N, S, is nonexpansive and
lim,, _, , sup,plS,x —Sx| = 0 for every bounded subset D of

Lemma 13 (see [38]). Let C be a nonempty closed convex
subset of a Hilbert space H. Let {T;};°, be a k;-strict pseudo-
contractive mapping of C into self such that N2, F(T;) #+ 0 with
x = supk; and let p; = (af,0,0) € I x I x 1 where

I = [0,1], oc{+océ+océ =

l,oc{+ocj < b < 1, and
ol 05,07 € (k,1) forall j = 1,2,.... Foreveryn € N, let S,
and S-mapping generated by Ty, T,,..., T, and p;, pys. .., Pp
respectively. Then, F(S) = N°, F(T;) # 0.

3. Main Results

In this section, we will present our main results. To establish
our results, we need the following technical lemmas.

Lemma 14. Let C be a nonempty closed convex subset of a
Hilbert space H and let A; : C — H be w;-Lipschitz
continuous and relaxed (u;,v;)-cocoercive mappings with

v uel > 0, fori = 1,2,..,N. If 0, VI(C, A)) #0, then,
ford; € (0,1) and ¥, 8, = 1,

N N
(VI(C.A,) =VI <c, Z(S,-A,-) . (39)
i=1 i=1

Proof. The proofis by induction. This holds for N = 2. In fact,
for a € (0, 1), it is obvious that

N
VI(C,A,)NVI(C, A,) c VI (c, ZaiA,). (40)
i=1

Next, we will show that VI(C, Zf\il 0;A;) ¢ VI(C,A) N

VI(C, A,).
Let
N
X, € VI (C, SiAi>,
z; (41)
x" € VI(C,A;)nVI(C,A,).
It follows that
(y-x",A1x") 20, VyeC, (42)
(y—-x",A,x") >0, VyeC. (43)
Then, for every a € (0, 1), one has
(y-x",aA\x") >0, VyeC,
(44)
(y-x",(1-a)A,x") 20, VyeC.
From x, € VI(C, Y Y, 8,A,) and (43), one has
N
(x" = xp,aAx,) = <x* — Xo> <Z5iAi>xo>
i=1
—(x" = xp, (1 - a) Ayx,)
> (1-a){xy—x",Axy)
45
= (1-a){x,—x",Ayx, — A,x") (45)
+(1-a)(xg—x", Ayx")
> (1-a) (v2 - uzwg) [l — x*"2
>0,
which means
(x" = x¢, Ajx0) 2 0. (46)



On the other hand, from x* € VI(C, A,), we have

(x" = %0 A1xg) = (x" —x0, A1 xg— A x")
+(x" — x5 Ajx")
< (x" = xp Ayxy — Ayx™)
< ufAyxg = AP = v lxg - <7 (47)
< w g = x| =iy - x|
2 %2
= (ulw1 - vl) (B

<0.
This together with (46) leads to
Ax" = Ax,. (48)
Furthermore, for every y € C, from (46) and (48), we obtain

(¥ =xpo A1xp) = (¥ = x", A1xp) + (X" = x0, A1 X)

> (y—x",Axy)

(49)
=(y-x"Ax")
>0,
which implies
x, € VI(C,A)). (50)
It follows from (45) and (42) that
(x" = xp, (1 —a) Ayxy) = (xo—x",aA;x,)
=a(xo—x, A (% -x"))
+a{x,—x", A x")
* G
>a(xg—x,A; (x-x"))
*|2
>a (vl - ulwf) [l — x|
> 0.
It yields that
(x" = x9, Ayxg) = 0. (52)
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From x* € VI(C, A,) and (52), one has

0< (x"—xqAyx,)
= (x" = xp Ayxg — Apx”)
+(x" = x5, Ayx")

< (X" = xp, Ayxg — Ayx™)

(53)
< wy||Ayxg - Azx*"2 =V, xe - x*"2
< w3 = x| = vy — 7|
= (uza)g - vz) o = x|
< 0.
That is,
Ayx" = A,x,. (54)

Therefore, for every y € C, from (52) and (54), we obtain

(¥ =x0Azxg) = (¥ —x", Ayxg) + (x" = X0, Ayxg)

> (y-x",Ayxg)

(55)
= (y-x", A7)
>0,
which means
x, € VI(C, A,). (56)
And hence,
xy € VI(C,A;)nVI(C,A,). (57)
Thus, we have
N
VI <c, Zé,A,-) CVI(C,A,)NVI(C,A,). (58)
i=1
Thus,
N
VI <c, Za,.A,.> =VI(C,A,)NVI(C,A,). (59)
i=1
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Assume now that ﬂle VI(C,A;) = VI(C, Zf:l §;A;) is
true for some k, and we show that it continues to hold for
k+1.Ford; € (0,1) and Y1 8, = 1, we have

k+1
VI (C, Z(S,A,)

i=1

k+1
= VI <C,81A1 + ZaiA,.)

i=2

k+1 8
= VI <C,81A1 +(1-8) ZﬁA,)
1

i=2

k+1 6

=VI(C,8 Al)ﬂVI<C (1-¢ )Z Ai> (60)
12 1

k+1 6

= VI(C,A,)NVI <C, > Ai>
£1-6,

= VI(C,A,)N (kﬁl VI (C,Ai)>

i=2

k+1

=[VI(C.A)).

i=1

By induction, n¥, VI(C, A;) = VI(C, Y}, 8;A;) holds for
k =1,2,...,N and this completes the proof. O

Lemma 15. Let C be a nonempty closed convex subset of a
Hilbert space H, let T = {T(s) : s € R"} from C be a nonex-
pansive semigroup on C, and let A; : C — H be w;-Lipschitz
continuous and relaxed (y;, v;)-cocoercive mappings with v; —
ww? >0, fori = 1,2,...,N. Assume that D = ¥, 8,A,, for
8 € (0,1) and 3N, 8; = 1L IfK,(x) = (1/t,) [, T(s)S,xds,
where {S,, : C — C} is the sequence defined by (37) with
0<a, <2YN, 8:(v;—pwad) /(TN 8;w?), then K, — a0, DK,
is a nonexpansive mapping in H. Furthermore, I — o, D is a
nonexpansive mapping in H.

@32 8:(vi = )/ (X, 8w)), for

Proof. Since 0 < a, <
every x, y € C, we have

"(Kn - (anKn) X = (Kn - anDKn) yllz
= (K% = K,.») = @, (DK,x = DK, )|
= "Knx - Kny"2 - 2ay <Knx - Kn}” DKnx - DKny>

+ &?|DK,.x - DK, y|

N
2%251' (Vi - Mi“’iz)
i=1

< ||Knx - Kny"2 -

N
X ||Knx - Kny"2 + aﬁZSiwiz"Knx - Kny"2

i=1

7
N N
- (1330 e) S0
i=1 i=1
X "Knx - Kn)’"z
< -yl
(61

Thus, we obtain that K,, — o, DK, is a nonexpansive mapping.
Similarly, we can obtain that I — «,D is a nonexpansive
mapping in H and this completes the proof. O

The following main results follow from Lemmas 14 and
15.

Theorem 16. Let C be a nonempty closed convex subset of
a real Hilbert space H, and let F, k € {1,2,...,M} be a
bifunction from C x C — R satisfying (A1)-(A4). Let I' =
{T'(s) : 0 < s < 00} be a nonexpansive semigroup on C and let
t, be a positive real divergent sequence. Let {T;};°| be k;-strict
pseudo-contractive mappings of C into self with k = sup;k;

and let p; = (af,00,00) € I x I x I, where I = [0,1],

oc{ +<xé+océ =1, rx{ +océ <b<l, (mdoc{,océ,rxé € (x,1) forall
j=1,2,.... Foreveryn € N, let S, and S-mapping generated
by T,,T,,....,T, and p;, p,, ..., p, with T;(F(T')) c F(I). Let
A, : C — H be w;-Lipschitz continuous and relaxed (u;, v;)-
cocoercive mappings with v; — y,w; > 0, fori=1,2,...,N, let
f be a contraction of H into itself with nj € (0, 1), and let A be
is a strongly positive linear bounded self-adjoint operator with
the coefficientsy > 0 and 0 < r < y/n. Assume that

@:=FI)n <ﬂ{F(T >n<ﬁSEP(Fk)>

(62)
N
N (ﬂVI (C,Ai)>.
i=1
Let {x,} be a sequence generated by x, € C and
u = ]FM ]fl\l/\[/[ lln o ]fzn]fl‘l,n xn’
1 [ 3
z, = P (t_ J T (s)S,u,ds — a,, Z(SiAi>
n 20 i=1
(63)

tﬂ
X lj T (s) Snund5>,
t, Jo

In = snrf (xn) + ﬁnxn + ((1 - ﬁn) I- snA) Zp

Vn € N,

Xp+1 = YnXn T+ (1 - Yn) Yo

where {S,, : C — C} is the sequence defined by (37) and §; €
(0,1), Zf\:jl 0; = L. If{e, },{B,} are two sequences in (0, 1) and



{ya} € le, 6] €(0,1) and {ry. .}, for k € {1,2,..., M} is a real
sequence in (0, 00) satisfy the following conditions:
(i) lim,, _, €, = 0, Y1, &, = 00,

(i) 0 < lim, ,infB, < lim, , suppB, < 1 and

hmn%oo':BrHl - ﬁnl =0,

(iii) limrHOO infry, > 0andlim, _, |7 .01 =7, = 0, for
ke{l,2,...,M},

(iv) {er,} C [gl,gzl (0,23, §;(vi—pw)) (L, 8)
andlim, _, . |&,,; —o,| =0,

(v) lim,, _, (It —t,_11/t, = 0.

Then {x,} converges strongly to z € ®, where z is the unique
solution of variational inequality

Jim sup ((rf - A)z,p-2) <0, Vpe®, (64)

which is the optimality condition for the minimization problem
1
in— (A > - >
min> (Az,z) - h(2) (65)

where h is a potential function for rf (i.e., H(z) = rf(z) for
z € H).

Proof. From the restrictions on control sequences, we may
assume, without loss of generality, thate, < (1 - /3n)||A||_1 for
alln > 1. From Lemma 7, we know thatif 0 < p < A"}, then
II - pAll < 1 - py. We will assume that ||I — Al| < 1-7%. Since
A is a strongly positive linear bounded self-adjoint operator
on H, we have

Al = sup {[{Ax, x)| : x € H, ||x|| = 1}. (66)
Note that
(1=B)I-e,A)xx) = 1= B, — &, (Ax,x)
21-B,-¢ Al (67)

> 0.

That is, (1 — 3,)I — €,A is positive. Furthermore,

"(1 _ﬁn)I_SnA“
= sup {|[{((1 = B,) I - &,A) %, x)| : x € H, ||| = 1}
=sup{l - B, —¢,(Ax,x): x € H,|x| = 1}

<1- ﬁn - sn?'
(68)

Next, We divide the proof of Theorem into five steps.

Step 1. We show that {x,} is bounded.

Take p € ©. Let Sy = JikJyt - 0 for k e
{1,2,...M} and Sg =

I, for any n € N. Since ]F" is
nonexpansive for each k = 1,2,...
have

M and u, = SMx,, we

lu, = pll = |S5'x, -S| < % -2l (69)
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From Lemma 15 and (69), one has

Iz - pl

1 [t ol
P (t_ L T (s)S,u,ds — «, (Z@iAi)

i=1

1 (5
X — J T (s) Snunds> - p“
0

n

~

N

t,
P <tl L T (s)S,u,ds — «, (Z(SiAl)

i=1
1 (%
X — J T (s) S,u,ds
t, Jo

t, N
_PC< Jo T (s)S,pds—«, <Z<§,~Ai>

F&Al,_‘

B

(70)

[~

X

Jtn T (s) S,,pds)
0

~

n

t, N
J. T (s)S,u,ds — «, (Z&A,)
i=1

0

| =

<

[

~

n

1 [
X — J T (s) S, u,ds
t, Jo

1 [t Y
t_J T(s)S,pds—a, (Z(SiA,)
n J0 i=1

/-~

1 ("
X—J T(s)Snpds>
t, Jo
< flu, - p|
< [, = pll-

It follows that

Iy - 2l
= leayf (x.) + Buxa
+((1=B)I-e,4)z, - p|
= [le, (vf (x,) = Ap) + B (%, — p)
+((1-B) I -e,4) (2, - p)
<&y (f (x0) = £ () +vf (p) - Apl|
+ Bl = pll + (1= By = &¥) |2, = Pl
< &y |x, = pl + &, |vf (p) - Ap]|
+(1-&7) |z - 2l
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<(1-¢,F-y)|x. -l
té€, "Vf (P) - Ap” .

(71)
Furthermore,
s = 2l = I+ (1= 9) 3 =
< Yl = I+ (=) I - 2
< (-a@-m)@-rla-pl )

+ (1 - YH) €n “yf (p) - AP"
s {1 D001

IA

Y-

By induction, we have

PRCICEC

X, — < max q |[X
b -l < e - i DS

(73)

Hence, {x,, } is bounded and we also obtain that {u,},{z,},

) (Zl 10:ANt,) fot" T(s)S,u,ds} and {f(x,)} are all
bounded.

Step 2. We claim that lim,, , [lx,, — x,,,;1l = 0.
From the definition of z,, and Lemma 15, for p € O, we
have

||Zn+1 —Zy ||

1 298]
tn+1 0
n+1

1 (% al
- P <t_ L T (s)S,u,ds — o, <Z<§iA,~>
n i=1

N
T(s) Sn+1”n+1d5 TS| (Z&‘Ai>

i=1

tn+1
J' T(S) Sn+1un+1ds>

0

1 ("
X — J T (s) Snunds>
t, Jo

1 298 N
< ( J T (8) Sy U1 S — 0ty <26iAi>
tuer Jo i=1
1 298}
« j T (5) Sppythyndls
tn+1 0

1 [t N
- = T(s)S, u,ds— SA.
<%L)<wn%s %<;,,>

1 [
X — J T (s) S,u,ds
t, Jo

)

tn+1 t,
X < ! J T (s) S,p Uy ds — L J T (s) Snunds)
tn+1 0 t

n J0

N 1 t,
+ ((xn - am—l) (261A1> t_ J.O T (s) Snunds
i=1 n

tn+1 tn

< ! J T (s)S, 1 Upds — L J T (s) S,u,ds

n+l J0 t, Jo

t,
0 = G| Z(S A, J T (s) S, u,ds
1 |21

< J T(s) (Sn+1un+1 - Snun) ds

tn+1 0

1 1Y (™
+ - — J. T (s) S,u,ds
it/ Jo

tn+l
J T (s) S,u,ds
t

n+l Ji,

+

(26 A, ) Jtﬂ T (s)S,u,ds

tn+1
j- T (s) (Sn+1un+1 - Snun) ds
0

n n+1|

1
<

t

n+l

. ( 1 _1>E"T(s)(snun—8np)d5

tn+1 tn

+

J,:n T(S)( Y n_Snp)dS

ntl i,
t,
(26 A, ) J T (s) S,u,ds

Xp — n+1|

2|t -t
< Pt - Sy + 2ol

n+l

n n+1|

(ZSA) j T () S,hydls

- Snun”

< "un+1 - ”n" + "Sn+1un

: M i, - 1

n+l
1 (t
0 = Oy (ZSA )ZJO T (s) S, u,ds| .
(74)
First, we will show that if {x,} is bounded, then
lim [, = ] =0 (75)

n— oo

fork € {1,2,..., M}.
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From Step 2 of the proof in [4], we have for k €
{1,2,..., M}

; Fy _ 7k _
nlingo ]rk,vﬁ-l n ]'k,nx” =0. (76)
For k € {1,2,..., M}, notice that
Fy tFey | 7Bt _ 7B okl
- ]rkn]rk 1n ]TZn]rln ] ‘S (77)
It follows that
k k
|Shx, - S
B & _ B gkl
]rkn ]fk w Snt1%n
Fy agk-1 Fo k-1
s ]fk,n‘sﬂ x”_]fk,nﬂ‘sn *n
Fo gkl Fo gkl
+ ]rk,,, S - ]rk NSui1%n
F k1, o gkl
= ]rk,ndn _]7’k ntl Se Xn
F k-2 F k-2
+ ]fIH,n‘J" Xn = ]rkfl,vwl n Xn (78)
gk 2, _ g2
+ ” Xn = Spi1¥n
Fo k-1, o gkl
S ]rk,n dn - ]rk +1 n xn
Foy k2. 1Fy k-2
+ ]rk—l,n‘s" Xn ]rk—l,nn‘sn Xn
b sl, _ 1B &1
+ T + ]rz’n‘snxn ]rz’n+1 ‘Snxﬂ
F, _ 1R
+ ]rl,nxn ]Tl,n+1 n
Therefore, from (76), we conclude (75).
Second,sze estir?ate ]|\|;‘n+1 —u,|l. From u,,,; = SM x,.,
_ & — 7P M1 ;
andu, =S, x, = IrM,n‘Sn X,» we obtain
M-1
Fyp (1 ) + <J’ Up1> U = i xn+1>
"M+ (79)
>0, VyeC,
-1
w w X,) 20, V¥yeC.
(80)
Taking y = u,, in (79) and y = u,,,, in (80), we have
~M-1
Fy (un+1>u <u Upi1sUnil — Spsl xn+l> >0,

Mn+1

1 M-1
~M-
FM (un’unﬂ) + r <un+1 Uy Uy =8, xn> = 0.

M,n

(81)

So, from (A2), one has

M-1 aM-1
U, =, X, U — S Xns
<”n+1 — Uy, . . 5o n+ >0. (82)
"M "M+l

Abstract and Applied Analysis

Furthermore,
~M-1 ~M-1
<un+1 T“UpU, =Sy, Xy~ \Uper T ‘Sn+1 Xn+1

"Mn M-1

> (a3

+ (1 - —> (“n+1 S xn+1) 2 0.
"M+l

Since lim,, , 7, > 0, we assume that there exists a real
number such that ., > a > 0 for all n € N. Thus, we obtain

(83)

“un+1 - un“
gM-1, _ gM-1
“ ‘Sn+1 'xn+l
M-1
o~
l1 - |'un+1 NSl xn+1“
”Mn+1
~M-1 ~M-1 ~M-1 ~M-1
< “‘Sn X = 1 Xal| T Sne1 X~ Spr1 Xnel (84)
1 &M-1
+ ; |rM,n+1 - rM,n| Uyl = Sui1 Xnl
M-1 M-1
< o3
S “\Sn Xn = Sul xn“ + ”xn - xn+1"
1 M-1
~M-
+ ; |rM,n+1 - rM,nl Uyl = Su1 xn+1|| .

Third, we estimate ||S,,,,u,, — S, u,|. It follows from (37) that

[Scrt4n = St
= |Uns11ttn Un,lun“z
= “(X}TIUrHl,Zun + ‘xéUnH,Zun + (x;u
- (ociTlUn)zun + oc;Un)zun + oc;un)nz
= ““1 (11U TlUn,z)”n

2
n,2) Uy "

< “; “(TlUn+1,2 - TlUn,Z) un”2

+°‘2( ntl2

+“2”( n+l,2 n,z) un"2

- “}0‘; ||(T1Un+1,2 - TlUn,Z) U

( n+1,2 = n,2) ”n”z

1

< 1(" +12u Un,Zunuz

)Un+1,2“n - (I - Tl) Un,zun"z)
Ui1,0Un Un,z’/‘n”2
-« 0‘2"(1 Tl) (I - Tl) Un,zun”Z

n+1,2Un
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( )" n+1,2Un —

n2u "

n
< 1_[ (1 - 063) " n+l, nt1Un — Un,n+1un"2’

(85)

which means that
“Sn+1un - Snun" < LIH (1 - (xl3) > (86)
i=1

where L, > 0isaconstant such that |U,,, ,,,114,~U,, ., 114, <
L, foralln e N.

Next, we estimate [|y,,,,
into (74), one has

— ¥, Substituting (84) and (86)

||Zn+1 - zn”

aM-1

< ”xn n+1" + "c'M lx T8 X "

1 M-1
~M-
+ ; |rM,n+1 - rM,n| ”un+l =Sl xn+1'|

+L[[(1-a) (87)
i=1

&y — n+1|

ty
(Z(S,A,) lj T (s) S, u,ds
t, Jo

+Muun—pu.

n+l

From (61), we have

19561 = 7l
= Jlewry (f (%uir) = f (%)
+ (&1 — &) (vf (x,) — Az,)
+ Bt (%1 = %) + (Brer = Bo) (%~ 24)
(1= ) I = €01 A) (201 = 24)| (88)

— x| + |epr — €

< 8n+1y’7 ”xn+1 nl

x |lvf (x,) = Az, |
+ ﬁn+l “xn+1 - xn” + |ﬁn+1

+ (1 _:Bn+1 -

- /3n| "xn - Zn"

8n+1?) "Zn+1 - Zn" :

11
Substitution (87) into (88) yields that
||yn+1 - yn“
< (1 ~ &1 (7 - )/T])) |lxn+1 - xn"
2|t
+ LZ (|8n+1 - snl + |ﬁn+1 - ﬁn' M
n+l (89)
+ |rM,n+1 - rM,nl + I‘Xn - ‘xn+1|)
" “'x, —SnMHlx “+L1H(1—(xé),
where L, is an appropriate constant such that
L,= max{sup{ (Z&A,) J (s)S,u,ds }
n>1
1 M-1
Snlg’ {; |'un+l “Sn+1 xn+1“}
B (90)
sup {[[yf (x,) = Az, [}, sup v, - 2}
wp =i}
It follows from (89) that
||yn+1 - yn" - "xn+1 - xn”
2|t
< L2 (|£n+1 - sn| + |ﬂn+1 - ﬁnl %
n+l
1)

+ |rM,n+1 - rM,nI + |0‘n - “n+1| >

+|

n
aM-1 aM-1 i
| X, —Jn+1x"+L1H(l—a3).

Consequently, from (75) and the conditions in Theorem 16,
we obtain

nlglgo sup (“ynﬂ - yn" - “xwrl - xn”) <0. (92)
Hence, by Lemma 9, one has

lim ||y, - x,| = (93)

n— 00

Since x,,, = y,x, + (1 —y,)y,, this shows that

Xl = Jim (1= 9) [ =% = 0. (94)

n— 00

lim |, -

n—00

Step 3. We claim thatlim,, _, . I(1/¢,,) jot" T(s)S,u,ds—u,| = 0.
Observing y, = €,yf(x,) + B,x, + (1= B,)—¢,A)z,, we
obtain

- yn" + ||yn - zn”
x,) — Az, (95)

"xn - zn” < "xn
= "xn - yn" T &, HYf(
+ ﬁn “xn - Zn" >
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. N t,
which means that <Z5iAi> (l J’ T (5)S,u,ds
i=1 £y Jo
1 &,
"xn_zn“ s W"xn_)’n""' 1-8 ”)}f(xn)_Azn”' 1 tnT S pd
(96) t, L 552 S>>
N
This together with the conditions (i) and (ii) imply that +al (ZSiAl)
i=1
. _ — t,
i, [ = 2] =0 (97) x <<l | "7 ©3,mds
t, Jo

From (93) and (97), one has 2

1 (%
_Z L T(s)Snpds>>

2 N 21/1'
< bl -, 3.0 (2% 2y,
i=1 i

lim |y, -z, < lim (|ly, - x| + %, = z.[]) = 0. (98)

n— 00 n— oo

For p € ®, we see that

2

t, t,
Iz, - p||2 x[|A; <l J T (s) S,u,ds — 1 J T (s)S,p ds>
t, Jo t, Jo
t, N 99
=P (tl J T (s)S,u,ds — «, (Z&Ai) ©9)
n 20 i=1
1 (b 2 It follows from (42) that
X — J T (s) Snunds> -p
t, Jo
2
- . Iyl
= ||P, —J T (s)S,u,ds — «, 0;A;
¢ ( 6o T (Z ) = leurf (5,) + B,

A Snunds> (1= BT - 6,4) 2, - plf
" = (1= ) T - &,4) (z, - )
_pc<1 J:T(S)Snpds_%@A ) +6, (%, — )+, (1f (5,) - Ap)[|
= [((1=B) T~ ,A) (2= p) + B, (5w = P)I
v llrf (x,) - Apl’
+ 26, (1= B) T - &,4) (2, - ),

n

2

1 ("
X t_J T(s)Snpds>

n J0

1 (% 1 (%
< (a Jo T (s)S,u,ds — a Jo T (s)S,p ds) of (x.) - Ap)
—a, (§81A1> +2/3n£n <xn_p’rf(xn)_Ap>
= < ((1 - ﬁn - sn?) ”Zn - P“ + ﬁn ”xn - P")2
1 (b 1 (b : ) )
X (a L T (s) S,u,ds — a L T (s)S,p ds) +&||rf (x,) — Ap|
2€n <((1 - ﬁn) I- ‘SnA) (zn - p) >
1 [ 1 [ 2 "
_ “(t_ JO T S,tds— JO T (s) s,,pds> f (5) — Ap)
_ l g + zﬁnsn <xn - p }’f (xn) - Ap>
2a, <( . L T (s)S,u,ds

Lt = (1 - /3n - en?)znzn - P"2
-—— T(s)S,pds |, -
t,,, JO (S) nP 5) + /3r21”xn - P"2 + zﬁn (1 - ﬁn - sn)/)
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x |1z, = ol . - p|
el (x,) - Al + 2,
< ((1=B,)I-&,A)(z, - p).
rf (x,) - Ap)
+ 2P, (x, = p1f (x,) = Ap)
< (1-B,— &) Iz - pl* + Billxa - oI
+ B (1= By~ &,7)
x(llz = oI + %, - 2I)
+eplrf (x,) - Ap| + 2,
< (1= B)I-e,A) (2, - p).
rf (x,) - Ap)
+ 2,8, (x, = p-1f (x,) — Ap)
= (1-57) (1- B, &) |z - oI’
+(1-,7) B, |lx, - p|’
el (x,) - Ap| + 2,
< (1= B)I-e,A) (2, - p).
rf (x,) - Ap)
+ 2,8, (%, — po1f (x,) — Ap) .

(100)

Substituting (99) into (100) yields that

Iy - ol
< (1 - sn?) (1 - ﬁn - 8,1?)

2v
b ol - (2220,
1

X

tYl
Ay <tl J T (s) S,u,ds

0

2

1 ("
- J T (s) Snpds>
t, Jo

2
—(1—6[)06,1(%—2[424‘06”)

2

X

Ly
A, (tl J T (s)S,u,ds

0

|

1 ("
——J T(s)S,,pds)
t, Jo

n

+(1-5.7) Bullx, - ol
el (x,) - Ap|’
+2¢,(((1- B.) I -¢,A) (2, - p)>
rf (x,) — Ap)
+ 2P, (x, = p1f (x,) — Ap)
= (1-&,9) |, - oI’
+(1-&7y)(1- B, —&7)

N
X {— oanSi (2_1/2, - 2u; —ocn)
i1 w;

1

X

1 (%
Ai(t_J T (s) S, u,ds

0

1 [
- J T (s) Snpds>

n Jo

+2¢6, (1= B,) I - £,4) (z,— p)>»
rf (x,) — Ap)

+ 2P, (x, = p1f (x,) = Ap)

+&lrf (x,) - Apl°

< "xn - p||2 + (1 - sn?) (1 - ﬁn - 8n7)

N .
x { —(anai <_Vzl _2#1' _ocn)
i=1

w;

X

0

I
A,-(t—J T (s) S, u,ds

1
- J T(s)Snpds>
t, Jo

+ 2871 <((1 - ﬁn)l - snA) (Z" - P) ’
T’f (xn) - Ap>
+ 2B, (x5 = po1f () = Ap)

+enllrf () - Ap|”.

Furthermore,
[%s1 = 2l
= lwxa + =3, - Pl
< Yallew = 217 + (1 =7) I3 — I

= “xn - p"2 + (1 - Vn) (1 - sn?)

|

13

(101)
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X (1 _/jn_sn)_/)

{—(x 26 ( —2u; — )Ai
K
(t_ L T (s) S,u,ds

|

X

n

1 (M
- j T(s)Snpds>
t, Jo

+(1=y,) el () - Ap|’
+2 (1 - Yn) €n
X <((1 - ﬁn)l - SnA) (Zn - P) >
rf (x,) — Ap)
+2 (1 - Yn) ﬁngn <xn - D l’f (xn) - Ap) .
(102)
It follows that
(1 - 61) (1 - sn?) (1 - ﬁn - 8n)_/)
N 2a.v.
X ‘IZ&' ( iIZVI - 29,4 — 95)
i=1 i
x |A; <tl rn T (s) S, u,ds
w Jo
1 [ 2
-+ L T(s)S,,pds> }
< (1 - yn) (1 - gn?) (1 - ﬂn - 8”?)
N
X ‘[‘%Z‘Si (2—1}21 - 2u; — ocn>
=1\ (103)

t,
X A,-(lj T (s) S, u,ds
t, Jo
1 [t ’
——j T(s)Snpds) }
t, Jo
e i

+ (L= p) eallrf () - Apl?

2 (1 - Yn) En
x (1= B,) I -&,A) (2, - p)rf (
+2 (1 - Yn) :ann <xn -p T'f (xn) -

xn) - Ap>
Ap) .

Fr

Th
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om (94) and the condition (i), fori = 1,2,..., N, we have

t t,
hm ” <— T (s) S, u,ds — tl J T(s)Snpds> =
n Jo

(104)
en, for §; € (0,1) and Zf\il 1)
N 1 t,
lim ‘(Z(S,A,) <t—J T (s) S,u,ds
n— 00 P n Jo
: (105)

1 ("
- J T (s) Snpds> H =
t, Jo

On the other hand, one has

2.

<

-l

ty
P (ti L T (s)S,u,ds
N 1 t,
-a, <Z(§iAi> — J T (s) Snunds> -p
i=1 ty Jo
1 ("™
<—J T (s)S,u,ds
t, Jo
<251A,> J (s) S, u,ds
1 ("
_<ZL T(s)S,pds - <Z<SIAI>

ty
X lj T(s)Snpds),z,,—p>
t, Jo

2

1 (&
{ — J T (s)S,u,ds
t, Jo

(ZS,A,) J (5) S, u ds

("
—<—J. T (s)S,pds
t, Jo

NE R

t,
—J T (s) S,u,ds
t, Jo

n

1
2

2

+lew - ol
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N 1 t,
- S.A, —j T(s)S,ud
“(Zl ,>tn TS s
1 (b Y
_<_J T(s)S,pds -, Z(Sl—Ai)
ty Jo i=1
]

1 ("
Xt—J- T(S)Snpds) _(Zn_p)

n JO

1
<3 b+ e - o
1 ("™
- ”(— J T (s)S,u,ds — Z,,)
t, Jo

N
&, (Z‘i‘&')
i=1

1 ("™
X (t_ j T (s)S,u,ds

0

1 (%
——J T(s)Snpds>
t, Jo

1 2 2
<ol bl

1 2

t,
— J T (s)S,u,ds — z,
t, Jo

(o)

1 (" 1 (™
x(—J T(s)S,,unds——J T(s)Snpds>
0 t, Jo

n n

+2a, <<;5iA,.>

I
X (—J T (s)S,u,ds —
t, Jo

2
Ay

2

| =

Jtn T (s)S,p ds) ,
0

I

~

=

1 (%
— J T (s)S,u,ds — z,
t, Jo

\/

(106)

which means that

2

tYl
L J T(s)S,u,ds - z,
t, Jo

lew = oI <l = oI -

n

(2o

+ 2«,,

15
1 ('
X (— J T (s)S,u,ds
t, Jo
1 ('
-—— J T (s) Snpds>
t, Jo
1 (%
x| — J T (s)S,u,ds —z,,|| .
t, Jo
(107)
It follows that
2
1y, - ol

<(1-&7) (1= By~ &7 |z - I
+(1-&,7) Bullx, - oI
+elrf (x,) - Ap|
+2¢, (((1 = B.) I - €,4) (2, - P)>
rf (x,) - Ap)
+ 2P, (x, = p1f (x,) — Ap)
<(1-gp)(1-B,—2.p)

1 2

tﬂ
e {"xn - P“Z - t_ L T(S) Snunds —Zy

(2o)

1

tﬂ
X <— J- T (s)S,u,ds
t, Jo

+ 2a,,

1 (™
——J T(s)Snpds>
t, Jo

x ||S,u, — zn||}

+(1=&,7) Bullxs = oI + e2llrf (x,) - Ap]
+2¢, (((1 = B.) I - &,A) (2, = p) . 7f (x,) — Ap)
+ 2P, (x, = p1f (x,) = Ap)

= (1=&7) % - pI* - (1 - &,7)

2

t"
x (1 - ﬁn - sn?) tl J,O T(S)Snunds ~Zy

n

+2a, (1-¢,y)(1-B,—¢,y)
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1 [
X (— J T (s)S,u,ds
0

"Sn”n - Zn"

1 [
_t_,[ T(s)Snpd5>

+&2|rf(x,) - Ap|”

+2¢, (1= B,) I - ¢,A) (2, - p)>
rf (x,) = Ap)

+2Be, (x, = pr1f (x,) = Ap)

I, = ol = (1= &) (1 - B, - &,7)

2

IN

ty
X 1 J T (s)S,u,ds — z,

t, Jo

+2a, (1-¢,7) (1 - B, —€,7)

N t,
X (;(S,A,-) <tl J T (s) S,u,ds

n J0

—% Ltn T (s) Snpds>
X |Sutty = 2
+ sfl"rf(xn) - Ap”2 +2¢,
x (1= B,) I -&,A) (z, - p).rf (x,) - Ap)

+ ZIann <xn - Db Tf (xn) - Ap> .
(108)

Therefore, from (108) and (102), one has
1 = oI
< yalln = 2" + (=) Iy — 2l
< Yullxw = ol + (1-1,)

X {"xn - P”2 - (1 - sn?)
x (1 - ﬂn - sn?)

1
X t_,[ T(s)S,u,ds — z,

n J0

|

+ 206,,( - €n?) (1 - /3n - En?)

1
N

x«[ < 8,-A,->
i1

1 ("
X (t_ J T (s) S,u,ds

0

1 [
—t—J T(s)Snpds>

n J0

Abstract and Applied Analysis

X |Sutty = 2| + €2]7f (x,) - Ap||2
+ 28n <((1 - /371) I- snA) (zn - p) >
T’f (xn) - Ap>

+2ﬁn8n <xn - b rf (‘xn) - AP)}

= "xn - p||2 - (1 - Yn) (1 - sn?)

2

1 ("
— J T (s)S,u,ds — z,,
t, Jo

x (1 _:Bn_srt?)

+ 2, (1 - yn) (1 - sn?) (1 - ﬁn - 8n?)

()

1 (™
X <— J T (s) S, u,ds
t, Jo

I
—t—J T(s)Snpds>

n J0

x|Sutty = 2]l + (1= 7)€

x[rf (x,) = Apl” +2(1-1,)e,

< (1= B,)I-e,A) (2, - p).
rf (x,) - Ap)

+2(1=,) Butn

x <xn_p’rf(xn)_Ap>} .

(109)

Then,

(1 - Yn) (1 - sn?) (1 - ﬁn - ‘gn?)
t, 2
X tl J' T(s)S,u,ds—z,

n J0

< xw = 2I° = s — £
+ 2“71 (1 - Yn) (1 - en?) (1 - ﬁn - €n7)

N 1 t,
X { <;8,Ai> <Z Jo T (s)S,u,ds

1 ("
_t_,[ T(s)Snpds>

n J0

X "Snun - Zn" + (1 - Yn) 8721



Abstract and Applied Analysis

x "1’f (xn) - APHZ + 2(1 - Vn) &n
x <((1 _ﬂn)I_SnA) (zn _p)’rf(xn) _Ap>
+2(1 _Yn)ﬁnsn

X <xn_p’rf(xn)_Ap> }

(110)
From (94), (105), and condition (i), one has
1 (™
lim ||— J T (s)S,u,ds —z,|| = 0. (111)
n—00 tn 0

Let p € ® and k € {1,2,...
nonexpansive, we obtain

, M}. Since ]f;kn is firmly

2
|35, - ol

Tin o1

F, -1 F,
st ol

= 5 5%, - S5 %, - p) (112)

rkn

~k-1 2
3 (b, =" 85, ]
_| k k-1 2)

o3 o3
N Xy TNy, Xp

It follows that
|SEx, — o] < %, - ~g L )
Consequently, from (108), one has
1y, - I
<(1-7) (1B, - 7)o = I

+(1-&,7) Bullx, - plf
+elrf(x,) - Ap + 22,
x(((1-B)I- p).rf (x,) - Ap)
+2B,e, (x, = prf (x,) - Ap)
<(1-2,7) (1= B, - &.7)
x[Ju, = plI* + (1= &) B |lx, - oI
+elrfx,) - Apl + 26,
x(((1-B)I-
rf (x,) - Ap)

snA) (Zn -

snA) (Zn - p) >

17

+ 2P, (x, = pf (x,) — Ap)
=(1-¢&y) (1= B, - &)
x| Skx, — p| + (1 - &.7) B
x[lx, = plI* + exllrf (x,) - Ap|”
+2¢,(((1- B.) I - ¢,4) (2, - p)>
rf (x,) — Ap)
+2B,e, (x, — porf (x,) - Ap)
<(1-&y)(1-B,—ep)
xm%—ﬂ“Wﬂ%—sfaf)
(1-&7) Bullx, - oI’
+e7|rf(x,) - Ap|’
+2¢,((1-B,) I -¢,A
rf (x,) = Ap)
+ 2P, (x, = prf (x,) — Ap)

S "xn - P"Z - (1 - sn?) (1 - ﬁn - sn?)

) (2, - p)>

X “Sﬁxn - Sﬁ_lxn"z + sﬁ"rf(xn) - Ap"2
+ 2871 <((1 - ﬂn)l - ‘SnA) (Zn - P) >
rf (x,) - Ap)

+ zﬁn‘sn <xn - p rf (xn) - Ap> .
(114)

Then,
e - I
= Iyt + (1= p)y = 2
<yl = 2l + (1 =) 13— I
< =l + (1 - 72)
X{—(l—sn?)(l—ﬁn—en?)

c~k1 2

e.k

Xn

+ fﬁllrf(xn) - Aplf
+ 28n <((1 - ﬁn)l - enA) (Zn - P) >
rf (x,) = Ap)

2B, (%, = prf (x,) - Ap) |
(115)
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That is,

(1 - Vn) - (1 - en?) (1 - /3n - en?)

k-1 |2
< |8, - 55|

<[l = 21" = %1 = 2l
+(1=p,) ellrf () - 4p|? (16)
+2(1- yn) &,
x (1= B)I-e,A)(z, - p).rf (x,) - Ap)
+2(1 = ¥,) Bugu (0 — po1f (x,) — Ap) .

By condition (i) and (94), for k € {1,2,..., M}, we obtain

ek k-1
lim "Jnxn -3,

n— oo

xn" =0. (117)

Therefore, we have

"”n - xn“
"J X, — < |skx, - 55 'x, (118)
+ sk x, Sﬁ‘zx,,u oot [[Shx, - S|
From (117), one has
Jim o, = x, || = (119)
Notice that
et = il < Nt = all + 1 = 3l (120)
Applying (119) and (93), we have
Jim o, = ] = (121)
Since
"”n N Zn” s "un - yn" + "yn - Zn“ > (122)
this together with (94) yields that
nh_)néo "un - Zn“ =0. (123)
Consequently, we obtain
tVl
lim tl J T (s)S,u,ds —u,| = 0. (124)
n—00 " 0
Step 4. Letting z = Py (I — A + rf)z, we show
Jim sup ((rf - A) z,x, —z) < 0. (125)

We know that Py (I — A +rf) is a contraction. Indeed, for any
x,y € H, we have

[Po (T=A+rf)x—Po (I-A+rf)y]
<|(T-A+rf)x-(I-A+rf)y]

<(-F-m)lx-yl

(126)

Abstract and Applied Analysis

and hence Py(I — A + rf) is a contraction due to (1 — (y -
7)) € (0,1). Thus, Banach’s Contraction Mapping Principle
guarantees that Pg (I — A+rf) has a unique fixed point, which
implies z = Po(I — A + 1f)z.

We claim that z € F(I'). Since {u,, } C {u,} is bounded in
C, without loss of generality, we can assume that {u,} — z.
Since Cis closed and convex, C is weakly closed. Thus we have
z € C. For 0 < s < 00, notice that

1 (M
< vy, — . L T (s)S,u,ds
n

i

1 [
+ t_J T (s)S,,u,ds

n; J0

t,
=T (h) L J T (s)S, u,ds
tn 0 i i

i

ty (127)

+ T(h)tij T (s)S,u,ds =T (h)u,,

n, J0

1
<2|u, - . J T (s)S,,u,ds

n Jo

i

1 [
+ || — J T (s)S, u,ds
t 0 1 1

n;

t
-T (h)tij T (s)S, u,ds|.
w J0

i

It follows from (124) and Lemma 4 that

(128)

u, =T (W) u, " =0.

Thus, (128) and Lemma 5 assert that z € F(T'). Since {xni} C
{x,} is bounded in C, without loss of generality, we can
assume that {xni} — w. It follows from (94) that z, — w.
Since C is closed and convex, C is weakly closed. Thus we have
weC.

Let us show w € F(S). For the sake of contradiction,
suppose that w ¢ F(S), that is, Sw# w. Since z € F(T'), by
our assumption, we have T;w € F(I') and then S,w € F(I).

Hence (1/t,) _[Ot” T(s)S,wds = S,w. Therefore, by (124) and
Opial condition, we have

lim inf "un - w”
n— 00 ’

Uy, — Sw"

n— 00

by,
< lim 1nf{ w ti J T (s)S,u,ds
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1 ('
+ —J T (s)S,,u,ds
n; J0
1 (M
- J T (s)S, wds
tni 0 '
sy o

< iy i, .

(129)
which derives a contradiction. Thus, we obtain w € F(S) =
N2 F(T)).

Next, we claim that w € N SEP(F,). Since u, = Sﬁxn
fork=1,2,..., M, we obtain

F, (Skxn, y)

From (A2), one has

- <y NSy n’ - 81271xn> > F (y’ Sﬁ‘xn) . (131)

Replacing n by n;, we have

<k 1 erk
(ot (e

n;

SZ ! ni)> > Fp (y, S},;xni).
(132)

It follows from (l/rnl_)(f's’n‘,xni - fs’ﬁ__lxni) — 0and & J Xy, —
w that

F.(y,w) <0, yeC, (133)
fork=1,2,..., M.

Putz, =ty + (1 —t)wforallt € (0,1] and y € C. Then,
we have z, € C and then F(z,,w) < 0. Hence, from (A1) and
(A4), we have

0= F(z2) <tF (z,y) +

< tF (2, y),

(1-1)F (2, y)
(134)

which means F(z,, y) > 0. From (A3), we obtain F; (w, y) > 0
for y € C and then w € SEP(F,) for k = 1,2,..., M, that is,
w € NY SEP(F,).

Finally, we claim that w € NN, VI(C, A;).

We define the maximal monotone operator

N
Qq, = (;81'Ai>ﬂh +Neqy, w; €C,

0, w, ¢C.

(135)

19

Since A; is relaxed (y;, v;)-cocoercive for i = 1,2, we have

(B (o )en)

8 (Aix = Ay, x - y)

1l
[\/]z

I
—

(136)

[\
,MZ

Il
—

J; (—.“i"Aix - Ai)’"2 + Vi"x - )’”2)

Mz

> '8, (v, - o) Jx =

1

%
L

which yields that Zl 1 0;A; is monotone. Thus, Q is maximal

monotone. Let (q;,4,) € G(Q). Since g, — (Z, 1 6A €
N¢g, and z,, € C, we have

< 2,,q <Z<SA ) > (137)
On the other hand, it follows from z, = Ps((1/t,)

[ T()S tpdds = 0, (TN, §;A)(1/L,) [ T(5)S,tt,ds) that

1 (% Y
_<5 L T (5) S, u,ds — <§ ) (138)
L[
X — J T (s) Snund.s) >0,
t, Jo
and hence
t"
z, - (1/t,) J T (s)S,u,ds
q1 ~ 2w 2%
(139)

Mz

o

tYI
6iA,-> tl J T (s)S,u,ds ) =0.
n Jo

1
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It follows that Since z = Pg(I — A + rf)z, one has
<‘11 ~Z,» 612> Jim sup ((rf - A) z,x, - 2)

y <q1 B (;&Ai) q1> - Jlim, (0f = A2, —2) (142)
={((rf -A)z,w-2)

N
> <q1—2ni>(z6iAi)‘h> <0.
i=1

Zp, — Sn Uy,
—\ 1~ % T o Furthermore,
N
+ <261A1> Sn.un.> <(1‘f - A) 25 Yn = Z> = <(1’f - A) 25 Yn — xn>
et Y (143)
N +{(rf -A)z,x, - z).
= <CI1 ~ Zy (Z&‘Ai)
= From (93) and (142), we have
t
X <q1 - ti J T (s) Sn,.“n,.d5>
n; J0 .
i nleréo sup{(rf - A)z,y,—z) <0. (144)
2, — (1/1,) [ T () S, 1, ds >
% Step 5. Finally, we show that x,, converges strongly to z =
N Pgy(I — A + rf)z. Indeed, from (61) and (70), we obtain
= <‘11 = Zn» (Z6iAi) (Ch - Zn,-)>
i=1
2
< < N ( ) Iy, - 2|
T\ 9h - Zni’ 8iAi> zn,- - Sniuni > _
; - "8an (xn) + :ann
Z"i _S"iu”i +((1 —ﬁn)I—snA)Zn—ZHZ
“\Dh %y

= "((1 - ﬁn)I _snA) (Zn - Z)
> (a2 (=) 45, 0 (5) ~ 4
} < "((l_ﬁn)l_snA) (Zn_z)"'ﬁn(xn_p)llz

1 [t
X (Z,,i - ; L T (s) Sniunids>> v2e, (1= ) —£,A4) (2,  2)
2, — (1/t,) [ T (), u,, ds + B (x, = 2) + &, (rf (x,) - Az),
A\ %, ’ rf (xn) - AP>
(140) = "((l_ﬂn)l_snA) (Zn_z)+ﬁn (xn_z)nz
which implies that +26,((yn — 2o 1f (x,) - A2)
1-B,)1—¢,A ?
s-p) |20
(g1 — @, q,) 2 0. (141) n
+Bullxn 2l
Since Q is maximal monotone, we obtain that w € Q0. +2re, (y, -2, f (x,) - f (2))

From Lemma 8, we obtain w € VI(C, Zfil 0;A;), that is,
w € (N, VI(C, A))). Thus, w € ©. +2¢,(y, -z f (z) - Az)
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< (l B ﬁn B sn?)z
1- ﬁn
+ ﬁn“xn - 2"2
+ ey (e =2l + 3~ 2I)

+ 2871 <yn - Z’f(z) - AZ>

- (1-Gr- e B Y -

I, I

2
+ Tﬂsn"yn - Z"

+ 2871 <yn _Z’f(z) - AZ> >

which implies that

b
27~
(1- 25 ) g, o

IN

mey,

En

+

1-rne,

72871 2
J -

+2 (yn—z,f(z)—Az>]>.

It follows from (146) that

s =2l
= Iy + 0 =)y - 2l
<yl =2l + (1= Iy =2l
< w2l +(1-3,)

f(1- 20 ) oy

&n

+
1-rne,

—2

+z<yn—z,f<z>—Az>)}

(145)

(146)

21
_ 2(1_)’;1)(?—”7)% 2
(12l J, -
ne,
+ (1 ~ Y )gn
1-rne,
—2
20,-5f (- 42)).
(147)
From condition (i) and (142), we know that
§2(1 _Vn) ()_/_ 7’1’])8,1 _
= 00,
= 1-rne,
1— —2
lim sup ( Yn) ‘gn ( Y ‘Sn “xn _ Z”2
n—oeo 1- e, 1- ﬁn
+2(y, -z f (2) —Az)) <0.
(148)

we can conclude from Lemma 10 that x, — zasn — oo.
This completes the proof of Theorem 16. O

Theorem 17. Let C be a nonempty closed convex subset of a
real Hilbert space H, and let F,, k € {1,2,..., M} be bifunction
from C x C — R satisfying (A)-(A4). Let {T;};, be k;-strict
pseudocontractive mappings of C into self with k = supk;
and let pji = (oc{,océ,océ) € I xIXxI, where I = [0,1],
(x{ +(xé +ta, =1, oc{ +(xé <b<l, and(x{,océ,océ € (x,1)
forall j = 1,2,.... For everyn € N, let S, and S be S-
mapping generated by T,, T, _,..., T, and p,, p,_,>. .., p; and
T,T, 1,...and p,, p,_1>... respectively. Let B: C — H be
w-Lipschitz continuous and relaxed (y, v)-cocoercive mappings
with v — uw® > 0, let f be a contraction of H into itself with
n € (0,1), and let A be a strongly positive linear bounded self-
adjoint operator with the coefficients’y > 0 and 0 < r < y/n.
Assume that

0 := <ﬁ {F (Ti)}> n (ﬁSEP (Fk)) NVI(C,B). (149)

Let {x,} be a sequence generated by x, € C and

_ 1M 7Fv- | 7R TR
Uy = ]rM,n]rM—l,n ]rZ,n]rl,nxn’

z, = Pc (St — o, BS, 14,
Vu = &arf (x,) + Box,, (150)
+((1-B)I-&,4)z,
Xy = VuXn + (1=,) Yo VR EN,

where {S,, : C — C} is the sequence defined by (37). If {¢,},
{B,.} are two sequences in (0, 1) and {y,} < [¢,¢,] € (0, 1) and
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{renb fork € {1,2,..., M} is a real sequence in (0, 00) satisfing
the following conditions:
(i) lim,, _, ¢, =0, Y1, &, = 00,

(i) 0 < lim, ,infB, < lim,  supB, < 1 and
lim,, _, ool Bus1 = Bul = 0,
(iii) lim infr, > 0andlim, , |re .1 — 7%, = 0, for

kefl2,... M,
(i) fo,} < [g92) < (0,Q(v - pw’))/w’) and
hmnaoo"xwrl - (xnl =0.

Then {x,} converges strongly to z € ®, where z is the unique
solution of variational inequality

Jim sup ((rf —A)z,p-2) <0, Vpe®, (151

which is the optimality condition for the minimization problem

!
min= (Az,2) ~h(2), (152)
where h is a potential function for rf (i.e., W' (z) = rf(z) for
z € H).

Proof. By Theorem 16, fori = 1,2,..., N, letting A; = B, we
can obtain Theorem 17. O

Theorem 18. Let C be a nonempty closed convex subset of
a real Hilbert space H, and let F, k € {1,2,...,M} be a
bifunction from C x C — R satisfying (A1)-(A4). Let {T;}:°,
be k;-strict pseudo-contractive mappings of C into self with
K = sup;k; and letpj = ((x{,(xé,océ) € IxIxI, wherel = [0,1],

oc{ +océ + océ =1, cx{ +cxé <b<l, andoc{,océ,océ € (k1)
forall j = 1,2,.... For everyn € N, let S, and S be S-
mapping generated by T,, T, _,,..., Ty and p,, p,_1>- - > p; and
T,T, 1>... and p,, p, > -, respectively. Let A; : C —
H be w;-Lipschitz continuous and relaxed (u;, v;)-cocoercive
mappings with v, — w? > 0, fori = 1,2,...,N, let f be a
contraction of H into itself with n € (0, 1), and let A be is a
strongly positive linear bounded self-adjoint operator with the
coefficients’y > 0 and 0 < r < y/n. Assume that

0 (ﬁ{p (T,.)}> NEP(F)n (ﬁw (c,A,.)>. (153)

i=1 i=1

Let {x,} be a sequence generated by x, € C and

F(un’y)+l(y_un’un_xn) >0,
r

N
Zn = PC <Snun - (xn <281A1> Snun> 5
i=1

Yn = 8nrf (xn) + ﬁnxn + ((1 - ﬁn) I- ‘SnA) Zn>
Vn € N,

(154)

Xpt1 = VnXn T (1 - Yn) Yo

where {S, : C — C} is the sequence defined by (37) and §; €
(0,1), Zf\;l 0; = 1. If {e,}, {B,} are two sequences in (0, 1) and
{ya} € e, 6] €(0,1) and {ry. .}, fork € {1,2,..., M} is a real
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sequence in (0, 0o) satisfing the following conditions:

(i) lim =0, Y €, = 00,

(i) 0 < lim, ,infB, < lim, , suppB, < 1 and
hmn%oolﬁrwl - ﬁn' =0,
(iii) lim,, _, o, infr,, > 0 and lim

n—»oosn

n—>oo|rn+1 - rnl =0,

(i) {a,} < [91-92] € (0, 2 XN, 8,(vi—pw])/(TX, ,07))

and lim,, _, . |&,.; — o, | = 0.

Then {x,} converges strongly to z € ©, where z is the unique
solution of variational inequality

Jim sup ((rf —A)z,p-2) <0, Vpe®, (155)

which is the optimality condition for the minimization problem

1
min> (Az,z) - h(2), (156)

where h is a potential function for rf (i.e., H(z) = rf(z) for
z € H).

Proof. By Theorem 16, letting M = 1 for all n > 1, we can
obtain Theorem 19. O

Theorem 19. Let C be a nonempty closed convex subset of
a real Hilbert space H, and let F, k € {1,2,..., M} be
a bifunction from C x C — R satisfying (Al)-(A4). Let
B : C — H be w-Lipschitz continuous and relaxed (u,v)-
cocoercive mappings with v — uw® > 0, and let f be a
contraction of H into itself with n € (0, 1), and let A be is a
strongly positive linear bounded self-adjoint operator with the
coefficients y > 0 and 0 < r < y/n. Assume that

Q= <ﬁSEP (Fk)> NVI(C,B). (157)
k=1
Let {x,} be a sequence generated by x, € C and
o = e T
2 = P ity — o, Bit) -

In = Sni’f (xn) + ﬁnxn + ((1 - ﬁn) I- snA) Zp>

Xn+1 :)}nxn+(1_}/n)yn’ Vn e N.

If {e,}, {B,} are two sequences in (0,1) and {y,} C [¢,c] C
0,1) and {ry,}, for k € {1,2,...,M} is a real sequence in
(0, 00) satisfing the following conditions:

(1) hmn—»oo‘sn =0, 21031 &, = 00,
(i) 0 < lim,_ , infB, <
hmn%oolﬁrwl - Bn' =0,

lim, , supB, < 1 and

(iii) lim,, , o, infr, > 0 andlim, , |re .. =13, = 0, for
ke{l,2,...,M}.

) {w,} < lgng) © 0.QV - po’)/w?) and
lim, _, o lo, —a,l = 0.
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Then {x,} converges strongly to z € ©, where z is the unique
solution of variational inequality

Jim sup ((rf - A)z,p-2) <0, Vpe®, (159)

which is the optimality condition for the minimization problem

1
min= (Az,2) = h(2), (160)

where h is a potential function for rf (i.e., W' (z) = rf (2) for
z € H).

Proof. By Theorem 17, letting T,, = I for all n < 1, we can
obtain Theorem 19. O
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