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In this paper, modifying the set of variational inequality and extending the nonexpansive mapping of hybrid steepest descent
method to nonexpansive semigroups, we introduce a new iterative scheme by using the viscosity hybrid steepest descent method
for finding a common element of the set of solutions of a system of equilibrium problems, the set of fixed points of an infinite family
of strictly pseudocontractive mappings, the set of solutions of fixed points for nonexpansive semigroups, and the sets of solutions
of variational inequality problems with relaxed cocoercive mapping in a real Hilbert space. We prove that the sequence converges
strongly to a common element of the above sets under some mild conditions. The results shown in this paper improve and extend
the recent ones announced by many others.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
induced norm ‖ ⋅ ‖. Let𝐶 be a nonempty closed convex subset
of𝐻 and let 𝐹 : 𝐶 ×𝐶 → 𝑅 be a bifunction. We consider the
following equilibrium problem (EP) which is to find 𝑥

∗

∈ 𝐶

such that
EP: 𝐹 (𝑥

∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (1)
The set of solutions of EP is denoted by EP(𝐹).

Let {𝐹
𝑖
, 𝑖 = 1, 2, . . . , 𝑁} be a finite family of bifunctions

from 𝐶 × 𝐶 into 𝑅, where 𝑅 is the set of real numbers. The
system of equilibrium problems for {𝐹

1
, 𝐹
2
, . . . , 𝐹

𝑁
} is to find

a common element 𝑥∗ ∈ 𝐶 such that
𝐹
1
(𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶,

𝐹
2
(𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶,

...

𝐹
𝑁
(𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶.

(2)

We denote the set of solutions of (2) by ∩𝑁
𝑘=1

SEP(𝐹
𝑘
), where

SEP(𝐹
𝑘
) is the set of solutions to the equilibrium problems,

that is,

𝐹
𝑘
(𝑥
∗

, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (3)

If 𝑁 = 1, then the problem (2) is reduced to the
equilibrium problems.

If 𝑁 = 1 and 𝐹(𝑥
∗

, 𝑦) = ⟨𝑇𝑥
∗

, 𝑦 − 𝑥
∗

⟩, then the
problem (2) is reduced to the variational inequality problems
of finding 𝑥∗ ∈ 𝐶 such that

⟨𝑇𝑥
∗

, 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (4)

The set of solutions of (4) is denoted by VI(𝐶, 𝑇).
The equilibrium problem is very general in the sense that

it includes, as special cases, fixed point problems, variational
inequality problems, optimization problems, Nash equilib-
rium problems in noncooperative games, and numerous
problems in physics, economics, and others. Some methods
have been proposed to solve VI(𝐶, 𝑇), EP(𝐹), and SEP(𝐹

𝑘
);

see, for example, [1–29] and references therein. Formulations
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(2) extend this formulism to such problems, covering in
particular various forms of feasibility problems [30, 31].

Definition 1. One-parameter family mapping Γ = {𝑇(𝑡) : 𝑡 ∈

𝑅
+

} from 𝐶 into itself is said to be a nonexpansive semigroup
on C if it satisfies the following conditions:

(i) 𝑇(0)𝑥 = 𝑥 for all 𝑥 ∈ 𝐶,
(ii) 𝑇(𝑠 + 𝑡) = 𝑇(𝑠)𝑇(𝑡) for all 𝑠, 𝑡 ∈ 𝑅

+,
(iii) for each 𝑥 ∈ 𝐶, the mapping 𝑇(𝑡)𝑥 is continuous,
(iv) ‖𝑇(𝑡)𝑥 − 𝑇(𝑡)𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶 and 𝑡 ∈ 𝑅

+.

Remark 2. We denote by 𝐹(Γ) the set of all common fixed
points of Γ, that is, 𝐹(Γ) := ∩

𝑡∈𝑅
+𝐹(𝑇(𝑡)) = {𝑥 ∈ 𝐶 : 𝑇(𝑡)𝑥 =

𝑥}.

Let 𝐵 : 𝐶 → 𝐻 be a nonlinear mapping. Now, we recall
the following definitions.

(1) 𝐵 is said to be monotone if

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶. (5)

(2) 𝐵 : 𝐶 → 𝐶 is called 𝜔-Lipschitzian if there exists a
positive constant 𝜔 such that

󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜔

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (6)

(3) 𝐵 is said to be 𝜂-strongly monotone if there exists a
positive constant 𝜂 such that

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (7)

(4) 𝐵 is said to be nonexpansive if
󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (8)

And 𝐹(𝐵) denotes the set of fixed points of the
mapping 𝐵, that is, 𝐹(𝐵) = {𝑥 ∈ 𝐶 : 𝐵𝑥 = 𝑥}.

(5) 𝐵 : 𝐶 → 𝐶 is said to be 𝑘-strictly pseudocontractive
mapping if there exists a constant 0 ≤ 𝑘 < 1 such that

󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑘
󵄩󵄩󵄩󵄩(𝐼 − 𝐵) 𝑥 − (𝐼 − 𝐵) 𝑦

󵄩󵄩󵄩󵄩

2

,

∀𝑥, 𝑦 ∈ 𝐶.

(9)

(6) 𝐵 is said to be 𝛼-inverse-strongly monotone if there
exists a constant 𝛼 > 0 such that

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶. (10)

(7) 𝐵 is said to be relaxed (𝑢, V)-cocoercive if there exist
positive real numbers 𝑢, V such that

⟨𝐵𝑥 − 𝐵𝑦, 𝑥 − 𝑦⟩ ≥ (−𝑢)
󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩

2

+ V󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐶.

(11)

(8) A linear bounded operator 𝐵 is strong positive if there
exists a constant 𝛾 > 0 with the property

⟨𝐵𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2

, ∀𝑥 ∈ 𝐶. (12)

(9) A set-valued mapping 𝑄 : 𝐻 → 2
𝐻 is called

monotone if for all 𝑥, 𝑦 ∈ 𝐻, 𝑓 ∈ 𝑄𝑥 and 𝑔 ∈ 𝑄𝑦

imply ⟨𝑥 − 𝑦, 𝑓 − 𝑔⟩ ≥ 0.
(10) Amonotonemapping𝑄 : 𝐻 → 2

𝐻 is calledmaximal
if the graph 𝐺(𝑄) of 𝑄 is not properly contained in
the graph of any other monotone mapping. It is well
known that a monotonemapping𝑄 is maximal if and
only if for (𝑥, 𝑓) ∈ 𝐻×𝐻, ⟨𝑥−𝑦, 𝑓−𝑔⟩ ≥ 0 for every
(𝑦, 𝑔) ∈ 𝐺(𝑄) implies 𝑓 ∈ 𝑄𝑥.

Iterative methods for nonexpansive mappings have
recently been applied to solve convex minimization prob-
lems. Convex minimization problems have a great impact
and influence on the development of almost all branches of
pure and applied sciences. A typical problem is to minimize
a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space𝐻:

𝜃 (𝑥) =
1

2
⟨𝐴𝑥, 𝑥⟩ − ⟨𝑥, 𝑏⟩ , ∀𝑥 ∈ 𝐹 (𝑆) , (13)

where 𝐴 is a linear bounded operator, 𝐹(𝑆) is the fixed point
set of a nonexpansive mapping 𝑆, and 𝑏 is a given point in𝐻

[16].
For finding a common element of the set of fixed points

of nonexpansive mappings and the set of the variational
inequalities, in 2006, Marino and Xu [16] introduced the
general iterative method and proved that for a given 𝑥

0
∈ 𝐻,

the sequence {𝑥
𝑛
} generated by the algorithm

𝑥
𝑛+1

= 𝛼
𝑛
𝛾𝑓 (𝑥
𝑛
) + (𝐼 − 𝛼

𝑛
𝐵)𝑇𝑥

𝑛
, (14)

where 𝑇 is a self-nonexpansive mapping on 𝐻, 𝑓 is an 𝛼-
contraction of 𝐻 into itself (i.e., ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝛼‖𝑥 −

𝑦‖, ∀𝑥, 𝑦 ∈ 𝐻 and 𝛼 ∈ (0, 1)), {𝛼
𝑛
} ⊂ (0, 1) satisfies certain

conditions, and𝐵 is strongly positive bounded linear operator
on 𝐻 and converges strongly to fixed point 𝑥∗ of 𝑇 which is
the unique solution to the following variational inequality:

⟨(𝛾𝑓 − 𝐵) 𝑥
∗

, 𝑥
∗

− 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝐹 (𝑇) , (15)

which is the optimality condition for the minimization
problem

min
𝑥∈𝐹(𝑆)∩EP

1

2
⟨𝐵𝑥, 𝑥⟩ − ℎ (𝑥) , (16)

where ℎ is a potential function for 𝑟𝑓 (i.e., ℎ󸀠(𝑥) = 𝑟𝑓(𝑥) for
𝑧 ∈ 𝐻).

Takahashi and Toyoda [32] introduced the following
iterative scheme:

𝑥
0
∈ 𝐶,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) SP
𝐶
(𝑥
𝑛
− 𝛼
𝑛
𝐵𝑥
𝑛
) ,

(17)
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where 𝐵 is a 𝜉-inverse-strongly monotone mapping, {𝛾
𝑛
} is

a sequence in (0, 1), and {𝛼
𝑛
} is a sequence in (0, 2𝜉). They

showed that if 𝐹(𝑆) ∩ VI(𝐶, 𝐵) ̸= 0, then the sequence {𝑥
𝑛
}

generated by (17) converges weakly to some 𝑧 ∈ 𝐹(𝑆) ∩

VI(𝐶, 𝐵).
Yamada [33] introduced the following iterative scheme

called the hybrid steepest descent method:

𝑥
𝑛+1

= 𝑆𝑥
𝑛
+ 𝛼
𝑛
𝜇𝐵𝑆𝑥
𝑛
, 𝑛 ∈ 𝑁, (18)

where 𝑥
1
= 𝑥 ∈ 𝐻, {𝛼

𝑛
} ⊂ (0, 1), and let 𝐵 : 𝐻 → 𝐻 be

a strongly monotone and Lipschitz continuous mapping and
𝜇 is a positive real number. He proved that the sequence {𝑥

𝑛
}

generated by (18) converges strongly to the unique solution of
𝐹(𝑆) ∩ VI(𝐶, 𝐵).

Let 𝐶 be a nonempty closed convex subset of 𝐻. Given
𝑟 > 0 the operators 𝐽𝐹

𝑟
: 𝐻 → 𝐶 defined by

𝐽
𝐹

𝑟
𝑥 = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦) +

1

𝑟
(𝑦 − 𝑧, 𝑧 − 𝑥) ≥ 0, ∀𝑦 ∈ 𝐶}

(19)

are called the resolvent of 𝐹 (see [19]). It is shown in [19]
that under suitable hypotheses on 𝐹 (to be stated precisely
in Section 2), 𝐽𝐹

𝑟
: 𝐻 → 𝐶 is single-valued and firmly

nonexpansive and satisfied 𝐹(𝐽𝐹
𝑟
) = EP(𝐹), ∀𝑟 > 0.

For finding a common element of EP(𝐹) ∩ 𝐹(𝑆), S.
Takahashi and W. Takahashi [23] introduced an iterative
scheme by the viscosity approximation method for finding
a common element of the set of solution (1) and the set of
fixed points of a nonexpansive mapping in a Hilbert space.
Let 𝑆 : 𝐶 → 𝐻 be a nonexpansive mapping. Starting with
arbitrary initial point 𝑥

1
∈ 𝐻, define sequences {𝑥

𝑛
} and {𝑢

𝑛
}

recursively by

𝐹 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑆𝑢
𝑛
, ∀𝑛 ∈ 𝑁.

(20)

They proved that under certain appropriate conditions
imposed on {𝛼

𝑛
} and {𝑟

𝑛
}, the sequences {𝑥

𝑛
} and {𝑢

𝑛
}

converge strongly to 𝑧 ∈ 𝐹(𝑆) ∩ EP(𝐹), where 𝑧 =

𝑃
𝐹(𝑆)∩EP(𝐹)𝑓(𝑧).
In 2012, Chamnarnpan and Kumam [34] introduced

the following explicit viscosity scheme with respect to 𝑊-
mappings for an infinite family of nonexpansive mappings

𝑥
𝑛+1

= 𝜀
𝑛
𝑟𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴)𝑊
𝑛
𝐽
𝐹

𝑟
𝑥
𝑛
. (21)

They prove that sequence {𝑥
𝑛
} and 𝐽

𝐹

𝑟
𝑛

converge strongly to
𝑧 ∈ (∩

∞

𝑛=1
𝐹(𝑇
𝑛
)) ∩ EP(𝐹), where 𝑧 is an equilibrium point for

𝐹 and is the unique solution of the variational inequality

⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑥 − 𝑧⟩ ≤ 0, ∀𝑥 ∈

∞

⋂

𝑛=1

𝐹 (𝑇
𝑛
) ∩ EP (𝐹) . (22)

In 2012, Kangtunyakarn [35] modify the set of variational
inequality to construct a new iterative scheme for finding
a common element of the set of fixed point problems of

infinite family of 𝑘
𝑖
pseudocontractive mappings and the set

of equilibrium problem and two sets of variational inequality
problems. Let

𝐹 := (

∞

⋂

𝑖=1

{𝐹 (𝑇
𝑖
)}) ∩ (

𝑀

⋂

𝑘=1

SEP (𝐹
𝑘
))

∩ VI (𝐶, 𝐴) ∩ VI (𝐶, 𝐵) .

(23)

Starting with arbitrary initial point 𝑥
1
∈ 𝐶, define sequences

{𝑥
𝑛
} and {𝑢

𝑛
} recursively by

𝐹 (𝑢
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑆
𝑛
𝑃
𝐶
(𝐼 − 𝛾 (𝑎𝐴 + (1 − 𝑎) 𝐵) 𝑢

𝑛
) ,

∀𝑛 ∈ 𝑁,

(24)

where {𝑆
𝑛
: 𝐶 → 𝐶} is the sequence defined by (37), 𝐴, 𝐵

is 𝛼 and 𝛽-inverse-strongly monotone mapping, respectively,
𝑎 ∈ (0, 1), 0 < 𝑟 < min{2𝛼, 2𝛽} and {𝑟

𝑛
} ⊂ [𝑎, 𝑏] ⊂

(0,min{2𝛼, 2𝛽}). Under certain appropriate conditions they
proved that the sequences {𝑥

𝑛
} and {𝑢

𝑛
} converge strongly to

𝑧 ∈ 𝐹, where 𝑧 = 𝑃
𝐹
𝑢.

Let 𝐴
𝑖
: 𝐶 → 𝐻 be a mapping, for 𝑖 = 1, 2, . . . , 𝑁. By

modification of (4), for 𝛿
𝑖
∈ (0, 1), we have

VI(𝐶,
𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
) = {𝑥

∗

∈ 𝐶 : ⟨𝑦 − 𝑥
∗

,

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
𝑥
∗

⟩ ≥ 0,

∀𝑦 ∈ 𝐶,

𝑁

∑

𝑖=1

𝛿
𝑖
= 1} .

(25)

In this paper, motivated by the above results, we extend
the nonexpansivemapping of hybrid steepest descentmethod
(18) to nonexpansive semigroups and introduce a new iter-
ative scheme for finding a common element of the set of
solutions of a system of equilibrium problems, the set of fixed
points of an infinite family of strictly pseudocontractivemap-
pings, the set of solutions of fixed points for nonexpansive
semigroups, and the set of solutions of variational inequality
problems for relaxed cocoercive mapping in a real Hilbert
space by the hybrid steepest descent method. The results
shown in this paper improve and extend the recent ones
announced by many others.

2. Preliminaries

Throughout this paper, we always assume that 𝐶 is a
nonempty closed convex subset of a Hilbert space 𝐻. We
write 𝑥

𝑛
⇀ 𝑥 to indicate that the sequence {𝑥

𝑛
} converges

weakly to 𝑥. 𝑥
𝑛
→ 𝑥 implies that {𝑥

𝑛
} converges strongly to

𝑥. We denote by𝑁 and 𝑅 the sets of positive integers and real
numbers, respectively. For any 𝑥 ∈ 𝐻, there exists a unique
nearest point in C, denoted by 𝑃

𝐶
𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃
𝐶
𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐶. (26)
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Such a 𝑃
𝐶
is called the metric projection of 𝐻 onto 𝐶. It is

known that 𝑃
𝐶
is nonexpansive. Furthermore, for 𝑥 ∈ 𝐻 and

𝑢 ∈ 𝐶,

𝑢 = 𝑃
𝐶
𝑥 ⇐⇒ ⟨𝑥 − 𝑢, 𝑢 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (27)

It is widely known that𝐻 satisfies Opial’s condition [8], that
is, for any sequence {𝑥

𝑛
} with 𝑥

𝑛
⇀ 𝑥, the inequality

lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 (28)

holds for every 𝑦 ∈ 𝐻 with 𝑦 ̸= 𝑥.
In order to solve the equilibriumproblem for a bifunction

𝐹 : 𝐶 × 𝐶 → 𝑅, we assume that 𝐹 satisfies the following
conditions:

(A1) 𝐹(𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝐶,

(A2) 𝐹 is monotone, that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0, ∀𝑥, 𝑦 ∈

𝐶,

(A3) lim
𝑡↓0
𝐹(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤ 𝐹(𝑥, 𝑦), ∀𝑥, 𝑦, 𝑧 ∈ 𝐶,

(A4) For each 𝑥 ∈ 𝐶, 𝑦 󳨃→ 𝐹(𝑥, 𝑦) is convex and lower
semicontinuous.

Let us recall the following lemmaswhichwill be useful for
our paper.

Lemma 3 (see [19]). Let 𝐹 be a bifunction from 𝐶 × 𝐶 into 𝑅
satisfying (A1), (A2), (A3), and (A4). Then, for any 𝑟 > 0 and
𝑥 ∈ 𝐻, there exists 𝑧 ∈ 𝐶 such that

𝐹 (𝑧, 𝑦) +
1

𝑟
(𝑦 − 𝑧, 𝑧 − 𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (29)

Furthermore, if 𝐽𝐹
𝑟
𝑥 = {𝑧 ∈ 𝐶 : 𝐹(𝑧, 𝑦) + (1/𝑟)(𝑦 − 𝑧, 𝑧 − 𝑥) ≥

0, ∀𝑦 ∈ 𝐶}, then the following hold:

(1) 𝐽𝐹
𝑟
is single-valued,

(2) 𝐽𝐹
𝑟
is firmly nonexpansive, that is,

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹

𝑟
𝑥 − 𝐽
𝐹

𝑟
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝐽
𝐹

𝑟
𝑥 − 𝐽
𝐹

𝑟
𝑦, 𝑥 − 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻, (30)

(3) 𝐹(𝐽𝐹
𝑟
) = EP(𝐹),

(4) EP(𝐹) is closed and convex.

Lemma 4 (see [12]). Let𝐶 be a nonempty bounded closed and
convex subset of a real Hilbert space𝐻. Let Γ = {𝑇(𝑠) : 𝑠 ∈ 𝑅

+

}

from 𝐶 be a nonexpansive semigroup on C, then for all ℎ > 0,

lim
𝑡→∞

sup
𝑥∈𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
∫

𝑡

0

𝑇 (𝑠) 𝑥 𝑑𝑠 − 𝑇 (ℎ) (
1

𝑡
∫

𝑡

0

𝑇 (𝑠) 𝑥 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0.

(31)

Lemma 5 (see [13]). Let𝐶 be a nonempty bounded closed and
convex subset of a real Hilbert space𝐻, let {𝑥

𝑛
} be a sequence,

and let Γ = {𝑇(𝑠) : 𝑠 ∈ 𝑅
+

} from 𝐶 be a nonexpansive

semigroup on C, if the following conditions are satisfied:

(i) 𝑥
𝑛
⇀ 𝑧,

(ii) lim sup
𝑠→∞

lim sup
𝑛→∞

‖𝑇(𝑠)𝑥
𝑛
− 𝑥
𝑛
‖ = 0,

then, 𝑧 ∈ 𝐹(Γ).

Lemma 6 (see [36]). In a Hilbert space 𝐻, there holds the
inequality

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝐻. (32)

Lemma 7 (see [16]). Assume 𝐴 be a strongly positive linear
bounded operator on 𝐻 with coefficient 𝛾 > 0 and 0 ≤ 𝜌 ≥

‖𝐴‖
−1, then ‖𝐼 − 𝜌𝐴‖ ≤ 1 − 𝜌𝛾.

Lemma 8 (see [37]). Let 𝐵 be a monotone mapping of 𝐶 into
𝐻 and let𝑁

𝐶
𝜔
1
be the normal cone to 𝐶 at 𝜔

1
∈ 𝐶, that is,

𝑁
𝐶
𝜔
1
= {𝜔 ∈ 𝐻 : ⟨𝜔

1
− 𝜔
2
, 𝜔⟩ ≥ 0, ∀𝜔

2
∈ 𝐶} , (33)

and define a mapping 𝑄 on 𝐶 by

𝑄𝜔
1
= {

𝐵𝜔
1
+ 𝑁
𝐶
𝜔
1
, 𝜔
1
∈ 𝐶,

0, 𝜔
1
∉ 𝐶.

(34)

Then 𝑄 is maximal monotone and 0 ∈ 𝑄𝜔
1
if and only if,

⟨𝐵𝜔
1
, 𝜔
1
− 𝜔
2
⟩ ≥ 0 for all 𝜔

2
∈ 𝐶.

Lemma 9 (see [27]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be bounded sequences

in a Banach space 𝐸 and {𝛾
𝑛
} be a sequence in [0, 1] satisfying

the following condition:

0 < lim
𝑛→∞

inf 𝛾
𝑛
≤ lim
𝑛→∞

sup 𝛾
𝑛
< 1. (35)

Suppose that 𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
)𝑦
𝑛
, 𝑛 ≥ 0 and

lim
𝑛→∞

sup(‖𝑦
𝑛+1

−𝑦
𝑛
‖−‖𝑥
𝑛+1

−𝑥
𝑛
‖) ≤ 0.Then lim

𝑛→∞
‖𝑦
𝑛
−

𝑥
𝑛
‖ = 0.

Lemma 10 (see [28]). Assume that {𝑎
𝑛
} is a sequence of

nonnegative real numbers such that

𝑎
𝑛+1

≤ (1 − 𝑏
𝑛
) 𝑎
𝑛
+ 𝑐
𝑛
, 𝑛 ≥ 0, (36)

where {𝑏
𝑛
} is a sequence in (0, 1) and {𝛿

𝑛
} is a sequence in 𝑅,

such that

(i) ∑∞
𝑖=1

𝑏
𝑖
= ∞,

(ii) lim
𝑛→∞

sup(𝑐
𝑛
/𝑏
𝑛
) ≤ 0 or ∑∞

𝑖=1
|𝑐
𝑛
| < ∞.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Let 𝐶 be a nonempty closed convex subset of a Hilbert
space 𝐻. Let {𝑇

𝑖
}
∞

𝑖=1
be mapping of 𝐶 into self. For all 𝑗 =

1, 2, . . ., let 𝜌
𝑗
= (𝛼
𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
) ∈ 𝐼 × 𝐼 × 𝐼 where 𝐼 = [0, 1] and
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𝛼
𝑗

1
+ 𝛼
𝑗

2
+ 𝛼
𝑗

2
= 1. For every 𝑛 ∈ 𝑁, we define the mapping

𝑆
𝑛
: 𝐶 → 𝐶 as follows:

𝑈
𝑛,𝑛+1

:= 𝐼,

𝑈
𝑛,𝑛

:= 𝛼
𝑛

1
𝑇
𝑛
𝑈
𝑛,𝑛+1

+ 𝛼
𝑛

2
𝑈
𝑛,𝑛+1

+ 𝛼
𝑛

3
𝐼,

...

𝑈
𝑛,𝑘

:= 𝛼
𝑘

1
𝑇
𝑘
𝑈
𝑛,𝑘+1

+ 𝛼
𝑘

2
𝑈
𝑛,𝑘+1

+ 𝛼
𝑘

3
𝐼,

...

𝑈
𝑛,2

:= 𝛼
2

1
𝑇
2
𝑈
𝑛,3

+ 𝛼
2

2
𝑈
𝑛,3

+ 𝛼
2

3
𝐼,

𝑆
𝑛
= 𝑈
𝑛,1

:= 𝛼
1

1
𝑇
1
𝑈
𝑛,2

+ 𝛼
1

2
𝑈
𝑛,2

+ 𝛼
1

3
𝐼.

(37)

Thismapping is called 𝑆-mapping generated by𝑇
1
, . . . , 𝑇

𝑛
and

𝜌
1
, . . . , 𝜌

𝑛
.

Lemma 11 (see [38]). Let 𝐶 be a nonempty closed convex
subset of a Hilbert space 𝐻. Let {𝑇

𝑖
}
∞

𝑖=1
be a 𝑘

𝑖
-strict pseudo-

contractive mapping of 𝐶 into self with 𝜅 = sup
𝑖
𝑘
𝑖
and let

𝜌
𝑗
= (𝛼
𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
) ∈ 𝐼 × 𝐼 × 𝐼 where 𝐼 = [0, 1], 𝛼𝑗

1
+ 𝛼
𝑗

2
+ 𝛼
𝑗

2
= 1,

𝛼
𝑗

1
+ 𝛼
𝑗

2
≤ 𝑏 < 1, and 𝛼𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
∈ (𝜅, 1) for all 𝑗 = 1, 2, . . .. For

every 𝑛 ∈ 𝑁, let 𝑆
𝑛
and 𝑆-mapping generated by 𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛

and 𝜌
1
, 𝜌
2
, . . . , 𝜌

𝑛
and 𝑇

1
, 𝑇
2
, . . ., and 𝜌

1
, 𝜌
2
, . . ., respectively.

Then, for every 𝑥 ∈ 𝐶 and 𝑘 ∈ 𝑁, the limit lim
𝑛→∞

𝑈
𝑛,𝑘
𝑥

exists.

In viewof the previous lemma,wewill define themapping
𝑆 : 𝐶 → 𝐶 as follows:

𝑆𝑥 := lim
𝑛→∞

𝑆
𝑛
𝑥 = lim
𝑛→∞

𝑈
𝑛,1
𝑥, 𝑥 ∈ 𝐶. (38)

Remark 12 (see [38]). For each 𝑛 ∈ 𝑁, 𝑆
𝑛
is nonexpansive and

lim
𝑛→∞

sup
𝑥∈𝐷

‖𝑆
𝑛
𝑥−𝑆𝑥‖ = 0 for every bounded subset𝐷 of

𝐶.

Lemma 13 (see [38]). Let 𝐶 be a nonempty closed convex
subset of a Hilbert space 𝐻. Let {𝑇

𝑖
}
∞

𝑖=1
be a 𝑘

𝑖
-strict pseudo-

contractive mapping of 𝐶 into self such that ∩∞
𝑖=1

𝐹(𝑇
𝑖
) ̸= 0 with

𝜅 = sup
𝑖
𝑘
𝑖
and let 𝜌

𝑗
= (𝛼
𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
) ∈ 𝐼 × 𝐼 × 𝐼 where

𝐼 = [0, 1], 𝛼𝑗
1
+ 𝛼
𝑗

2
+ 𝛼
𝑗

2
= 1, 𝛼𝑗

1
+ 𝛼
𝑗

2
≤ 𝑏 < 1, and

𝛼
𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
∈ (𝜅, 1) for all 𝑗 = 1, 2, . . .. For every 𝑛 ∈ 𝑁, let 𝑆

𝑛

and 𝑆-mapping generated by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
and 𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑛
,

respectively. Then, 𝐹(𝑆) = ∩
∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0.

3. Main Results

In this section, we will present our main results. To establish
our results, we need the following technical lemmas.

Lemma 14. Let 𝐶 be a nonempty closed convex subset of a
Hilbert space 𝐻 and let 𝐴

𝑖
: 𝐶 → 𝐻 be 𝜔

𝑖
-Lipschitz

continuous and relaxed (𝑢
𝑖
, V
𝑖
)-cocoercive mappings with

V
𝑖
− 𝑢
𝑖
𝜔
2

𝑖
> 0, for 𝑖 = 1, 2, . . . , 𝑁. If ∩𝑁

𝑖=1
VI (𝐶, 𝐴

𝑖
) ̸= 0, then,

for 𝛿
𝑖
∈ (0, 1) and ∑𝑁

𝑖=1
𝛿
𝑖
= 1,

𝑁

⋂

𝑖=1

VI (𝐶, 𝐴
𝑖
) = VI(𝐶,

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
) . (39)

Proof. Theproof is by induction.This holds for𝑁 = 2. In fact,
for 𝑎 ∈ (0, 1), it is obvious that

VI (𝐶, 𝐴
1
) ∩ VI (𝐶, 𝐴

2
) ⊆ VI(𝐶,

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
) . (40)

Next, we will show that VI (𝐶, ∑𝑁
𝑖=1

𝛿
𝑖
𝐴
𝑖
) ⊆ VI (𝐶, 𝐴

1
) ∩

VI (𝐶, 𝐴
2
).

Let

𝑥
0
∈ VI(𝐶,

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
) ,

𝑥
∗

∈ VI (𝐶, 𝐴
1
) ∩ VI (𝐶, 𝐴

2
) .

(41)

It follows that

⟨𝑦 − 𝑥
∗

, 𝐴
1
𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (42)

⟨𝑦 − 𝑥
∗

, 𝐴
2
𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (43)

Then, for every 𝑎 ∈ (0, 1), one has

⟨𝑦 − 𝑥
∗

, 𝑎𝐴
1
𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

⟨𝑦 − 𝑥
∗

, (1 − 𝑎)𝐴
2
𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(44)

From 𝑥
0
∈ VI (𝐶,∑𝑁

𝑖=1
𝛿
𝑖
𝐴
𝑖
) and (43), one has

⟨𝑥
∗

− 𝑥
0
, 𝑎𝐴
1
𝑥
0
⟩ = ⟨𝑥

∗

− 𝑥
0
, (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)𝑥
0
⟩

− ⟨𝑥
∗

− 𝑥
0
, (1 − 𝑎)𝐴

2
𝑥
0
⟩

≥ (1 − 𝑎) ⟨𝑥
0
− 𝑥
∗

, 𝐴
2
𝑥
0
⟩

= (1 − 𝑎) ⟨𝑥
0
− 𝑥
∗

, 𝐴
2
𝑥
0
− 𝐴
2
𝑥
∗

⟩

+ (1 − 𝑎) ⟨𝑥
0
− 𝑥
∗

, 𝐴
2
𝑥
∗

⟩

≥ (1 − 𝑎) (V
2
− 𝑢
2
𝜔
2

2
)
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≥ 0,

(45)

which means

⟨𝑥
∗

− 𝑥
0
, 𝐴
1
𝑥
0
⟩ ≥ 0. (46)
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On the other hand, from 𝑥
∗

∈ VI (𝐶, 𝐴
1
), we have

⟨𝑥
∗

− 𝑥
0
, 𝐴
1
𝑥
0
⟩ = ⟨𝑥

∗

− 𝑥
0
, 𝐴
1
𝑥
0
− 𝐴
1
𝑥
∗

⟩

+ ⟨𝑥
∗

− 𝑥
0
, 𝐴
1
𝑥
∗

⟩

≤ ⟨𝑥
∗

− 𝑥
0
, 𝐴
1
𝑥
0
− 𝐴
1
𝑥
∗

⟩

≤ 𝑢
1

󵄩󵄩󵄩󵄩𝐴1𝑥0 − 𝐴
1
𝑥
∗󵄩󵄩󵄩󵄩

2

− V
1

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ 𝑢
1
𝜔
2

1

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩

2

− V
1

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= (𝑢
1
𝜔
2

1
− V
1
)
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 0.

(47)

This together with (46) leads to

𝐴
1
𝑥
∗

= 𝐴
1
𝑥
0
. (48)

Furthermore, for every 𝑦 ∈ 𝐶, from (46) and (48), we obtain

⟨𝑦 − 𝑥
0
, 𝐴
1
𝑥
0
⟩ = ⟨𝑦 − 𝑥

∗

, 𝐴
1
𝑥
0
⟩ + ⟨𝑥

∗

− 𝑥
0
, 𝐴
1
𝑥
0
⟩

≥ ⟨𝑦 − 𝑥
∗

, 𝐴
1
𝑥
0
⟩

= ⟨𝑦 − 𝑥
∗

, 𝐴
1
𝑥
∗

⟩

≥ 0,

(49)

which implies

𝑥
0
∈ VI (𝐶, 𝐴

1
) . (50)

It follows from (45) and (42) that

⟨𝑥
∗

− 𝑥
0
, (1 − 𝑎)𝐴

2
𝑥
0
⟩ ≥ ⟨𝑥

0
− 𝑥
∗

, 𝑎𝐴
1
𝑥
0
⟩

= 𝑎 ⟨𝑥
0
− 𝑥
∗

, 𝐴
1
(𝑥
0
− 𝑥
∗

)⟩

+ 𝑎 ⟨𝑥
0
− 𝑥
∗

, 𝐴
1
𝑥
∗

⟩

≥ 𝑎 ⟨𝑥
0
− 𝑥
∗

, 𝐴
1
(𝑥
0
− 𝑥
∗

)⟩

≥ 𝑎 (V
1
− 𝑢
1
𝜔
2

1
)
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≥ 0.

(51)

It yields that

⟨𝑥
∗

− 𝑥
0
, 𝐴
2
𝑥
0
⟩ ≥ 0. (52)

From 𝑥
∗

∈ VI (𝐶, 𝐴
2
) and (52), one has

0 ≤ ⟨𝑥
∗

− 𝑥
0
, 𝐴
2
𝑥
0
⟩

= ⟨𝑥
∗

− 𝑥
0
, 𝐴
2
𝑥
0
− 𝐴
2
𝑥
∗

⟩

+ ⟨𝑥
∗

− 𝑥
0
, 𝐴
2
𝑥
∗

⟩

≤ ⟨𝑥
∗

− 𝑥
0
, 𝐴
2
𝑥
0
− 𝐴
2
𝑥
∗

⟩

≤ 𝑢
2

󵄩󵄩󵄩󵄩𝐴2𝑥0 − 𝐴
2
𝑥
∗󵄩󵄩󵄩󵄩

2

− V
2

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤ 𝑢
2
𝜔
2

2

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩

2

− V
1

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= (𝑢
2
𝜔
2

2
− V
2
)
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 0.

(53)

That is,

𝐴
2
𝑥
∗

= 𝐴
2
𝑥
0
. (54)

Therefore, for every 𝑦 ∈ 𝐶, from (52) and (54), we obtain

⟨𝑦 − 𝑥
0
, 𝐴
2
𝑥
0
⟩ = ⟨𝑦 − 𝑥

∗

, 𝐴
2
𝑥
0
⟩ + ⟨𝑥

∗

− 𝑥
0
, 𝐴
2
𝑥
0
⟩

≥ ⟨𝑦 − 𝑥
∗

, 𝐴
2
𝑥
0
⟩

= ⟨𝑦 − 𝑥
∗

, 𝐴
2
𝑥
∗

⟩

≥ 0,

(55)

which means

𝑥
0
∈ VI (𝐶, 𝐴

2
) . (56)

And hence,

𝑥
0
∈ VI (𝐶, 𝐴

1
) ∩ VI (𝐶, 𝐴

2
) . (57)

Thus, we have

VI(𝐶,
𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
) ⊆ VI (𝐶, 𝐴

1
) ∩ VI (𝐶, 𝐴

2
) . (58)

Thus,

VI(𝐶,
𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
) = VI (𝐶, 𝐴

1
) ∩ VI (𝐶, 𝐴

2
) . (59)
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Assume now that ∩𝑘
𝑖=1

VI (𝐶, 𝐴
𝑖
) = VI (𝐶,∑𝑘

𝑖=1
𝛿
𝑖
𝐴
𝑖
) is

true for some 𝑘, and we show that it continues to hold for
𝑘 + 1. For 𝛿

𝑖
∈ (0, 1) and ∑

𝑘+1

𝑖=1
𝛿
𝑖
= 1, we have

VI(𝐶,
𝑘+1

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

= VI(𝐶, 𝛿
1
𝐴
1
+

𝑘+1

∑

𝑖=2

𝛿
𝑖
𝐴
𝑖
)

= VI(𝐶, 𝛿
1
𝐴
1
+ (1 − 𝛿

1
)

𝑘+1

∑

𝑖=2

𝛿
𝑖

1 − 𝛿
1

𝐴
𝑖
)

= VI (𝐶, 𝛿
1
𝐴
1
) ∩ VI(𝐶, (1 − 𝛿

1
)

𝑘+1

∑

𝑖=2

𝛿
𝑖

1 − 𝛿
1

𝐴
𝑖
)

= VI (𝐶, 𝐴
1
) ∩ VI(𝐶,

𝑘+1

∑

𝑖=2

𝛿
𝑖

1 − 𝛿
1

𝐴
𝑖
)

= VI (𝐶, 𝐴
1
) ∩ (

𝑘+1

⋂

𝑖=2

VI (𝐶, 𝐴
𝑖
))

=

𝑘+1

⋂

𝑖=1

VI (𝐶, 𝐴
𝑖
) .

(60)

By induction, ∩𝑘
𝑖=1

VI (𝐶, 𝐴
𝑖
) = VI (𝐶, ∑𝑘

𝑖=1
𝛿
𝑖
𝐴
𝑖
) holds for

𝑘 = 1, 2, . . . , 𝑁 and this completes the proof.

Lemma 15. Let 𝐶 be a nonempty closed convex subset of a
Hilbert space 𝐻, let Γ = {𝑇(𝑠) : 𝑠 ∈ 𝑅

+

} from 𝐶 be a nonex-
pansive semigroup on 𝐶, and let 𝐴

𝑖
: 𝐶 → 𝐻 be 𝜔

𝑖
-Lipschitz

continuous and relaxed (𝜇
𝑖
, V
𝑖
)-cocoercive mappings with V

𝑖
−

𝜇
𝑖
𝜔
2

𝑖
> 0, for 𝑖 = 1, 2, . . . , 𝑁. Assume that 𝐷 = ∑

𝑁

𝑖=1
𝛿
𝑖
𝐴
𝑖
, for

𝛿
𝑖
∈ (0, 1) and ∑

𝑁

𝑖=1
𝛿
𝑖
= 1. If 𝐾

𝑛
(𝑥) = (1/𝑡

𝑛
) ∫
𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑥𝑑𝑠,

where {𝑆
𝑛
: 𝐶 → 𝐶} is the sequence defined by (37) with

0 ≤ 𝛼
𝑛
≤ (2∑

𝑁

𝑖=1
𝛿
𝑖
(V
𝑖
−𝜇
𝑖
𝜔
2

𝑖
)) /(∑

𝑁

𝑖=1
𝛿
𝑖
𝜔
2

𝑖
), then𝐾

𝑛
−𝛼
𝑛
𝐷𝐾
𝑛

is a nonexpansive mapping in 𝐻. Furthermore, 𝐼 − 𝛼
𝑛
𝐷 is a

nonexpansive mapping in𝐻.

Proof. Since 0 ≤ 𝛼
𝑛
≤ (2∑

𝑁

𝑖=1
𝛿
𝑖
(V
𝑖
− 𝜇
𝑖
𝜔
2

𝑖
))/(∑
𝑁

𝑖=1
𝛿
𝑖
𝜔
2

𝑖
), for

every 𝑥, 𝑦 ∈ 𝐶, we have

󵄩󵄩󵄩󵄩(𝐾𝑛 − 𝛼
𝑛
𝐷𝐾
𝑛
) 𝑥 − (𝐾

𝑛
− 𝛼
𝑛
𝐷𝐾
𝑛
) 𝑦

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝐾𝑛𝑥 − 𝐾

𝑛
𝑦) − 𝛼

𝑛
(𝐷𝐾
𝑛
𝑥 − 𝐷𝐾

𝑛
𝑦)
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝐾𝑛𝑥 − 𝐾

𝑛
𝑦
󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
⟨𝐾
𝑛
𝑥 − 𝐾

𝑛
𝑦,𝐷𝐾

𝑛
𝑥 − 𝐷𝐾

𝑛
𝑦⟩

+ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝐷𝐾𝑛𝑥 − 𝐷𝐾
𝑛
𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝐾𝑛𝑥 − 𝐾

𝑛
𝑦
󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
(V
𝑖
− 𝜇
𝑖
𝜔
2

𝑖
)

×
󵄩󵄩󵄩󵄩𝐾𝑛𝑥 − 𝐾

𝑛
𝑦
󵄩󵄩󵄩󵄩

2

+ 𝛼
2

𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
𝜔
2

𝑖

󵄩󵄩󵄩󵄩𝐾𝑛𝑥 − 𝐾
𝑛
𝑦
󵄩󵄩󵄩󵄩

2

= (1 − 2𝛼
𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
(V
𝑖
− 𝜇
𝑖
𝜔
2

𝑖
) + 𝛼
2

𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
𝜔
2

𝑖
)

×
󵄩󵄩󵄩󵄩𝐾𝑛𝑥 − 𝐾

𝑛
𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

.

(61)

Thus, we obtain that𝐾
𝑛
−𝛼
𝑛
𝐷𝐾
𝑛
is a nonexpansive mapping.

Similarly, we can obtain that 𝐼 − 𝛼
𝑛
𝐷 is a nonexpansive

mapping in𝐻 and this completes the proof.

The following main results follow from Lemmas 14 and
15.

Theorem 16. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻, and let 𝐹

𝑘
, 𝑘 ∈ {1, 2, . . . ,𝑀} be a

bifunction from 𝐶 × 𝐶 → 𝑅 satisfying (A1)–(A4). Let Γ =

{𝑇(𝑠) : 0 ≤ 𝑠 < ∞} be a nonexpansive semigroup on 𝐶 and let
𝑡
𝑛
be a positive real divergent sequence. Let {𝑇

𝑖
}
∞

𝑖=1
be 𝑘
𝑖
-strict

pseudo-contractive mappings of 𝐶 into self with 𝜅 = sup
𝑖
𝑘
𝑖

and let 𝜌
𝑗
= (𝛼
𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
) ∈ 𝐼 × 𝐼 × 𝐼, where 𝐼 = [0, 1],

𝛼
𝑗

1
+𝛼
𝑗

2
+𝛼
𝑗

2
= 1, 𝛼

𝑗

1
+𝛼
𝑗

2
≤ 𝑏 < 1, and 𝛼𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
∈ (𝜅, 1) for all

𝑗 = 1, 2, . . .. For every 𝑛 ∈ 𝑁, let 𝑆
𝑛
and 𝑆-mapping generated

by 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
and 𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑛
with 𝑇

𝑖
(𝐹(Γ)) ⊂ 𝐹(Γ). Let

𝐴
𝑖
: 𝐶 → 𝐻 be 𝜔

𝑖
-Lipschitz continuous and relaxed (𝜇

𝑖
, V
𝑖
)-

cocoercive mappings with V
𝑖
− 𝜇
𝑖
𝜔
2

𝑖
> 0, for 𝑖 = 1, 2, . . . , 𝑁, let

𝑓 be a contraction of𝐻 into itself with 𝜂 ∈ (0, 1), and let 𝐴 be
is a strongly positive linear bounded self-adjoint operator with
the coefficients 𝛾 > 0 and 0 < 𝑟 < 𝛾/𝜂. Assume that

Θ := 𝐹 (Γ) ∩ (

∞

⋂

𝑖=1

{𝐹 (𝑇
𝑖
)}) ∩ (

𝑀

⋂

𝑘=1

SEP (𝐹
𝑘
))

∩ (

𝑁

⋂

𝑖=1

VI (𝐶, 𝐴
𝑖
)) .

(62)

Let {𝑥
𝑛
} be a sequence generated by 𝑥

1
∈ 𝐶 and

𝑢
𝑛
= 𝐽
𝐹
𝑀

𝑟
𝑀,𝑛

𝐽
𝐹
𝑀−1

𝑟
𝑀−1,𝑛

⋅ ⋅ ⋅ 𝐽
𝐹
2

𝑟
2,𝑛

𝐽
𝐹
1

𝑟
1,𝑛

𝑥
𝑛
,

𝑧
𝑛
= 𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠) ,

𝑦
𝑛
= 𝜀
𝑛
𝑟𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑧
𝑛
,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝑦
𝑛
, ∀𝑛 ∈ 𝑁,

(63)

where {𝑆
𝑛
: 𝐶 → 𝐶} is the sequence defined by (37) and 𝛿

𝑖
∈

(0, 1), ∑𝑁
𝑖=1

𝛿
𝑖
= 1. If {𝜀

𝑛
},{𝛽
𝑛
} are two sequences in (0, 1) and
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{𝛾
𝑛
} ⊂ [𝑐
1
, 𝑐
2
] ⊂ (0, 1) and {𝑟

𝑘,𝑛
}, for 𝑘 ∈ {1, 2, . . . ,𝑀} is a real

sequence in (0,∞) satisfy the following conditions:

(i) lim
𝑛→∞

𝜀
𝑛
= 0, ∑∞

𝑖=1
𝜀
𝑛
= ∞,

(ii) 0 < lim
𝑛→∞

inf 𝛽
𝑛

≤ lim
𝑛→∞

sup𝛽
𝑛

< 1 and
lim
𝑛→∞

|𝛽
𝑛+1

− 𝛽
𝑛
| = 0,

(iii) lim
𝑛→∞

inf 𝑟
𝑘,𝑛

> 0 and lim
𝑛→∞

|𝑟
𝑘,𝑛+1

−𝑟
𝑘,𝑛
| = 0, for

𝑘 ∈ {1, 2, . . . ,𝑀},
(iv) {𝛼

𝑛
} ⊂ [𝑔

1
, 𝑔
2
] ⊂ (0, (2∑

𝑁

𝑖=1
𝛿
𝑖
(V
𝑖
−𝜇
𝑖
𝜔
2

𝑖
))/(∑
𝑁

𝑖=1
𝛿
𝑖
𝜔
2

𝑖
))

and lim
𝑛→∞

|𝛼
𝑛+1

− 𝛼
𝑛
| = 0,

(v) lim
𝑛→∞

|𝑡
𝑛
− 𝑡
𝑛−1

|/𝑡
𝑛
= 0.

Then {𝑥
𝑛
} converges strongly to 𝑧 ∈ Θ, where 𝑧 is the unique

solution of variational inequality

lim
𝑛→∞

sup ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑝 − 𝑧⟩ ≤ 0, ∀𝑝 ∈ Θ, (64)

which is the optimality condition for the minimization problem

min
𝑧∈Θ

1

2
⟨𝐴𝑧, 𝑧⟩ − ℎ (𝑧) , (65)

where ℎ is a potential function for 𝑟𝑓 (i.e., ℎ󸀠(𝑧) = 𝑟𝑓(𝑧) for
𝑧 ∈ 𝐻).

Proof. From the restrictions on control sequences, we may
assume, without loss of generality, that 𝜀

𝑛
≤ (1−𝛽

𝑛
)‖𝐴‖
−1 for

all 𝑛 ≥ 1. FromLemma 7, we know that if 0 ≤ 𝜌 ≤ ‖𝐴‖
−1, then

‖𝐼 − 𝜌𝐴‖ ≤ 1 − 𝜌𝛾. We will assume that ‖𝐼 −𝐴‖ ≤ 1 − 𝛾. Since
𝐴 is a strongly positive linear bounded self-adjoint operator
on𝐻, we have

‖𝐴‖ = sup {|⟨𝐴𝑥, 𝑥⟩| : 𝑥 ∈ 𝐻, ‖𝑥‖ = 1} . (66)

Note that

⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑥, 𝑥⟩ = 1 − 𝛽

𝑛
− 𝜀
𝑛
⟨𝐴𝑥, 𝑥⟩

≥ 1 − 𝛽
𝑛
− 𝜀
𝑛
‖𝐴‖

≥ 0.

(67)

That is, (1 − 𝛽
𝑛
)𝐼 − 𝜀
𝑛
𝐴 is positive. Furthermore,

󵄩󵄩󵄩󵄩(1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴
󵄩󵄩󵄩󵄩

= sup {󵄨󵄨󵄨󵄨⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑥, 𝑥⟩

󵄨󵄨󵄨󵄨 : 𝑥 ∈ 𝐻, ‖𝑥‖ = 1}

= sup {1 − 𝛽
𝑛
− 𝜀
𝑛
⟨𝐴𝑥, 𝑥⟩ : 𝑥 ∈ 𝐻, ‖𝑥‖ = 1}

≤ 1 − 𝛽
𝑛
− 𝜀
𝑛
𝛾.

(68)

Next, We divide the proof of Theorem into five steps.

Step 1. We show that {𝑥
𝑛
} is bounded.

Take 𝑝 ∈ Θ. Let I𝑘
𝑛

= 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

𝐽
𝐹
𝑘−1

𝑟
𝑘−1,𝑛

⋅ ⋅ ⋅ 𝐽
𝐹
2

𝑟
2,𝑛

𝐽
𝐹
1

𝑟
1,𝑛

, for 𝑘 ∈

{1, 2, . . .𝑀} and I0
𝑛

= 𝐼, for any 𝑛 ∈ 𝑁. Since 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

is
nonexpansive for each 𝑘 = 1, 2, . . .𝑀 and 𝑢

𝑛
= I𝑀
𝑛
𝑥
𝑛
, we

have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
I
𝑀

𝑛
𝑥
𝑛
−I
𝑀

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (69)

From Lemma 15 and (69), one has

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠) − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠)

− 𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠)

− (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(70)

It follows that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜀𝑛𝛾𝑓 (𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑧
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜀𝑛 (𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑝) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛

󵄩󵄩󵄩󵄩𝛾 (𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)) + 𝛾𝑓 (𝑝) − 𝐴𝑝

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
𝛾𝜂

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜀
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝜀
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩
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≤ (1 − 𝜀
𝑛
(𝛾 − 𝛾𝜂))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜀
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩 .

(71)

Furthermore,
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝛾𝑛𝑥𝑛 + (1 − 𝛾

𝑛
) 𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

≤ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝜀
𝑛
(1 − 𝛾

𝑛
) (𝛾 − 𝛾𝜂))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛾
𝑛
) 𝜀
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

𝛾 − 𝛾𝜂
} .

(72)

By induction, we have

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ max{󵄩󵄩󵄩󵄩𝑥1 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑝) − 𝐴𝑝
󵄩󵄩󵄩󵄩

𝛾 − 𝛾𝜂
} , 𝑛 ≥ 1.

(73)

Hence, {𝑥
𝑛
} is bounded and we also obtain that {𝑢

𝑛
}, {𝑧
𝑛
},

{𝑦
𝑛
}, {(∑
𝑁

𝑖=1
𝛿
𝑖
𝐴
𝑖
)(1/𝑡
𝑛
) ∫
𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑢
𝑛
𝑑𝑠} and {𝑓(𝑥

𝑛
)} are all

bounded.

Step 2. We claim that lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+1

‖ = 0.
From the definition of 𝑧

𝑛
and Lemma 15, for 𝑝 ∈ Θ, we

have

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
(

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑆
𝑛+1

𝑢
𝑛+1

𝑑𝑠 − 𝛼
𝑛+1

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑆
𝑛+1

𝑢
𝑛+1

𝑑𝑠)

− 𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑆
𝑛+1

𝑢
𝑛+1

𝑑𝑠 − 𝛼
𝑛+1

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑆
𝑛+1

𝑢
𝑛+1

𝑑𝑠)

− (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐼 − 𝛼
𝑛+1

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
))

×(
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑆
𝑛+1

𝑢
𝑛+1

𝑑𝑠 −
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝛼
𝑛
− 𝛼
𝑛+1

)(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑆
𝑛+1

𝑢
𝑛+1

𝑑𝑠 −
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛+1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) (𝑆
𝑛+1

𝑢
𝑛+1

− 𝑆
𝑛
𝑢
𝑛
) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑡
𝑛+1

−
1

𝑡
𝑛

)∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

+
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

𝑡
𝑛

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛+1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) (𝑆
𝑛+1

𝑢
𝑛+1

− 𝑆
𝑛
𝑢
𝑛
) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑡
𝑛+1

−
1

𝑡
𝑛

)∫

𝑡
𝑛

0

𝑇 (𝑠) (𝑆
𝑛
𝑢
𝑛
− 𝑆
𝑛
𝑝) 𝑑𝑠

+
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

𝑡
𝑛

𝑇 (𝑠) (𝑆
𝑛
𝑢
𝑛
− 𝑆
𝑛
𝑝) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛+1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑆𝑛+1𝑢𝑛+1 − 𝑆

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 +
2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡

𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛+1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑛+1𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩

+
2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡

𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛+1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(74)

First, we will show that if {𝑥
𝑛
} is bounded, then

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0 (75)

for 𝑘 ∈ {1, 2, . . . ,𝑀}.



10 Abstract and Applied Analysis

From Step 2 of the proof in [4], we have for 𝑘 ∈

{1, 2, . . . ,𝑀}

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘

𝑟
𝑘,𝑛+1

𝑥
𝑛
− 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (76)

For 𝑘 ∈ {1, 2, . . . ,𝑀}, notice that

I
𝑘

𝑛
= 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

𝐽
𝐹
𝑘−1

𝑟
𝑘−1,𝑛

⋅ ⋅ ⋅ 𝐽
𝐹
2

𝑟
2,𝑛

𝐽
𝐹
1

𝑟
1,𝑛

= 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

I
𝑘−1

𝑛
. (77)

It follows that
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

I
𝑘−1

𝑛
𝑥
𝑛
− 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛+1

I
𝑘−1

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

I
𝑘−1

𝑛
𝑥
𝑛
− 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛+1

I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘

𝑟
𝑘,𝑛+1

I
𝑘−1

𝑛
𝑥
𝑛
− 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛+1

I
𝑘−1

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

I
𝑘−1

𝑛
𝑥
𝑛
− 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛+1

I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘−1

𝑟
𝑘−1,𝑛

I
𝑘−2

𝑛
𝑥
𝑛
− 𝐽
𝐹
𝑘−1

𝑟
𝑘−1,𝑛+1

I
𝑘−2

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
I
𝑘−2

𝑛
𝑥
𝑛
−I
𝑘−2

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

I
𝑘−1

𝑛
𝑥
𝑛
− 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛+1

I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘−1

𝑟
𝑘−1,𝑛

I
𝑘−2

𝑛
𝑥
𝑛
− 𝐽
𝐹
𝑘−1

𝑟
𝑘−1,𝑛+1

I
𝑘−2

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
2

𝑟
2,𝑛

I
1

𝑛
𝑥
𝑛
− 𝐽
𝐹
2

𝑟
2,𝑛+1

I
1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
1

𝑟
1,𝑛

𝑥
𝑛
− 𝐽
𝐹
1

𝑟
1,𝑛+1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩
.

(78)

Therefore, from (76), we conclude (75).
Second, we estimate ‖𝑢

𝑛+1
− 𝑢
𝑛
‖. From 𝑢

𝑛+1
= I𝑀
𝑛+1

𝑥
𝑛+1

and 𝑢
𝑛
= I𝑀
𝑛
𝑥
𝑛
= 𝐽
𝐹
𝑀

𝑟
𝑀,𝑛

I𝑀−1
𝑛

𝑥
𝑛
, we obtain

𝐹
𝑀
(𝑢
𝑛+1

, 𝑦) +
1

𝑟
𝑀,𝑛+1

⟨𝑦 − 𝑢
𝑛+1

, 𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

⟩

≥ 0, ∀𝑦 ∈ 𝐶,

(79)

𝐹
𝑀
(𝑢
𝑛
, 𝑦) +

1

𝑟
𝑀,𝑛

⟨𝑦 − 𝑢
𝑛
, 𝑢
𝑛
−I
𝑀−1

𝑛
𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(80)

Taking 𝑦 = 𝑢
𝑛
in (79) and 𝑦 = 𝑢

𝑛+1
in (80), we have

𝐹
𝑀
(𝑢
𝑛+1

, 𝑢
𝑛
) +

1

𝑟
𝑀,𝑛+1

⟨𝑢
𝑛
− 𝑢
𝑛+1

, 𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

⟩ ≥ 0,

𝐹
𝑀
(𝑢
𝑛
, 𝑢
𝑛+1

) +
1

𝑟
𝑀,𝑛

⟨𝑢
𝑛+1

− 𝑢
𝑛
, 𝑢
𝑛
−I
𝑀−1

𝑛
𝑥
𝑛
⟩ ≥ 0.

(81)

So, from (A2), one has

⟨𝑢
𝑛+1

− 𝑢
𝑛
,
𝑢
𝑛
−I𝑀−1
𝑛

𝑥
𝑛

𝑟
𝑀,𝑛

−
𝑢
𝑛+1

−I𝑀−1
𝑛+1

𝑥
𝑛+1

𝑟
𝑀,𝑛+1

⟩ ≥ 0. (82)

Furthermore,

⟨𝑢
𝑛+1

− 𝑢
𝑛
, 𝑢
𝑛
−I
𝑀−1

𝑛
𝑥
𝑛
− (𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

)

+(1 −
𝑟
𝑀,𝑛

𝑟
𝑀,𝑛+1

)(𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

)⟩ ≥ 0.

(83)

Since lim
𝑛→∞

𝑟
𝑘,𝑛

> 0, we assume that there exists a real
number such that 𝑟

𝑘,𝑛
> 𝑎 > 0 for all 𝑛 ∈ 𝑁. Thus, we obtain

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑢
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
I
𝑀−1

𝑛
𝑥
𝑛
−I
𝑀−1

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝑟
𝑀,𝑛

𝑟
𝑀,𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
I
𝑀−1

𝑛
𝑥
𝑛
−I
𝑀−1

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
I
𝑀−1

𝑛+1
𝑥
𝑛
−I
𝑀−1

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+
1

𝑎

󵄨󵄨󵄨󵄨𝑟𝑀,𝑛+1 − 𝑟
𝑀,𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
I
𝑀−1

𝑛
𝑥
𝑛
−I
𝑀−1

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

+
1

𝑎

󵄨󵄨󵄨󵄨𝑟𝑀,𝑛+1 − 𝑟
𝑀,𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩
.

(84)

Third, we estimate ‖𝑆
𝑛+1

𝑢
𝑛
− 𝑆
𝑛
𝑢
𝑛
‖. It follows from (37) that

󵄩󵄩󵄩󵄩𝑆𝑛+1𝑢𝑛 − 𝑆
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑈𝑛+1,1𝑢𝑛 − 𝑈

𝑛,1
𝑢
𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝛼
1

1
𝑇
1
𝑈
𝑛+1,2

𝑢
𝑛
+ 𝛼
1

2
𝑈
𝑛+1,2

𝑢
𝑛
+ 𝛼
1

3
𝑢
𝑛

− (𝛼
1

1
𝑇
1
𝑈
𝑛,2
𝑢
𝑛
+ 𝛼
1

2
𝑈
𝑛,2
𝑢
𝑛
+ 𝛼
1

3
𝑢
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝛼
1

1
(𝑇
1
𝑈
𝑛+1,2

− 𝑇
1
𝑈
𝑛,2
) 𝑢
𝑛

+𝛼
1

2
(𝑈
𝑛+1,2

− 𝑈
𝑛,2
) 𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
1

1

󵄩󵄩󵄩󵄩(𝑇1𝑈𝑛+1,2 − 𝑇
1
𝑈
𝑛,2
) 𝑢
𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛼
1

2

󵄩󵄩󵄩󵄩(𝑈𝑛+1,2 − 𝑈
𝑛,2
) 𝑢
𝑛

󵄩󵄩󵄩󵄩

2

− 𝛼
1

1
𝛼
1

2

󵄩󵄩󵄩󵄩(𝑇1𝑈𝑛+1,2 − 𝑇
1
𝑈
𝑛,2
) 𝑢
𝑛

− (𝑈
𝑛+1,2

− 𝑈
𝑛,2
) 𝑢
𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛼
1

1
(
󵄩󵄩󵄩󵄩𝑈𝑛+1,2𝑢𝑛 − 𝑈

𝑛,2
𝑢
𝑛

󵄩󵄩󵄩󵄩

2

+ 𝜅
󵄩󵄩󵄩󵄩(𝐼 − 𝑇

1
) 𝑈
𝑛+1,2

𝑢
𝑛
− (𝐼 − 𝑇

1
) 𝑈
𝑛,2
𝑢
𝑛

󵄩󵄩󵄩󵄩

2

)

+ 𝛼
2

1

󵄩󵄩󵄩󵄩𝑈𝑛+1,2𝑢𝑛 − 𝑈
𝑛,2
𝑢
𝑛

󵄩󵄩󵄩󵄩

2

− 𝛼
1

1
𝛼
1

2

󵄩󵄩󵄩󵄩(𝐼 − 𝑇
1
) 𝑈
𝑛+1,2

𝑢
𝑛
− (𝐼 − 𝑇

1
) 𝑈
𝑛,2
𝑢
𝑛

󵄩󵄩󵄩󵄩

2
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≤ (1 − 𝛼
3

1
)
󵄩󵄩󵄩󵄩𝑈𝑛+1,2𝑢𝑛 − 𝑈

𝑛,2
𝑢
𝑛

󵄩󵄩󵄩󵄩

2

...

≤

𝑛

∏

𝑖=1

(1 − 𝛼
𝑖

3
)
󵄩󵄩󵄩󵄩𝑈𝑛+1,𝑛+1𝑢𝑛 − 𝑈

𝑛,𝑛+1
𝑢
𝑛

󵄩󵄩󵄩󵄩

2

,

(85)

which means that

󵄩󵄩󵄩󵄩𝑆𝑛+1𝑢𝑛 − 𝑆
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝐿
1

𝑛

∏

𝑖=1

(1 − 𝛼
𝑖

3
) , (86)

where 𝐿
1
≥ 0 is a constant such that ‖𝑈

𝑛+1,𝑛+1
𝑢
𝑛
−𝑈
𝑛,𝑛+1

𝑢
𝑛
‖ ≤

𝐿
1
, for all 𝑛 ∈ 𝑁.
Next, we estimate ‖𝑦

𝑛+1
− 𝑦
𝑛
‖. Substituting (84) and (86)

into (74), one has

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
I
𝑀−1

𝑛
𝑥
𝑛
−I
𝑀−1

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
1

𝑎

󵄨󵄨󵄨󵄨𝑟𝑀,𝑛+1 − 𝑟
𝑀,𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+ 𝐿
1

𝑛

∏

𝑖=1

(1 − 𝛼
𝑖

3
)

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛+1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡

𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(87)

From (61), we have

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝜀𝑛+1𝛾 (𝑓 (𝑥

𝑛+1
) − 𝑓 (𝑥

𝑛
))

+ (𝜀
𝑛+1

− 𝜀
𝑛
) (𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑧

𝑛
)

+ 𝛽
𝑛+1

(𝑥
𝑛+1

− 𝑥
𝑛
) + (𝛽

𝑛+1
− 𝛽
𝑛
) (𝑥
𝑛
− 𝑧
𝑛
)

+ ((1 − 𝛽
𝑛+1

) 𝐼 − 𝜀
𝑛+1

𝐴) (𝑧
𝑛+1

− 𝑧
𝑛
)
󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛+1

𝛾𝜂
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀

𝑛

󵄨󵄨󵄨󵄨

×
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑧

𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛+1

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽

𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛+1

− 𝜀
𝑛+1

𝛾)
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 .

(88)

Substitution (87) into (88) yields that
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝜀
𝑛+1

(𝛾 − 𝛾𝜂))
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

+ 𝐿
2
(
󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀

𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽

𝑛

󵄨󵄨󵄨󵄨 +
2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡

𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

+
󵄨󵄨󵄨󵄨𝑟𝑀,𝑛+1 − 𝑟

𝑀,𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛+1

󵄨󵄨󵄨󵄨)

+
󵄩󵄩󵄩󵄩󵄩
I
𝑀−1

𝑛
𝑥
𝑛
−I
𝑀−1

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝐿
1

𝑛

∏

𝑖=1

(1 − 𝛼
𝑖

3
) ,

(89)

where 𝐿
2
is an appropriate constant such that

𝐿
2
= max{sup

𝑛≥1

{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

} ,

sup
𝑛≥1

{
1

𝑎

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

−I
𝑀−1

𝑛+1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩
} ,

sup
𝑛≥1

{
󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥

𝑛
) − 𝐴𝑧

𝑛

󵄩󵄩󵄩󵄩} , sup
𝑛≥1

{
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩} ,

sup
𝑛≥1

{
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩}} .

(90)

It follows from (89) that
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤ 𝐿
2
(
󵄨󵄨󵄨󵄨𝜀𝑛+1 − 𝜀

𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽𝑛+1 − 𝛽

𝑛

󵄨󵄨󵄨󵄨 +
2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡

𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

+
󵄨󵄨󵄨󵄨𝑟𝑀,𝑛+1 − 𝑟

𝑀,𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼

𝑛+1

󵄨󵄨󵄨󵄨 )

+
󵄩󵄩󵄩󵄩󵄩
I
𝑀−1

𝑛
𝑥
𝑛
−I
𝑀−1

𝑛+1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝐿
1

𝑛

∏

𝑖=1

(1 − 𝛼
𝑖

3
) .

(91)

Consequently, from (75) and the conditions in Theorem 16,
we obtain

lim
𝑛→∞

sup (󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩) ≤ 0. (92)

Hence, by Lemma 9, one has

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (93)

Since 𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
)𝑦
𝑛
, this shows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

(1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 = 0. (94)

Step 3.We claim that lim
𝑛→∞

‖(1/𝑡
𝑛
) ∫
𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑢
𝑛
𝑑𝑠−𝑢
𝑛
‖ = 0.

Observing 𝑦
𝑛
= 𝜀
𝑛
𝛾𝑓(𝑥
𝑛
) +𝛽
𝑛
𝑥
𝑛
+ ((1−𝛽

𝑛
)𝐼 − 𝜀
𝑛
𝐴)𝑧
𝑛
, we

obtain
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 + 𝜀
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 ,

(95)
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which means that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 ≤
1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 +
𝜀
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝛾𝑓 (𝑥
𝑛
) − 𝐴𝑧

𝑛

󵄩󵄩󵄩󵄩 .

(96)

This together with the conditions (i) and (ii) imply that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 = 0. (97)

From (93) and (97), one has

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 ≤ lim
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩) = 0. (98)

For 𝑝 ∈ Θ, we see that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠) − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠)

− 𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

− 𝛼
𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
⟨(

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠) ,

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)(

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)⟩

+ 𝛼
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× ((
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
(
2V
𝑖

𝜔
2

𝑖

− 2𝜇
𝑖
− 𝛼
𝑛
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
𝑖
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(99)

It follows from (42) that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜀𝑛𝑟𝑓 (𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑧
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝)

+𝛽
𝑛
(𝑥
𝑛
− 𝑝) + 𝜀

𝑛
(𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

≤ ((1 − 𝛽
𝑛
− 𝜀
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩)
2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

= (1 − 𝛽
𝑛
− 𝜀
𝑛
𝛾)
2󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛽
𝑛
(1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)
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×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

≤ (1 − 𝛽
𝑛
− 𝜀
𝑛
𝛾)
2󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
(1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× (
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

)

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

= (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩ .

(100)

Substituting (99) into (100) yields that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝑎𝛼
𝑛
(
2V
1

𝜔
2

1

− 2𝜇
1
+ 𝛼
𝑛
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
1
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− (1 − 𝑎) 𝛼
𝑛
(
2V
2

𝜔
2

2

− 2𝜇
2
+ 𝛼
𝑛
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
2
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

+ (1 − 𝜀
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

= (1 − 𝜀
𝑛
𝛾)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×

{

{

{

− 𝛼
𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
(
2V
𝑖

𝜔
2

𝑖

− 2𝜇
𝑖
− 𝛼
𝑛
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
𝑖
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× { − 𝛼
𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
(
2V
𝑖

𝜔
2

𝑖

− 2𝜇
𝑖
− 𝛼
𝑛
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
𝑖
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

.

(101)

Furthermore,
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛾𝑛𝑥𝑛 + (1 − 𝛾

𝑛
)𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
) (1 − 𝜀

𝑛
𝛾)
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× (1 − 𝛽
𝑛
− 𝜀
𝑛
𝛾)

× {−𝛼
𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
(
2V
𝑖

𝜔
2

𝑖

− 2𝜇
𝑖
− 𝛼
𝑛
)𝐴
𝑖

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

+ (1 − 𝛾
𝑛
) 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛾
𝑛
) 𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2 (1 − 𝛾
𝑛
) 𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩ .

(102)

It follows that

(1 − 𝑒
1
) (1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× {

𝑁

∑

𝑖=1

𝛿
𝑖
(
2𝑔
1
V
𝑖

𝜔
2

𝑖

− 2𝑔
2
𝜇
𝑖
− 𝑔
2

2
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
𝑖
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

≤ (1 − 𝛾
𝑛
) (1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× {−𝛼
𝑛

𝑁

∑

𝑖=1

𝛿
𝑖
(
2V
𝑖

𝜔
2

𝑖

− 2𝜇
𝑖
− 𝛼
𝑛
)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
𝑖
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
) 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛾
𝑛
) 𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) , 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

+ 2 (1 − 𝛾
𝑛
) 𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩ .

(103)

From (94) and the condition (i), for 𝑖 = 1, 2, . . . , 𝑁, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
𝑖
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0.

(104)

Then, for 𝛿
𝑖
∈ (0, 1) and ∑

𝑁

𝑖=1
𝛿
𝑖
= 1,

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)(

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0.

(105)

On the other hand, one has

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑃
𝐶
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−𝛼
𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠) − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

− 𝛼
𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

− (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠) , 𝑧

𝑛
− 𝑝⟩

=
1

2
{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

− 𝛼
𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

− (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠

−𝛼
𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠
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− 𝛼
𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

− (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠) − (𝑧

𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

≤
1

2
{
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛
)

− 𝛼
𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

≤
1

2
{
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝛼
2

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠) ,

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛
⟩} ,

(106)

which means that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(107)

It follows that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

≤ (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩}

+ (1 − 𝜀
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) , 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

= (1 − 𝜀
𝑛
𝛾)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝜀
𝑛
𝛾)

× (1 − 𝛽
𝑛
− 𝜀
𝑛
𝛾)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)
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×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)(

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) , 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩ .

(108)
Therefore, from (108) and (102), one has

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
)

× {
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝜀
𝑛
𝛾)

× (1 − 𝛽
𝑛
− 𝜀
𝑛
𝛾)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

}

+ 2𝛼
𝑛
(1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× {

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 + 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩}

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝛾
𝑛
) (1 − 𝜀

𝑛
𝛾)

× (1 − 𝛽
𝑛
− 𝜀
𝑛
𝛾)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝛾

𝑛
) (1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× {

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝛾
𝑛
) 𝜀
2

𝑛

×
󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛾
𝑛
) 𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2 (1 − 𝛾
𝑛
) 𝛽
𝑛
𝜀
𝑛

× ⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩} .

(109)

Then,

(1 − 𝛾
𝑛
) (1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
(1 − 𝛾

𝑛
) (1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× {

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)(

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

−
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑝𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑆𝑛𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝛾
𝑛
) 𝜀
2

𝑛
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×
󵄩󵄩󵄩󵄩𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛾
𝑛
) 𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) , 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

+ 2 (1 − 𝛾
𝑛
) 𝛽
𝑛
𝜀
𝑛

× ⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩ } .

(110)

From (94), (105), and condition (i), one has

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (111)

Let 𝑝 ∈ Θ and 𝑘 ∈ {1, 2, . . . ,𝑀}. Since 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

is firmly
nonexpansive, we obtain

󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

I
𝑘−1

𝑛
𝑥
𝑛
− 𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩󵄩

2

= ⟨𝐽
𝐹
𝑘

𝑟
𝑘,𝑛

I
𝑘−1

𝑛
𝑥
𝑛
− 𝑝,I

𝑘−1

𝑛
𝑥
𝑛
− 𝑝⟩

=
1

2
(
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
I
𝑘−1

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

) .

(112)

It follows that

󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

. (113)

Consequently, from (108), one has

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) , 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

≤ (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

= (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝜀
𝑛
𝛾) 𝛽
𝑛

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

≤ (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

)

+ (1 − 𝜀
𝑛
𝛾) 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+ 2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩ .

(114)
Then,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛾𝑛𝑥𝑛 + (1 − 𝛾

𝑛
)𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
)

× { − (1 − 𝜀
𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

+2𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩} .

(115)
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That is,

(1 − 𝛾
𝑛
) − (1 − 𝜀

𝑛
𝛾) (1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)

×
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
) 𝜀
2

𝑛

󵄩󵄩󵄩󵄩𝑟𝑓(𝑥𝑛) − 𝐴𝑝
󵄩󵄩󵄩󵄩

2

+ 2 (1 − 𝛾
𝑛
) 𝜀
𝑛

× ⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑝) , 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩

+ 2 (1 − 𝛾
𝑛
) 𝛽
𝑛
𝜀
𝑛
⟨𝑥
𝑛
− 𝑝, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑝⟩ .

(116)

By condition (i) and (94), for 𝑘 ∈ {1, 2, . . . ,𝑀}, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (117)

Therefore, we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
0

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
I
𝑘−1

𝑛
𝑥
𝑛
−I
𝑘−2

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩󵄩
I
1

𝑛
𝑥
𝑛
−I
0

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(118)

From (117), one has

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (119)

Notice that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 , (120)

Applying (119) and (93), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (121)

Since
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 , (122)

this together with (94) yields that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 = 0. (123)

Consequently, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝑢

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (124)

Step 4. Letting 𝑧 = 𝑃
Θ
(𝐼 − 𝐴 + 𝑟𝑓)𝑧, we show

lim
𝑛→∞

sup ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑥
𝑛
− 𝑧⟩ ≤ 0. (125)

We know that 𝑃
Θ
(𝐼 −𝐴+ 𝑟𝑓) is a contraction. Indeed, for any

𝑥, 𝑦 ∈ 𝐻, we have
󵄩󵄩󵄩󵄩𝑃Θ (𝐼 − 𝐴 + 𝑟𝑓) 𝑥 − 𝑃

Θ
(𝐼 − 𝐴 + 𝑟𝑓) 𝑦

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝐴 + 𝑟𝑓) 𝑥 − (𝐼 − 𝐴 + 𝑟𝑓) 𝑦

󵄩󵄩󵄩󵄩

≤ (1 − (𝛾 − 𝑟𝜂))
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ,

(126)

and hence 𝑃
Θ
(𝐼 − 𝐴 + 𝑟𝑓) is a contraction due to (1 − (𝛾 −

𝑟𝜂)) ∈ (0, 1). Thus, Banach’s Contraction Mapping Principle
guarantees that 𝑃

Θ
(𝐼−𝐴+𝑟𝑓) has a unique fixed point, which

implies 𝑧 = 𝑃
Θ
(𝐼 − 𝐴 + 𝑟𝑓)𝑧.

We claim that 𝑧 ∈ 𝐹(Γ). Since {𝑢
𝑛
𝑖

} ⊂ {𝑢
𝑛
} is bounded in

𝐶, without loss of generality, we can assume that {𝑢
𝑛
𝑖

} ⇀ 𝑧.
Since𝐶 is closed and convex,𝐶 is weakly closed.Thuswe have
𝑧 ∈ 𝐶. For 0 ≤ 𝑠 < ∞, notice that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
𝑖

− 𝑇 (ℎ) 𝑢
𝑛
𝑖

󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝑛
𝑖

−
1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

−𝑇 (ℎ)
1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (ℎ)
1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠 − 𝑇 (ℎ) 𝑢
𝑛
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝑛
𝑖

−
1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

−𝑇 (ℎ)
1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(127)

It follows from (124) and Lemma 4 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛
𝑖

− 𝑇 (ℎ) 𝑢
𝑛
𝑖

󵄩󵄩󵄩󵄩󵄩
= 0. (128)

Thus, (128) and Lemma 5 assert that 𝑧 ∈ 𝐹(Γ). Since {𝑥
𝑛
𝑖

} ⊂

{𝑥
𝑛
} is bounded in 𝐶, without loss of generality, we can

assume that {𝑥
𝑛
𝑖

} ⇀ 𝜔. It follows from (94) that 𝑧
𝑛
𝑖

⇀ 𝜔.
Since𝐶 is closed and convex,𝐶 is weakly closed.Thuswe have
𝜔 ∈ 𝐶.

Let us show 𝜔 ∈ 𝐹(𝑆). For the sake of contradiction,
suppose that 𝜔 ∉ 𝐹(𝑆), that is, 𝑆𝜔 ̸= 𝜔. Since 𝑧 ∈ 𝐹(Γ), by
our assumption, we have 𝑇

𝑖
𝜔 ∈ 𝐹(Γ) and then 𝑆

𝑛
𝜔 ∈ 𝐹(Γ).

Hence (1/𝑡
𝑛
) ∫
𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝜔𝑑𝑠 = 𝑆

𝑛
𝜔. Therefore, by (124) and

Opial condition, we have

lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩󵄩𝑢𝑛𝑖 − 𝜔
󵄩󵄩󵄩󵄩󵄩

< lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩󵄩𝑢𝑛𝑖 − 𝑆𝜔
󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

inf {
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢
𝑛
𝑖

−
1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
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+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

−
1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝜔𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛
𝑖

𝜔 − 𝑆𝜔
󵄩󵄩󵄩󵄩󵄩
}

≤ lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩󵄩𝑢𝑛𝑖 − 𝜔
󵄩󵄩󵄩󵄩󵄩
,

(129)

which derives a contradiction. Thus, we obtain 𝜔 ∈ 𝐹(𝑆) =

∩
∞

𝑖=1
𝐹(𝑇
𝑖
).

Next, we claim that 𝜔 ∈ ∩
𝑀

𝑖=1
SEP(𝐹

𝑖
). Since 𝑢

𝑛
= I𝑘
𝑛
𝑥
𝑛

for 𝑘 = 1, 2, . . . ,𝑀, we obtain

𝐹
𝑘
(I
𝑘

𝑛
𝑥
𝑛
, 𝑦)

+
1

𝑟
𝑛

⟨𝑦 −I
𝑘

𝑛
𝑥
𝑛
,I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(130)

From (A2), one has

1

𝑟
𝑛

⟨𝑦 −I
𝑘

𝑛
𝑥
𝑛
,I
𝑘

𝑛
𝑥
𝑛
−I
𝑘−1

𝑛
𝑥
𝑛
⟩ ≥ 𝐹 (𝑦,I

𝑘

𝑛
𝑥
𝑛
) . (131)

Replacing 𝑛 by 𝑛
𝑖
, we have

⟨𝑦 −I
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

,
1

𝑟
𝑛
𝑖

(I
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

−I
𝑘−1

𝑛
𝑖

𝑥
𝑛
𝑖

)⟩ ≥ 𝐹
𝑘
(𝑦,I
𝑘

𝑛
𝑖

𝑥
𝑛
𝑖

) .

(132)

It follows from (1/𝑟
𝑛
𝑖

)(I𝑘
𝑛
𝑖

𝑥
𝑛
𝑖

−I𝑘−1
𝑛
𝑖

𝑥
𝑛
𝑖

) → 0 and I𝑘
𝑛
𝑖

𝑥
𝑛
𝑖

⇀

𝜔 that

𝐹
𝑘
(𝑦, 𝜔) ≤ 0, 𝑦 ∈ 𝐶, (133)

for 𝑘 = 1, 2, . . . ,𝑀.
Put 𝑧
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝜔 for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. Then,

we have 𝑧
𝑡
∈ 𝐶 and then 𝐹(𝑧

𝑡
, 𝜔) ≤ 0. Hence, from (A1) and

(A4), we have

0 = 𝐹
𝑘
(𝑧
𝑡
, 𝑧
𝑡
) ≤ 𝑡𝐹

𝑘
(𝑧
𝑡
, 𝑦) + (1 − 𝑡) 𝐹

𝑘
(𝑧
𝑡
, 𝑦)

≤ 𝑡𝐹
𝑘
(𝑧
𝑡
, 𝑦) ,

(134)

whichmeans𝐹
𝑘
(𝑧
𝑡
, 𝑦) ≥ 0. From (A3), we obtain𝐹

𝑘
(𝜔, 𝑦) ≥ 0

for 𝑦 ∈ 𝐶 and then 𝜔 ∈ SEP(𝐹
𝑘
) for 𝑘 = 1, 2, . . . ,𝑀, that is,

𝜔 ∈ ∩
𝑀

𝑖=1
SEP(𝐹

𝑘
).

Finally, we claim that 𝜔 ∈ ∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
).

We define the maximal monotone operator

𝑄𝑞
1
=

{{

{{

{

(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
) 𝑞
1
+ 𝑁
𝐶
𝑞
1
, 𝜔
1
∈ 𝐶,

0, 𝜔
1
∉ 𝐶.

(135)

Since𝐴
𝑖
is relaxed (𝜇

𝑖
, V
𝑖
)-cocoercive for 𝑖 = 1, 2, we have

⟨(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)𝑥 − (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)𝑦, 𝑥 − 𝑦⟩

=

𝑁

∑

𝑖=1

𝛿
𝑖
⟨𝐴
𝑖
𝑥 − 𝐴

𝑖
𝑦, 𝑥 − 𝑦⟩

≥

𝑁

∑

𝑖=1

𝛿
𝑖
(−𝜇
𝑖

󵄩󵄩󵄩󵄩𝐴 𝑖𝑥 − 𝐴
𝑖
𝑦
󵄩󵄩󵄩󵄩

2

+ V
𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

)

≥

𝑁

∑

𝑖=1

𝛿
𝑖
(V
𝑖
− 𝜇
𝑖
𝜔
𝑖

1
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

≥ 0,

(136)

which yields that ∑𝑁
𝑖=1

𝛿
𝑖
𝐴
𝑖
is monotone. Thus, 𝑄 is maximal

monotone. Let (𝑞
1
, 𝑞
2
) ∈ 𝐺(𝑄). Since 𝑞

2
− (∑
𝑁

𝑖=1
𝛿
𝑖
𝐴
𝑖
)𝑞
1
∈

𝑁
𝐶
𝑞
1
and 𝑧
𝑛
∈ 𝐶, we have

⟨𝑞
1
− 𝑧
𝑛
, 𝑞
2
− (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)𝑞
1
⟩ ≥ 0. (137)

On the other hand, it follows from 𝑧
𝑛

= 𝑃
𝐶
((1/𝑡
𝑛
)

∫
𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(∑
𝑁

𝑖=1
𝛿
𝑖
𝐴
𝑖
)(1/𝑡
𝑛
) ∫
𝑡
𝑛

0

𝑇(𝑠)𝑆
𝑛
𝑢
𝑛
𝑑𝑠) that

⟨𝑞
1
− 𝑧
𝑛
, 𝑧
𝑛

− (
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠 − 𝛼

𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

×
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠)⟩ ≥ 0,

(138)

and hence

⟨𝑞
1
− 𝑧
𝑛
,

𝑧
𝑛
− (1/𝑡

𝑛
) ∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠

𝛼
𝑛

+(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑆
𝑛
𝑢
𝑛
𝑑𝑠⟩ ≥ 0.

(139)
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It follows that

⟨𝑞
1
− 𝑧
𝑛
𝑖

, 𝑞
2
⟩

≥ ⟨𝑞
1
− 𝑧
𝑛
𝑖

, (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)𝑞
1
⟩

≥ ⟨𝑞
1
− 𝑧
𝑛
𝑖

, (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)𝑞
1
⟩

−⟨𝑞
1
− 𝑧
𝑛
𝑖

,

𝑧
𝑛
𝑖

− 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝛼
𝑛
𝑖

+(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

⟩

= ⟨𝑞
1
− 𝑧
𝑛
𝑖

, (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (𝑞
1
−

1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠)

−

𝑧
𝑛
𝑖

− (1/𝑡
𝑛
𝑖

) ∫
𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

𝛼
𝑛
𝑖

⟩

= ⟨𝑞
1
− 𝑧
𝑛
𝑖

, (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)(𝑞
1
− 𝑧
𝑛
𝑖

)⟩

+⟨𝑞
1
− 𝑧
𝑛
𝑖

, (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)(𝑧
𝑛
𝑖

− 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

)⟩

−⟨𝑞
1
− 𝑧
𝑛
𝑖

,

𝑧
𝑛
𝑖

− 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝛼
𝑛
𝑖

⟩

≥ ⟨𝑞
1
− 𝑧
𝑛
𝑖

, (

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)

× (𝑧
𝑛
𝑖

−
1

𝑡
𝑛
𝑖

∫

𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠)⟩

−⟨𝑞
1
− 𝑧
𝑛
𝑖

,

𝑧
𝑛
𝑖

− (1/𝑡
𝑛
𝑖

) ∫
𝑡
𝑛
𝑖

0

𝑇 (𝑠) 𝑆
𝑛
𝑖

𝑢
𝑛
𝑖

𝑑𝑠

𝛼
𝑛
𝑖

⟩,

(140)

which implies that

⟨𝑞
1
− 𝜔, 𝑞

2
⟩ ≥ 0. (141)

Since 𝑄 is maximal monotone, we obtain that 𝜔 ∈ 𝑄
−1

0.
From Lemma 8, we obtain 𝜔 ∈ VI(𝐶,∑𝑁

𝑖=1
𝛿
𝑖
𝐴
𝑖
), that is,

𝜔 ∈ (∩
𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)). Thus, 𝜔 ∈ Θ.

Since 𝑧 = 𝑃
Θ
(𝐼 − 𝐴 + 𝑟𝑓)𝑧, one has

lim
𝑛→∞

sup ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑥
𝑛
− 𝑧⟩

= lim
𝑖→∞

⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑥
𝑛
𝑖

− 𝑧⟩

= ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝜔 − 𝑧⟩

≤ 0.

(142)

Furthermore,

⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑦
𝑛
− 𝑧⟩ = ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑦

𝑛
− 𝑥
𝑛
⟩

+ ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑥
𝑛
− 𝑧⟩ .

(143)

From (93) and (142), we have

lim
𝑛→∞

sup ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑦
𝑛
− 𝑧⟩ ≤ 0. (144)

Step 5. Finally, we show that 𝑥
𝑛
converges strongly to 𝑧 =

𝑃
Θ
(𝐼 − 𝐴 + 𝑟𝑓)𝑧. Indeed, from (61) and (70), we obtain

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜀𝑛𝑟𝑓 (𝑥

𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑧
𝑛
− 𝑧

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑧)

+𝛽
𝑛
(𝑥
𝑛
− 𝑧) + 𝜀

𝑛
(𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑧)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑧) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑧)

+ 𝛽
𝑛
(𝑥
𝑛
− 𝑧) + 𝜀

𝑛
(𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑧) ,

𝑟𝑓 (𝑥
𝑛
) − 𝐴𝑝⟩

=
󵄩󵄩󵄩󵄩((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) (𝑧
𝑛
− 𝑧) + 𝛽

𝑛
(𝑥
𝑛
− 𝑧)

󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨(𝑦
𝑛
− 𝑧, 𝑟𝑓 (𝑥

𝑛
) − 𝐴𝑧⟩

≤ (1 − 𝛽
𝑛
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴)

1 − 𝛽
𝑛

(𝑧
𝑛
− 𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝑟𝜀
𝑛
⟨𝑦
𝑛
− 𝑧, 𝑓 (𝑥

𝑛
) − 𝑓 (𝑧)⟩

+ 2𝜀
𝑛
⟨𝑦
𝑛
− 𝑧, 𝑓 (𝑧) − 𝐴𝑧⟩
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≤
(1 − 𝛽

𝑛
− 𝜀
𝑛
𝛾)
2

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝑟𝜂𝜀
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

)

+ 2𝜀
𝑛
⟨𝑦
𝑛
− 𝑧, 𝑓 (𝑧) − 𝐴𝑧⟩

= (1 − (2𝛾 − 𝑟𝜂) +
(𝜀
𝑛
𝛾)
2

1 − 𝛽
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝑟𝜂𝜀
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2𝜀
𝑛
⟨𝑦
𝑛
− 𝑧, 𝑓 (𝑧) − 𝐴𝑧⟩ ,

(145)

which implies that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

≤ (1 −
2 (𝛾 − 𝑟𝜂) 𝜀

𝑛

1 − 𝑟𝜂𝜀
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
𝜀
𝑛

1 − 𝑟𝜂𝜀
𝑛

× {
𝛾
2

𝜀
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+2 ⟨𝑦
𝑛
− 𝑧, 𝑓 (𝑧) − 𝐴𝑧⟩} .

(146)

It follows from (146) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛾𝑛𝑥𝑛 + (1 − 𝛾

𝑛
)𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛾
𝑛
)

× {(1 −
2 (𝛾 − 𝑟𝜂) 𝜀

𝑛

1 − 𝑟𝜂𝜀
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
𝜀
𝑛

1 − 𝑟𝜂𝜀
𝑛

× (
𝛾
2

𝜀
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+2 ⟨𝑦
𝑛
− 𝑧, 𝑓 (𝑧) − 𝐴𝑧⟩)}

= (1 −
2 (1 − 𝛾

𝑛
) (𝛾 − 𝑟𝜂) 𝜀

𝑛

1 − 𝑟𝜂𝜀
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
(1 − 𝛾

𝑛
) 𝜀
𝑛

1 − 𝑟𝜂𝜀
𝑛

× (
𝛾
2

𝜀
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+2 ⟨𝑦
𝑛
− 𝑧, 𝑓 (𝑧) − 𝐴𝑧⟩) .

(147)

From condition (i) and (142), we know that
∞

∑

𝑖=1

2 (1 − 𝛾
𝑛
) (𝛾 − 𝑟𝜂) 𝜀

𝑛

1 − 𝑟𝜂𝜀
𝑛

= ∞,

lim
𝑛→∞

sup
(1 − 𝛾

𝑛
) 𝜀
𝑛

1 − 𝑟𝜂𝜀
𝑛

(
𝛾
2

𝜀
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+2 ⟨𝑦
𝑛
− 𝑧, 𝑓 (𝑧) − 𝐴𝑧⟩) ≤ 0.

(148)

we can conclude from Lemma 10 that 𝑥
𝑛
→ 𝑧 as 𝑛 → ∞.

This completes the proof of Theorem 16.

Theorem 17. Let 𝐶 be a nonempty closed convex subset of a
realHilbert space𝐻, and let𝐹

𝑘
, 𝑘 ∈ {1, 2, . . . ,𝑀} be bifunction

from 𝐶 × 𝐶 → 𝑅 satisfying (A1)–(A4). Let {𝑇
𝑖
}
∞

𝑖=1
be 𝑘
𝑖
-strict

pseudocontractive mappings of 𝐶 into self with 𝜅 = sup
𝑖
𝑘
𝑖

and let 𝜌
𝑗

= (𝛼
𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
) ∈ 𝐼 × 𝐼 × 𝐼, where 𝐼 = [0, 1],

𝛼
𝑗

1
+ 𝛼
𝑗

2
+ 𝛼
𝑗

2
= 1, 𝛼𝑗

1
+ 𝛼
𝑗

2
≤ 𝑏 < 1, and 𝛼

𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
∈ (𝜅, 1)

for all 𝑗 = 1, 2, . . .. For every 𝑛 ∈ 𝑁, let 𝑆
𝑛
and 𝑆 be 𝑆-

mapping generated by 𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
1
and 𝜌
𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
1
and

𝑇
𝑛
, 𝑇
𝑛−1

, . . ., and 𝜌
𝑛
, 𝜌
𝑛−1

, . . ., respectively. Let 𝐵 : 𝐶 → 𝐻 be
𝜔-Lipschitz continuous and relaxed (𝜇, V)-cocoercive mappings
with V − 𝜇𝜔

2

> 0, let 𝑓 be a contraction of 𝐻 into itself with
𝜂 ∈ (0, 1), and let 𝐴 be a strongly positive linear bounded self-
adjoint operator with the coefficients 𝛾 > 0 and 0 < 𝑟 < 𝛾/𝜂.
Assume that

Θ := (

∞

⋂

𝑖=1

{𝐹 (𝑇
𝑖
)}) ∩ (

𝑀

⋂

𝑘=1

SEP (𝐹
𝑘
)) ∩ VI (𝐶, 𝐵) . (149)

Let {𝑥
𝑛
} be a sequence generated by 𝑥

1
∈ 𝐶 and

𝑢
𝑛
= 𝐽
𝐹
𝑀

𝑟
𝑀,𝑛

𝐽
𝐹
𝑀−1

𝑟
𝑀−1,𝑛

⋅ ⋅ ⋅ 𝐽
𝐹
2

𝑟
2,𝑛

𝐽
𝐹
1

𝑟
1,𝑛

𝑥
𝑛
,

𝑧
𝑛
= 𝑃
𝐶
(𝑆
𝑛
𝑢
𝑛
− 𝛼
𝑛
𝐵𝑆
𝑛
𝑢
𝑛
) ,

𝑦
𝑛
= 𝜀
𝑛
𝑟𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑧
𝑛
,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝑦
𝑛
, ∀𝑛 ∈ 𝑁,

(150)

where {𝑆
𝑛
: 𝐶 → 𝐶} is the sequence defined by (37). If {𝜀

𝑛
},

{𝛽
𝑛
} are two sequences in (0, 1) and {𝛾

𝑛
} ⊂ [𝑐
1
, 𝑐
2
] ⊂ (0, 1) and
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{𝑟
𝑘,𝑛
}, for 𝑘 ∈ {1, 2, . . . ,𝑀} is a real sequence in (0,∞) satisfing

the following conditions:

(i) lim
𝑛→∞

𝜀
𝑛
= 0, ∑∞

𝑖=1
𝜀
𝑛
= ∞,

(ii) 0 < lim
𝑛→∞

inf 𝛽
𝑛

≤ lim
𝑛→∞

sup𝛽
𝑛

< 1 and
lim
𝑛→∞

|𝛽
𝑛+1

− 𝛽
𝑛
| = 0,

(iii) lim
𝑛→∞

inf 𝑟
𝑘,𝑛

> 0 and lim
𝑛→∞

|𝑟
𝑘,𝑛+1

−𝑟
𝑘,𝑛
| = 0, for

𝑘 ∈ {1, 2, . . . ,𝑀},
(iv) {𝛼

𝑛
} ⊂ [𝑔

1
, 𝑔
2
] ⊂ (0, (2(V − 𝜇𝜔

2

))/𝜔
2

) and
lim
𝑛→∞

|𝛼
𝑛+1

− 𝛼
𝑛
| = 0.

Then {𝑥
𝑛
} converges strongly to 𝑧 ∈ Θ, where 𝑧 is the unique

solution of variational inequality

lim
𝑛→∞

sup ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑝 − 𝑧⟩ ≤ 0, ∀𝑝 ∈ Θ, (151)

which is the optimality condition for the minimization problem

min
𝑧∈Θ

1

2
⟨𝐴𝑧, 𝑧⟩ − ℎ (𝑧) , (152)

where ℎ is a potential function for 𝑟𝑓 (i.e., ℎ󸀠(𝑧) = 𝑟𝑓(𝑧) for
𝑧 ∈ 𝐻).

Proof. By Theorem 16, for 𝑖 = 1, 2, . . . , 𝑁, letting 𝐴
𝑖
= 𝐵, we

can obtainTheorem 17.

Theorem 18. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻, and let 𝐹

𝑘
, 𝑘 ∈ {1, 2, . . . ,𝑀} be a

bifunction from 𝐶 × 𝐶 → 𝑅 satisfying (A1)–(A4). Let {𝑇
𝑖
}
∞

𝑖=1

be 𝑘
𝑖
-strict pseudo-contractive mappings of 𝐶 into self with

𝜅 = sup
𝑖
𝑘
𝑖
and let 𝜌

𝑗
= (𝛼
𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
) ∈ 𝐼×𝐼×𝐼, where 𝐼 = [0, 1],

𝛼
𝑗

1
+ 𝛼
𝑗

2
+ 𝛼
𝑗

2
= 1, 𝛼𝑗

1
+ 𝛼
𝑗

2
≤ 𝑏 < 1, and 𝛼

𝑗

1
, 𝛼
𝑗

2
, 𝛼
𝑗

2
∈ (𝜅, 1)

for all 𝑗 = 1, 2, . . .. For every 𝑛 ∈ 𝑁, let 𝑆
𝑛
and 𝑆 be 𝑆-

mapping generated by 𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
1
and 𝜌
𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
1
and

𝑇
𝑛
, 𝑇
𝑛−1

, . . ., and 𝜌
𝑛
, 𝜌
𝑛−1

, ⋅ ⋅ ⋅ , respectively. Let 𝐴
𝑖
: 𝐶 →

𝐻 be 𝜔
𝑖
-Lipschitz continuous and relaxed (𝜇

𝑖
, V
𝑖
)-cocoercive

mappings with V
𝑖
− 𝜇
𝑖
𝜔
2

𝑖
> 0, for 𝑖 = 1, 2, . . . , 𝑁, let 𝑓 be a

contraction of 𝐻 into itself with 𝜂 ∈ (0, 1), and let 𝐴 be is a
strongly positive linear bounded self-adjoint operator with the
coefficients 𝛾 > 0 and 0 < 𝑟 < 𝛾/𝜂. Assume that

Θ := (

∞

⋂

𝑖=1

{𝐹 (𝑇
𝑖
)}) ∩ EP (𝐹) ∩ (

𝑁

⋂

𝑖=1

VI (𝐶, 𝐴
𝑖
)) . (153)

Let {𝑥
𝑛
} be a sequence generated by 𝑥

1
∈ 𝐶 and

𝐹 (𝑢
𝑛
, 𝑦) +

1

𝑟
(𝑦 − 𝑢

𝑛
, 𝑢
𝑛
− 𝑥
𝑛
) ≥ 0,

𝑧
𝑛
= 𝑃
𝐶
(𝑆
𝑛
𝑢
𝑛
− 𝛼
𝑛
(

𝑁

∑

𝑖=1

𝛿
𝑖
𝐴
𝑖
)𝑆
𝑛
𝑢
𝑛
) ,

𝑦
𝑛
= 𝜀
𝑛
𝑟𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑧
𝑛
,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝑦
𝑛
, ∀𝑛 ∈ 𝑁,

(154)

where {𝑆
𝑛
: 𝐶 → 𝐶} is the sequence defined by (37) and 𝛿

𝑖
∈

(0, 1), ∑𝑁
𝑖=1

𝛿
𝑖
= 1. If {𝜀

𝑛
}, {𝛽
𝑛
} are two sequences in (0, 1) and

{𝛾
𝑛
} ⊂ [𝑐
1
, 𝑐
2
] ⊂ (0, 1) and {𝑟

𝑘,𝑛
}, for 𝑘 ∈ {1, 2, . . . ,𝑀} is a real

sequence in (0,∞) satisfing the following conditions:

(i) lim
𝑛→∞

𝜀
𝑛
= 0, ∑∞

𝑖=1
𝜀
𝑛
= ∞,

(ii) 0 < lim
𝑛→∞

inf 𝛽
𝑛

≤ lim
𝑛→∞

sup𝛽
𝑛

< 1 and
lim
𝑛→∞

|𝛽
𝑛+1

− 𝛽
𝑛
| = 0,

(iii) lim
𝑛→∞

inf 𝑟
𝑛
> 0 and lim

𝑛→∞
|𝑟
𝑛+1

− 𝑟
𝑛
| = 0,

(iv) {𝛼
𝑛
} ⊂ [𝑔

1
, 𝑔
2
] ⊂ (0, (2∑

𝑁

𝑖=1
𝛿
𝑖
(V
𝑖
−𝜇
𝑖
𝜔
2

𝑖
))/(∑
𝑁

𝑖=1
𝛿
𝑖
𝜔
2

𝑖
))

and lim
𝑛→∞

|𝛼
𝑛+1

− 𝛼
𝑛
| = 0.

Then {𝑥
𝑛
} converges strongly to 𝑧 ∈ Θ, where 𝑧 is the unique

solution of variational inequality

lim
𝑛→∞

sup ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑝 − 𝑧⟩ ≤ 0, ∀𝑝 ∈ Θ, (155)

which is the optimality condition for the minimization problem

min
𝑧∈Θ

1

2
⟨𝐴𝑧, 𝑧⟩ − ℎ (𝑧) , (156)

where ℎ is a potential function for 𝑟𝑓 (i.e., ℎ󸀠(𝑧) = 𝑟𝑓(𝑧) for
𝑧 ∈ 𝐻).

Proof. By Theorem 16, letting 𝑀 = 1 for all 𝑛 ≥ 1, we can
obtainTheorem 19.

Theorem 19. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻, and let 𝐹

𝑘
, 𝑘 ∈ {1, 2, . . . ,𝑀} be

a bifunction from 𝐶 × 𝐶 → 𝑅 satisfying (A1)–(A4). Let
𝐵 : 𝐶 → 𝐻 be 𝜔-Lipschitz continuous and relaxed (𝜇, V)-
cocoercive mappings with V − 𝜇𝜔

2

> 0, and let 𝑓 be a
contraction of 𝐻 into itself with 𝜂 ∈ (0, 1), and let 𝐴 be is a
strongly positive linear bounded self-adjoint operator with the
coefficients 𝛾 > 0 and 0 < 𝑟 < 𝛾/𝜂. Assume that

Θ := (

𝑀

⋂

𝑘=1

SEP (𝐹
𝑘
)) ∩ VI (𝐶, 𝐵) . (157)

Let {𝑥
𝑛
} be a sequence generated by 𝑥

1
∈ 𝐶 and

𝑢
𝑛
= 𝐽
𝐹
𝑀

𝑟
𝑀,𝑛

𝐽
𝐹
𝑀−1

𝑟
𝑀−1,𝑛

⋅ ⋅ ⋅ 𝐽
𝐹
2

𝑟
2,𝑛

𝐽
𝐹
1

𝑟
1,𝑛

𝑥
𝑛
,

𝑧
𝑛
= 𝑃
𝐶
(𝑢
𝑛
− 𝛼
𝑛
𝐵𝑢
𝑛
) ,

𝑦
𝑛
= 𝜀
𝑛
𝑟𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ ((1 − 𝛽

𝑛
) 𝐼 − 𝜀

𝑛
𝐴) 𝑧
𝑛
,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝑦
𝑛
, ∀𝑛 ∈ 𝑁.

(158)

If {𝜀
𝑛
}, {𝛽
𝑛
} are two sequences in (0, 1) and {𝛾

𝑛
} ⊂ [𝑐

1
, 𝑐
2
] ⊂

(0, 1) and {𝑟
𝑘,𝑛
}, for 𝑘 ∈ {1, 2, . . . ,𝑀} is a real sequence in

(0,∞) satisfing the following conditions:

(i) lim
𝑛→∞

𝜀
𝑛
= 0, ∑∞

𝑖=1
𝜀
𝑛
= ∞,

(ii) 0 < lim
𝑛→∞

inf 𝛽
𝑛

≤ lim
𝑛→∞

sup𝛽
𝑛

< 1 and
lim
𝑛→∞

|𝛽
𝑛+1

− 𝛽
𝑛
| = 0,

(iii) lim
𝑛→∞

inf 𝑟
𝑘,𝑛

> 0 and lim
𝑛→∞

|𝑟
𝑘,𝑛+1

−𝑟
𝑘,𝑛
| = 0, for

𝑘 ∈ {1, 2, . . . ,𝑀}.
(iv) {𝛼

𝑛
} ⊂ [𝑔

1
, 𝑔
2
] ⊂ (0, (2(V − 𝜇𝜔

2

))/𝜔
2

) and
lim
𝑛→∞

|𝛼
𝑛+1

− 𝛼
𝑛
| = 0.
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Then {𝑥
𝑛
} converges strongly to 𝑧 ∈ Θ, where 𝑧 is the unique

solution of variational inequality

lim
𝑛→∞

sup ⟨(𝑟𝑓 − 𝐴) 𝑧, 𝑝 − 𝑧⟩ ≤ 0, ∀𝑝 ∈ Θ, (159)

which is the optimality condition for the minimization problem

min
𝑧∈Θ

1

2
⟨𝐴𝑧, 𝑧⟩ − ℎ (𝑧) , (160)

where ℎ is a potential function for 𝑟𝑓 (i.e., ℎ󸀠(𝑧) = 𝑟𝑓 (𝑧) for
𝑧 ∈ 𝐻).

Proof. By Theorem 17, letting 𝑇
𝑛
= 𝐼 for all 𝑛 ≤ 1, we can

obtainTheorem 19.
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