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This paper is devoted to a stochastic retarded reaction-diffusion equation on all d-dimensional space with additive white noise.
We first show that the stochastic retarded reaction-diffusion equation generates a random dynamical system by transforming this
stochastic equation into a random one through a tempered stationary random homeomorphism. Then, we establish the existence
of a random attractor for the random equation. And the existence of a random attractor for the stochastic equation follows from
the conjugation relation between two random dynamical systems. The pullback asymptotic compactness is proved by uniform
estimates on solutions for large space and time variables. These estimates are obtained by a cut-off technique.

1. Introduction

The study of stochastic functional differential equations is
motivated by the fact that, when one wants to model some
evolution phenomena arising in physics, chemistry, biology,
and other sciences, some hereditary characteristics such
as aftereffect, time-lag, and time delay can appear in the
variables. On the other hand, one of the most interest-
ing problems concerning stochastic functional differential
equations is to understood the asymptotic behavior of the
solutions when time grows to infinite, since it can provide
useful information about the future of the phenomenon
described in the model.

It is known that the asymptotic behavior of random
systems can be captured by a random attractor, which was
introduced in [1, 2] as an extension of the attractor theory of
deterministic systems in [3–5]. For stochastic PDEs without
any hereditary features, the existence of random attractors
has been investigated by many authors; see, for example, [6–
20] and the references therein. However, this problem is not
well studied in the case of stochastic retarded PDEs.

In this paper, we investigate the asymptotic behavior
of solutions to the following stochastic retarded reaction-

diffusion equation with additive noise defined in the entire
space R𝑑:

𝑑𝑢 + (𝜆𝑢 − Δ𝑢) 𝑑𝑡 = (𝑓 (𝑢
𝑡
) (𝑥) + 𝑔 (𝑥)) 𝑑𝑡 + 𝑑𝑊, (1)

where 𝜆 is a positive constant, 𝑔 is a given function defined on
R𝑑, 𝑓 is a nonlinear functional satisfying certain conditions,
and𝑊 is a two-sided infinite dimensionalWiener process on
a probability space which will be specified later.

We note that the asymptotic behavior of several deter-
ministic retarded PDEs on bounded domains was studied in
[21–25], and the case of retarded Navier-Stokes equations on
some unbounded domains was treated in [26]. The random
attractor for retarded stochastic differential equations was
considered in [27] by monotone methods. Recently, in the
case of stochastic retarded lattice dynamical systems defined
on the entire integer set, the existence of a random attractor
was proved in [28, 29]. Here we prove the existence of
a random attractor for the stochastic retarded reaction-
diffusion equation defined inR𝑑. It is worth mentioning that
the asymptotic behavior of the nonretarded version of (1) was
investigated recently in [9].
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Notice that Sobolev embeddings are not compact when
domains are unbounded. This introduces a major obstacle
for proving existence of attractors for PDEs on unbounded
domains. Under certain circumstances, the tail-estimates
method can be used to deal with the problem caused by the
unboundedness of domains. This approach was developed in
[30, 31] for deterministic nonretardedPDEs andused in [9–11,
13, 17, 18] for stochastic systems. At the same time, the present
of delays is another obstacle, which makes phase spaces not
reflexive and increases the difficulty of uniform estimates.
In this paper, we will develop a tail-estimates approach
for stochastic retarded PDEs on unbounded domains and
prove the existence of a compact random attractor for
the stochastic retarded reaction-diffusion equation (1), in
particular, defined on the unbounded domain R𝑑. The idea
is based on the observation that the solutions of the equation
are uniformly small when space and time variables are
sufficiently large. It is clear that our method can be used for a
variety of other equations, as it was for the nonretarded case.

For convenience, hereafter we adopt the following nota-
tions. We denote by ‖ ⋅ ‖ and (⋅, ⋅) the norm and the inner
product in 𝐿2

(R𝑑
). Otherwise, the norm of a general Banach

space𝑋 is written as ‖ ⋅ ‖𝑋. For ] > 0, letC denote the Banach
space of all continuous functions 𝜉 : [−], 0] → 𝐿

2
(R𝑑

)

endowed with the supremum norm ‖𝜉‖C = sup
𝑠∈[−],0]‖𝜉(𝑠)‖.

For any real number 𝑎 ≤ 𝑏, 𝑡 ∈ [𝑎, 𝑏], and any continuous
function 𝑢 : [𝑎 − ], 𝑏] → 𝐿

2
(R𝑑

), 𝑢𝑡 denotes the element of
C given by 𝑢𝑡

(𝑠) = 𝑢(𝑡 + 𝑠) for 𝑠 ∈ [−], 0].
The rest of the paper is organized as follows. In the next

section, we introduce basic concepts concerning random
dynamical systems and random attractors. In Section 3,
we define a continuous random dynamical system for the
stochastic retarded reaction-diffusion equation on R𝑑. The
existence of the random attractor is given in Section 4.

2. Preliminaries

In this section, we introduce some basic concepts related to
random attractors for randomdynamical systems.The reader
is referred to [1, 2, 6, 32–34] for more details.

Let (𝑋, ‖ ⋅ ‖𝑋) be a separable Banach space with Borel 𝜎-
algebraB(𝑋) and (Ω,F,P) a probability space.

Definition 1. (Ω,F,P, (𝜗𝑡)𝑡∈R) is called a metric dynamical
system if 𝜗 : R × Ω → Ω is (B(R) ⊗ F,F)-measurable,
and 𝜗0 is the identity on Ω, 𝜗𝑠+𝑡 = 𝜗𝑡 ∘ 𝜗𝑠 for all 𝑠,𝑡 ∈ R and
𝜗𝑡P = P for all 𝑡 ∈ R.

Definition 2. A set 𝐴 ⊂ Ω is called invariant with respect to
(𝜗𝑡)𝑡∈R, if, for all 𝑡 ∈ R, it holds that

𝜗
−1

𝑡
𝐴 = 𝐴. (2)

Definition 3. A continuous random dynamical system on
𝑋 over a metric dynamical system (Ω,F,P, (𝜗𝑡)𝑡∈R) is a
mapping

𝜑 : R
+
× Ω × 𝑋 󳨀→ 𝑋, (𝑡, 𝜔, 𝑥) 󳨀→ 𝜑 (𝑡, 𝜔, 𝑥) , (3)

which is (B(R+
) ⊗F ⊗B(𝑋),B(𝑋))-measurable, and, for

all 𝜔 ∈ Ω,

(i) 𝜑(𝑡, 𝜔, ⋅) : 𝑋 → 𝑋 is continuous for all 𝑡 ∈ R+;
(ii) 𝜑(0, 𝜔, ⋅) is the identity on𝑋;
(iii) 𝜑(𝑡 + 𝑠, 𝜔, ⋅) = 𝜑(𝑡, 𝜗𝑠𝜔, ⋅) ∘ 𝜑(𝑠, 𝜔, ⋅) for all 𝑠, 𝑡 ∈ R+.

Definition 4. A random set 𝐷 is a multivalued mapping 𝐷 :

Ω → B(𝑋) such that, for every 𝑥 ∈ 𝑋, the mapping
𝜔 → 𝑑(𝑥,𝐷(𝜔)) is measurable, where 𝑑(𝑥, 𝐵) is the distance
between the element 𝑥 and the set 𝐵 ⊂ 𝑋. It is said that the
random set is bounded (resp., closed or compact) if 𝐷(𝜔) is
bounded (resp., closed or compact) for P a.e. 𝜔 ∈ Ω.

Definition 5. A random variable 𝑟 : Ω → (0,∞) is called
tempered with respect to (𝜗𝑡)𝑡∈R, if for P a.e. 𝜔 ∈ Ω

lim
𝑡→∞

𝑒
−𝛽𝑡
𝑟 (𝜗−𝑡𝜔) = 0 ∀𝛽 > 0. (4)

A random set 𝐷 is called tempered if 𝐷(𝜔) is contained in a
ball with center zero and tempered radius 𝑟(𝜔) for all 𝜔 ∈ Ω.

Remark 6. If 𝑟 > 0 is tempered, then

(1) for any 𝜏 ∈ R, 𝑟(𝜗𝜏⋅) is tempered;
(2) for any 𝛼 > 0 and P a.e. 𝜔 ∈ Ω

𝑅 (𝜔) = ∫

0

−∞

𝑒
𝛼𝑠
𝑟 (𝜗𝑠𝜔) 𝑑𝑠 < ∞, (5)

and 𝑅 is tempered.

Moreover, if, for P a.e. 𝜔 ∈ Ω, 𝑟(𝜗𝑡𝜔) is continuous in 𝑡,
then 𝑅(𝜗𝑡𝜔) is continuous in 𝑡 for such 𝜔, and, for any ] > 0,
sup

𝜎∈[−],0]𝑟(𝜗𝜎⋅) is tempered.
Hereafter, we always assume that 𝜑 is a continuous

random dynamical system over (Ω,F,P, (𝜗𝑡)𝑡∈R), and D is
a collection of random subsets of𝑋.

Definition 7. A random set 𝐾 is called a random absorbing
set in D if, for every 𝐵 ∈ D and P a.e. 𝜔 ∈ Ω, there exists
𝑡𝐵(𝜔) > 0 such that

𝜑 (𝑡, 𝜗−𝑡𝜔, 𝐵 (𝜗−𝑡𝜔)) ⊆ 𝐾 (𝜔) ∀𝑡 ≥ 𝑡𝐵 (𝜔) . (6)

Definition 8. A random setA is called aD-random attractor
(D-pullback attractor) for 𝜑 if the following hold:

(i) A is a random compact set;
(ii) A is strictly invariant; that is, for P a.e. 𝜔 ∈ Ω and all

𝑡 ≥ 0,

𝜑 (𝑡, 𝜔,A (𝜔)) = A (𝜗𝑡𝜔) ; (7)

(iii) A attracts all sets in D; that is, for all 𝐵 ∈ D and P

a.e. 𝜔 ∈ Ω,

lim
𝑡→∞

𝑑 (𝜑 (𝑡, 𝜗−𝑡𝜔, 𝐵 (𝜗−𝑡𝜔)) ,A (𝜔)) = 0, (8)
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where 𝑑 is the Hausdorff semimetric given by
𝑑(𝐸, 𝐹) = sup

𝑥∈𝐸
inf𝑦∈𝐹‖𝑥 − 𝑦‖𝑋 for any 𝐸 ⊆ 𝑋 and

𝐹 ⊆ 𝑋.

We remark that if A ∈ D, then this attractor is unique
[33].

Definition 9. 𝜑 is said to be D-pullback asymptotically
compact in 𝑋 if, for all 𝐵 ∈ D and P a.e. 𝜔 ∈ Ω, {𝜑(𝑡𝑛,
𝜗−𝑡
𝑛

𝜔, 𝑥𝑛)}
∞

𝑛=1
has a convergent subsequence in 𝑋 whenever

𝑡𝑛 → ∞, and 𝑥𝑛 ∈ 𝐵(𝜗−𝑡
𝑛

𝜔).

The following existence result on a random attractor for
a continuous random dynamical system can be found in [2,
34]. First, recall that a collectionD of random subsets of𝑋 is
called inclusion closed if whenever 𝐸 is an arbitrary random
set and 𝐹 is inD with 𝐸(𝜔) ⊂ 𝐹(𝜔) for P a.e. 𝜔 ∈ Ω, then 𝐸
must belong toD.

Proposition 10. Let D be an inclusion-closed collection of
random subsets of 𝑋 and 𝜑 a continuous random dynamical
system on 𝑋 over (Ω,F,P, (𝜗𝑡)𝑡∈R). Suppose that 𝐾 ∈ D is a
closed random absorbing set for 𝜑 in D and 𝜑 is D-pullback
asymptotically compact in𝑋. Then 𝜑 has a uniqueD-random
attractorA which is given by

A (𝜔) = ⋂

𝜏≥0

⋃

𝑡≥𝜏

𝜑 (𝑡, 𝜗−𝑡𝜔,𝐾 (𝜗−𝑡)). (9)

In this paper, we will take D as the collection of all
tempered random subsets of C and prove the stochastic
retarded reaction-diffusion equation on R𝑑 has aD-random
attractor.

3. Stochastic Retarded Reaction-Diffusion
Equations on R𝑑 with Additive Noise

In this section, we show that there is a continuous ran-
dom dynamical system generated by the stochastic retarded
reaction-diffusion equation on R𝑑 with additive white noise:

𝑑𝑢 + (𝜆𝑢 − Δ𝑢) 𝑑𝑡 = (𝑓 (𝑢
𝑡
) (𝑥) + 𝑔 (𝑥)) 𝑑𝑡 + 𝑑𝑊,

𝑥 ∈ R
𝑑
, 𝑡 > 0,

(10)

with the initial condition

𝑢 (𝑡, 𝑥) = 𝑢
0
(𝑡, 𝑥) , 𝑥 ∈ R

𝑑
, 𝑡 ∈ [−], 0] . (11)

Here 𝜆 is a positive constant, 𝑔 is a given function in 𝐿2
(R𝑑

),
𝑊 is an 𝐿

2
(R𝑑

)-valued two-sided Wiener process with a
symmetric nonnegative finite trace covariance operator 𝑄
defined on a probability space which will be specified below,
and 𝑓 : C → 𝐿

2
(R𝑑

) is a continuous mapping satisfying the
following conditions:

(A1) 𝑓(0) = 0;
(A2) there exists a positive continuous function 𝑙𝑓(𝑟) with

lim
𝑟→∞

𝑙𝑓 (𝑟)

𝑟𝑘0
= 0 (12)

for some positive integer 𝑘0 such that, for all 𝜉, 𝜂 ∈ C
with ‖𝜉‖ ≤ 𝑟 and ‖𝜂‖ ≤ 𝑟,

󵄩󵄩󵄩󵄩𝑓 (𝜉) − 𝑓 (𝜂)
󵄩󵄩󵄩󵄩 ≤ 𝑙𝑓 (𝑟)

󵄩󵄩󵄩󵄩𝜉 − 𝜂
󵄩󵄩󵄩󵄩C; (13)

(A3) there exist positive constants 𝛼0 and 𝑐𝑓 such that, for
all 𝛼 ∈ (0, 𝛼0), 𝑡 > 0, 𝑢 ∈ 𝐶([−], 𝑡]; 𝐿2

(R𝑑
)), and

𝑥 ∈ R𝑑,

∫

𝑡

0

𝑒
𝛼𝑠󵄨󵄨󵄨󵄨𝑓 (𝑢

𝑠
) (𝑥)

󵄨󵄨󵄨󵄨
2
𝑑𝑠 ≤ 𝑐

2

𝑓
∫

𝑡

−]
𝑒
𝛼𝑠
|𝑢 (𝑠) (𝑥)|

2
𝑑𝑠; (14)

(A4) 𝜆 > 𝑐𝑓.

In the sequel, we consider the probability space (Ω,F,P)
where

Ω = {𝜔 ∈ 𝐶 (R, 𝐿
2
(R

𝑑
)) : 𝜔 (0) = 0} , (15)

F is the Borel 𝜎-algebra induced by the compact-open
topology of Ω, and P the corresponding Wiener measure on
(Ω,F) with respect to the covariance operator 𝑄. Let

𝜗𝑡𝜔 (⋅) = 𝜔 (⋅ + 𝑡) − 𝜔 (𝑡) , 𝑡 ∈ R. (16)

Then (Ω,F,P, (𝜗𝑡)𝑡∈R) is an ergodic metric dynamical sys-
tem. Since the above probability space is canonical, we have

𝑊(𝑡, 𝜔) = 𝜔 (𝑡) , 𝑊 (𝑡, 𝜗𝑠𝜔) = 𝑊 (𝑡 + 𝑠, 𝜔) − 𝑊 (𝑠, 𝜔) .

(17)

Similar to PropositionA.1 in [34], we can find that there exists
a full P-measure {𝜗𝑡}𝑡∈R-invariant set Ω̃ ∈ F such that for
each 𝜔 ∈ Ω̃

lim
𝑡→±∞

‖𝑊 (𝑡, 𝜔)‖

𝑡
= 0. (18)

LetF be the P-completion ofF, and let

F𝑡 = ⋁

𝑠≤𝑡

F
𝑡

𝑠
, 𝑡 ∈ R, (19)

with

F
𝑡

𝑠
= 𝜎 {𝑊 (𝜏2) − 𝑊(𝜏1) : 𝑠 ≤ 𝜏1 ≤ 𝜏2 ≤ 𝑡} ∨N, (20)

where 𝜎{𝑊(𝜏2) − 𝑊(𝜏1) : 𝑠 ≤ 𝜏1 ≤ 𝜏2 ≤ 𝑡} is the smallest
𝜎-algebra generated by the random variable 𝑊(𝜏2) − 𝑊(𝜏1)

for all 𝜏1, 𝜏2 such that 𝑠 ≤ 𝜏1 ≤ 𝜏2 ≤ 𝑡 andN is the collection
of P-null sets ofF.

Note that

𝜗
−1

𝜏
F

𝑡

𝑠
= F

𝑡+𝜏

𝑠+𝜏
, (21)

so (Ω,F,P, (𝜗𝑡)𝑡∈R, (F
𝑡

𝑠
)𝑠≤𝑡) is a filtered metric dynamical

system (see [32, pages 72 and 91] for more details). In
addition, it is important to note that the measurability of 𝜗
is not true if we replace F by its completion; see [32, page
547] for details.
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In this paper, the solution of problem (10)-(11) is inter-
preted in a mild sense:

𝑢 (𝑡) = 𝑆 (𝑡) 𝑢
0
(0) + ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝑓 (𝑢
𝑠
) + 𝑔) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑑𝑊 (𝑠) , 𝑡 > 0,

𝑢 (𝑡) = 𝑢
0
(𝑡) , 𝑡 ∈ [−], 0] ,

(22)

P a.s. for any 𝑢0
∈ C, where 𝑆(𝑡) is the analytic semigroup

on 𝐿2
(R𝑑

) generated by Δ−𝜆𝐼. By the theory in [35], we deal
with (22) on the complete probability space (Ω,F,P).

We now associate a continuous random dynamical sys-
tem with the stochastic retarded reaction-diffusion equation
(10)-(11) over (Ω,F,P, (𝜗𝑡)𝑡∈R). To this end, we introduce an
auxiliary Ornstein-Uhlenbeck process on (Ω,F,P, (𝜗𝑡)𝑡∈R)

and transform the stochastic retarded reaction-diffusion
equation into a random one. Let

𝑧 (𝑡, 𝜔)

=
{

{

{

∫

𝑡

−∞

(Δ − 𝜆𝐼) 𝑆 (𝑡 − 𝑠) (𝑊 (𝑠, 𝜔) − 𝑊 (𝑡, 𝜔)) 𝑑𝑠, 𝜔 ∈ Ω̃,

0, 𝜔 ∉ Ω̃.

(23)

Then by (18), (23) is well defined. The process 𝑧(𝑡), 𝑡 ∈ R, is a
stationary, Gaussian process. By Lemma 5.13 in [35], we can
see that it is a mild solution of the linear equation

𝑑𝑧 (𝑡) = (Δ − 𝜆𝐼) 𝑧 (𝑡) 𝑑𝑡 + 𝑑𝑊 (𝑡) . (24)

That is, for all 𝑡 ∈ R and P a.s.

𝑧 (𝑡) = ∫

𝑡

−∞

𝑆 (𝑡 − 𝑠) 𝑑𝑊 (𝑠) . (25)

Moreover, the random variable ‖𝑧(0, 𝜔)‖ is tempered, and, for
each 𝜔 ∈ Ω, the mapping 𝑡 → 𝑧(𝑡, 𝜔) is continuous.

Setting V(𝑡) = 𝑢(𝑡) − 𝑧(𝑡) for 𝑡 ≥ −] in (22), then by (25),
we obtain a deterministic equation, P a.s. inΩ,

V (𝑡) = 𝑆 (𝑡) V0
(0) + ∫

𝑡

0

𝑆 (𝑡 − 𝑠) (𝑓 (V𝑠
+ 𝑧

𝑠
) + 𝑔) 𝑑𝑠, 𝑡 > 0,

V (𝑡) = V0
(𝑡) , 𝑡 ∈ [−], 0] ,

(26)

which is the mild form of the evolution equation

𝑑V

𝑑𝑡
= ΔV − 𝜆V + 𝑓 (V𝑡

+ 𝑧
𝑡
) + 𝑔, (27)

with the initial condition

V (𝑡) = V0
(𝑡) , 𝑡 ∈ [−], 0] . (28)

Here V0
(𝑡) = 𝑢

0
(𝑡) − 𝑧

0
(𝑡, 𝜔), 𝑡 ∈ [−], 0].

Problem (27)-(28) is a deterministic partial functional
differential equation with random coefficients, which can be
solved pathwise. We now establish the following result for
problem (27)-(28).

Theorem 11. Let𝑇 > 0 and𝜔 ∈ Ω be fixed.Then the following
properties hold:

(1) for each V0
∈ C, problem (27)-(28) has a unique mild

solution V(⋅, 𝜔, V0
) that belongs to

𝐶 ([−], 𝑇] ; 𝐿2
(R

𝑑
)) ∩𝑊

1,2
(𝜀, 𝑇; L2

(R
𝑑
))

∩ 𝐿
2
(𝜀, 𝑇;𝐻

2
(R

𝑑
)) ,

(29)

for any 𝜀 ∈ (0, 𝑇), and for a.e. 𝑡 ∈ [0, 𝑇]

𝑑V

𝑑𝑡
= ΔV − 𝜆V + 𝑓 (V𝑡

+ 𝑧
𝑡
) + 𝑔. (30)

(2) Let V1(⋅, 𝜔, V
0

1
) and V2(⋅, 𝜔, V

0

2
) be the mild solutions

of problem (27)-(28) for the initial data V0

1
and V0

2
,

respectively. Then there exists a constant 𝑐(𝑇) > 0 such
that for all 𝑡 ∈ [0, 𝑇]

󵄩󵄩󵄩󵄩󵄩
V𝑡

1
(⋅, 𝜔, V0

1
) − V𝑡

2
(⋅, 𝜔, V0

2
)
󵄩󵄩󵄩󵄩󵄩C

≤
󵄩󵄩󵄩󵄩󵄩
V0

1
− V0

2

󵄩󵄩󵄩󵄩󵄩C
𝑒
(𝑐(𝑇)−𝜆)𝑡+𝜆]

. (31)

Proof. (1) By (A1)-(A2), following the same lines of Theorem
6.1.4 in [36], one can show that, for each V0

∈ C, there exists a
𝑇max ≤ ∞ such that (26) has a unique solution V on [0, 𝑇max).
Moreover, if 𝑇max < ∞, then

lim sup
𝑡↑𝑇max

󵄩󵄩󵄩󵄩󵄩
V𝑡󵄩󵄩󵄩󵄩󵄩C

= ∞. (32)

We prove now that this local solution is a global one. For fixed
𝑇 ∈ (0, 𝑇max), by regularity of mild solutions for an analytic
semigroup [37, page 145], we inform that

V ∈ 𝐶 ([−], 𝑇] ; 𝐿2
(R

𝑑
)) ∩𝑊

1,2
(𝜀, 𝑇; 𝐿

2
(R

𝑑
))

∩ 𝐿
2
(𝜀, 𝑇;𝐻

2
(R

𝑑
)) ,

(33)

for any 𝜀 ∈ (0, 𝑇), and (27) holds for a.e. 𝑡 ∈ [0, 𝑇]. Then,
taking the inner product of (27) with V in 𝐿2

(R𝑑
), we get that

1

2

𝑑

𝑑𝑡
‖V‖2 + 𝜆‖V‖2 + ‖∇V‖2 = (𝑓 (V𝑡

+ 𝑧
𝑡
) , V) + (𝑔, V) .

(34)

By (A4), we can choose 𝛽 > 0 small enough such that 2𝜆 >
2𝑐𝑓 + 𝛽. Using the Young inequality, we find that

(𝑓 (V𝑡
+ 𝑧

𝑡
) , V)

≤
󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄩󵄩󵄩󵄩󵄩
‖V‖ ≤

𝑐𝑓

2
‖V‖2 +

1

2𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄩󵄩󵄩󵄩󵄩

2

,

(𝑔, V) ≤ 󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 ‖V‖ ≤

𝛽

2
‖V‖2 +

1

2𝛽

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
.

(35)

Then it follows from (34) and (35) that

𝑑

𝑑𝑡
‖V‖2 + 2‖∇V‖2 ≤ − (2𝜆 − 𝑐𝑓 − 𝛽) ‖V‖

2

+
1

𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄩󵄩󵄩󵄩󵄩

2

+
1

𝛽

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
.

(36)
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Choose 𝛼 ∈ (0, 𝛼0) small enough such that 2𝜆 > 2𝑐𝑓 + 𝛼 + 𝛽.
Then by (36), we obtain

𝑑

𝑑𝑡
(𝑒

𝛼𝑡
‖V‖2) + 2𝑒𝛼𝑡

‖∇V‖2

≤ − (2𝜆 − 𝑐𝑓 − 𝛼 − 𝛽) 𝑒
𝛼𝑡
‖V‖2

+
𝑒
𝛼𝑡

𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄩󵄩󵄩󵄩󵄩

2

+
𝑒
𝛼𝑡

𝛽

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
.

(37)

Now, we can also choose 𝛾 > 0 such that 2𝜆 > (2+𝛾)𝑐𝑓+𝛼+𝛽.
Integrating (37) over [0, 𝑡] (𝑡 ∈ [0, 𝑇]) leads to

𝑒
𝛼𝑡
‖V (𝑡)‖2 ≤ ‖V (0)‖2 − (2𝜆 − 𝑐𝑓 − 𝛼 − 𝛽)∫

𝑡

0

𝑒
𝛼𝑠
‖V (𝑠)‖2𝑑𝑠

+
1

𝑐𝑓

∫

𝑡

0

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑓 (V

𝑠
+ 𝑧

𝑠
)
󵄩󵄩󵄩󵄩
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛽
∫

𝑡

0

𝑒
𝛼𝑠
𝑑𝑠.

(38)

Using the Young inequality and (A3), we find that

1

𝑐𝑓

∫

𝑡

0

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑓 (V

𝑠
+ 𝑧

𝑠
)
󵄩󵄩󵄩󵄩
2
𝑑𝑠

≤ 𝑐𝑓 ∫

𝑡

−]
𝑒
𝛼𝑠
‖V (𝑠) + 𝑧 (𝑠)‖2𝑑𝑠

≤ 𝑐𝑓 ∫

𝑡

0

𝑒
𝛼𝑠
[(1 + 𝛾) ‖V (𝑠)‖2

+ (1 + 𝛾
−1
) ‖𝑧 (𝑠)‖

2
] 𝑑𝑠

+ 𝑐𝑓 ∫

0

−]
𝑒
𝛼𝑠
‖V (𝑠) + 𝑧 (𝑠)‖2𝑑𝑠.

(39)

Then by (38) and (39), we obtain

𝑒
𝛼𝑡
‖V (𝑡)‖2 ≤ − (2𝜆 − (2 + 𝛾) 𝑐𝑓 − 𝛼 − 𝛽)

× ∫

𝑡

0

𝑒
𝛼𝑠
‖V (𝑠)‖2𝑑𝑠

+ ‖V (0)‖2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
𝑒
𝛼𝑡

+ 𝑐𝑓 ∫

0

−]
𝑒
𝛼𝑠
‖V (𝑠) + 𝑧 (𝑠)‖2𝑑𝑠

+ 𝑐1 ∫

𝑡

0

𝑒
𝛼𝑠
‖𝑧 (𝑠)‖

2
𝑑𝑠

≤ ‖V (0)‖2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
𝑒
𝛼𝑡

+ 2]𝑐𝑓 [
󵄩󵄩󵄩󵄩󵄩
V0󵄩󵄩󵄩󵄩󵄩

2

C
+
󵄩󵄩󵄩󵄩󵄩
𝑧
0󵄩󵄩󵄩󵄩󵄩

2

C
]

+ 𝑐1 ∫

𝑡

0

𝑒
𝛼𝑠
‖𝑧 (𝑠)‖

2
𝑑𝑠,

(40)

where 𝑐1 = 𝑐𝑓(1 + 𝛾
−1
). Consequently,

‖V (𝑡)‖2 ≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

−𝛼𝑡

+𝑐1 ∫

𝑡

0

𝑒
𝛼(𝑠−𝑡)

‖𝑧 (𝑠)‖
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
.

(41)

Hence, for fixed 𝜎 ∈ [−], 0], we get that, for 𝑡 ∈ (−𝜎, 𝑇],

‖V (𝑡 + 𝜎)‖2 ≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

−𝛼(𝑡+𝜎)

+ 𝑐1 ∫

𝑡+𝜎

0

𝑒
𝛼(𝑠−𝑡−𝜎)

‖𝑧(𝑠)‖
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(]−𝑡)

+ 𝑐1𝑒
𝛼]
∫

𝑡

0

𝑒
𝛼(𝑠−𝑡)

‖𝑧(𝑠)‖
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
,

(42)

and, for 𝑡 ∈ [0, −𝜎],

‖V (𝑡 + 𝜎)‖2 ≤
󵄩󵄩󵄩󵄩󵄩
V0󵄩󵄩󵄩󵄩󵄩

2

C

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(]−𝑡)
.

(43)

In view of (42) and (43), we find that, for all 𝑡 ∈ [0, 𝑇],

󵄩󵄩󵄩󵄩󵄩
V𝑡󵄩󵄩󵄩󵄩󵄩

2

C
≤ [(1 + 2]𝑐𝑓)

󵄩󵄩󵄩󵄩󵄩
V0󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(]−𝑡)

+ 𝑐1𝑒
𝛼]
∫

𝑡

0

𝑒
𝛼(𝑠−𝑡)

‖𝑧(𝑠)‖
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
.

(44)

Therefore, for all 𝑡 ∈ [0, 𝑇],

󵄩󵄩󵄩󵄩󵄩
V𝑡󵄩󵄩󵄩󵄩󵄩

2

C
≤ [(1 + 2]𝑐𝑓)

󵄩󵄩󵄩󵄩󵄩
V0󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼]

+ 𝑐1𝑒
𝛼]
∫

𝑇

0

‖𝑧(𝑠)‖
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
,

(45)

which, together with (32), implies that𝑇max = ∞.This proves
property (1).

(2) By (44), there exists a constant 𝑟(𝑇) > 0 such that

󵄩󵄩󵄩󵄩󵄩
V𝑡

1

󵄩󵄩󵄩󵄩󵄩C
≤ 𝑟 (𝑇) ,

󵄩󵄩󵄩󵄩󵄩
V𝑡

2

󵄩󵄩󵄩󵄩󵄩C
≤ 𝑟 (𝑇) . (46)

Then from (A2) and (26), we have that for 𝑡 ∈ [0, 𝑇]

󵄩󵄩󵄩󵄩V1 (𝑡) − V2 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑒

−𝜆𝑡 󵄩󵄩󵄩󵄩󵄩
V0

1
(0) − V0

2
(0)
󵄩󵄩󵄩󵄩󵄩

+ 𝑙𝑓 (𝑟 (𝑇)) ∫

𝑡

0

𝑒
−𝜆(𝑡−𝑠)󵄩󵄩󵄩󵄩V

𝑠

1
− V𝑠

2

󵄩󵄩󵄩󵄩C𝑑𝑠.

(47)
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Hence, for fixed 𝜎 ∈ [−], 0], we get that, for 𝑡 ∈ (−𝜎, 𝑇],
󵄩󵄩󵄩󵄩V1 (𝑡 + 𝜎) − V2 (𝑡 + 𝜎)

󵄩󵄩󵄩󵄩

≤ 𝑒
−𝜆(𝑡+𝜎) 󵄩󵄩󵄩󵄩󵄩

V0

1
(0) − V0

2
(0)
󵄩󵄩󵄩󵄩󵄩

+ 𝑙𝑓 (𝑟 (𝑇)) ∫

𝑡+𝜎

0

𝑒
−𝜆(𝑡+𝜎−𝑠)󵄩󵄩󵄩󵄩V

𝑠

1
− V𝑠

2

󵄩󵄩󵄩󵄩C𝑑𝑠

≤ 𝑒
𝜆(]−𝑡)󵄩󵄩󵄩󵄩󵄩

V0

1
− V0

2

󵄩󵄩󵄩󵄩󵄩C

+ 𝑙𝑓 (𝑟 (𝑇)) 𝑒
𝜆]
∫

𝑡

0

𝑒
−𝜆(𝑡−𝑠)󵄩󵄩󵄩󵄩V

𝑠

1
− V𝑠

2

󵄩󵄩󵄩󵄩C𝑑𝑠,

(48)

and, for 𝑡 ∈ [0, −𝜎],
󵄩󵄩󵄩󵄩V1 (𝑡 + 𝜎) − V2 (𝑡 + 𝜎)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
V0

1
− V0

2

󵄩󵄩󵄩󵄩󵄩C
≤ 𝑒

𝜆(]−𝑡)󵄩󵄩󵄩󵄩󵄩
V0

1
− V0

2

󵄩󵄩󵄩󵄩󵄩C
.

(49)

In view of (48) and (49), we find that, for all 𝑡 ∈ [0, 𝑇],
󵄩󵄩󵄩󵄩󵄩
V𝑡

1
− V𝑡

2

󵄩󵄩󵄩󵄩󵄩
≤ 𝑒

𝜆(]−𝑡)󵄩󵄩󵄩󵄩󵄩
V0

1
− V0

2

󵄩󵄩󵄩󵄩󵄩C

+ 𝑙𝑓 (𝑟 (𝑇)) 𝑒
𝜆]
∫

𝑡

0

𝑒
−𝜆(𝑡−𝑠)󵄩󵄩󵄩󵄩V

𝑠

1
− V𝑠

2

󵄩󵄩󵄩󵄩C𝑑𝑠.

(50)

The Gronwall inequality implies that, for all 𝑡 ∈ [0, 𝑇],

󵄩󵄩󵄩󵄩󵄩
V𝑡

1
− V𝑡

2

󵄩󵄩󵄩󵄩󵄩C
≤
󵄩󵄩󵄩󵄩󵄩
V0

1
− V0

2

󵄩󵄩󵄩󵄩󵄩C
𝑒
(𝑙
𝑓
(𝑟(𝑇))𝑒

𝜆]
−𝜆)𝑡+𝜆]

. (51)

This prove property (2). The proof is complete.

Conversely, if, for each 𝜔 ∈ Ω, V(𝑡, 𝜔, V0
) ∈

𝐶([−],∞); 𝐿
2
(R𝑑

)) is a mild solution of problem (27)-(28)
with V0

(⋅) = 𝑢
0
(⋅) − 𝑧

0
(⋅, 𝜔), then by (25) the continuous

process

𝑢 (𝑡, 𝜔, 𝑢
0
) = V (𝑡, 𝜔, V0

) + 𝑧 (𝑡, 𝜔) (52)

is a mild solution of problem (10)-(11).

Theorem 12. Problem (27)-(28) generates a continuous ran-
dom dynamical system 𝜙 over (Ω,F,P, (𝜗)𝑡∈R), where

𝜙 (𝑡, 𝜔, V0
) = V𝑡

(⋅, 𝜔, V0
) , for 𝑡 ≥ 0, 𝜔 ∈ Ω, V0

∈ C. (53)

Moreover, if one defines 𝜓 by

𝜓 (𝑡, 𝜔, 𝑢
0
) = 𝑢

𝑡
(⋅, 𝜔, 𝑢

0
) , for 𝑡 ≥ 0, 𝜔 ∈ Ω, 𝑢0

∈ C,

(54)

then 𝜓 is another continuous random dynamical system
associated with problem (10)-(11).

Proof. By a classical successive approximation argument, one
can easily show that, for fixed V0

∈ C, V(𝑡, 𝜔, V0
) is an

F𝑡-adapted continuous process. Hence, for fixed V0
∈ C,

𝜙(𝑡, 𝜔, V0
) is also an F𝑡-adapted continuous process. On the

other hand, from property (2) of Theorem 11, it follows that,

for fixed 𝑡 ≥ 0 and 𝜔 ∈ Ω, 𝜙(𝑡, 𝜔, ⋅) : [0,∞) × C → C

is continuous. Consequently, 𝜙(𝑡, 𝜔, V0
) is (B(R+

) ⊗ F ⊗

B(C),B(C))-measurable.
By (26) we have that, for 𝑠, 𝑡 ≥ 0 and 𝜎 ∈ [−], 0],

𝜙 (𝑡, 𝜗𝑠𝜔, 𝜙 (𝑠, 𝜔, V
0
)) (𝜎)

= 𝑆 (𝑡 + 𝜎) 𝜙 (𝑠, 𝜔, V0
) (0)

+ ∫

𝑡+𝜎

0

𝑆 (𝑡 + 𝜎 − 𝜏)

× (𝑓 (𝜙 (𝜏, 𝜗𝑠𝜔, 𝜙 (𝑠, 𝜔, V
0
)) + 𝑧

𝜏
(𝜗𝑠𝜔)) + 𝑔) 𝑑𝜏.

(55)

Then again by (26) we get

𝜙 (𝑡, 𝜗𝑠𝜔, 𝜙 (𝑠, 𝜔, V
0
)) (𝜎)

= 𝑆 (𝑡 + 𝑠 + 𝜎) V0
(0)

+ ∫

𝑠

0

𝑆 (𝑠 − 𝜏)

× (𝑓 (𝜙 (𝜏, 𝜔, V0
) + 𝑧

𝜏
(𝜔)) + 𝑔) 𝑑𝜏

+ ∫

𝑡+𝑠+𝜎

𝑠

𝑆 (𝑡 + 𝑠 + 𝜎 − 𝜏)

× (𝑓 (𝜙 (𝜏 − 𝑠, 𝜗𝑠𝜔, 𝜙 (𝑠, 𝜔, V
0
)) + 𝑧

𝜏
(𝜔)) + 𝑔) 𝑑𝜏.

(56)

For each 𝜔 ∈ Ω consider

Φ(𝜏, 𝜔, V0
) = {

𝜙 (𝜏, 𝜔, V0
) , if 0 ≤ 𝜏 ≤ 𝑠,

𝜙 (𝜏 − 𝑠, 𝜗𝑠𝜔, 𝜙 (𝑠, 𝜔, V
0
)) , if 𝑠 < 𝜏 ≤ 𝑡 + 𝑠.

(57)

Then for 𝜏 = 𝑡 + 𝑠 we have

Φ(𝑡 + 𝑠, 𝜔, V0
) = 𝜙 (𝑡, 𝜗𝑠𝜔, 𝜙 (𝑠, 𝜔, V

0
)) for 𝑠, 𝑡 ≥ 0. (58)

It follows from (56) that

Φ(𝑡 + 𝑠, 𝜔, V0
) (𝜎)

= 𝑆 (𝑡 + 𝑠 + 𝜎) V0
(0)

+ ∫

𝑡+𝑠+𝜎

0

𝑆 (𝑡 + 𝑠 + 𝜎 − 𝜏)

× (𝑓 (Φ (𝜏, 𝜔, V0
) + 𝑧

𝜏
(𝜔)) + 𝑔) 𝑑𝜏,

(59)

for all 𝜎 ∈ [−], 0]. By the uniqueness of the solution of (26)
we find that

Φ(𝑡 + 𝑠, 𝜔, V0
) = 𝜙 (𝑡 + 𝑠, 𝜔, V0

) , (60)

while (58) implies

𝜙 (𝑡 + 𝑠, 𝜔, V0
) = 𝜙 (𝑡, 𝜗𝑠𝜔, 𝜙 (𝑠, 𝜔, V

0
)) for 𝑠, 𝑡 ≥ 0. (61)

Therefore, 𝜙 is a continuous random dynamical system.
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As for 𝜓, noticing that

𝜓 (𝑡, 𝜔, 𝑢
0
) = 𝜙 (𝑡, 𝜔, 𝑢

0
− 𝑧

0
(𝜔)) + 𝑧

𝑡
(𝜔) ,

for 𝑡 ≥ 0, 𝜔 ∈ Ω, 𝑢
0
∈ C,

(62)

we get from (61) that, for 𝑠,𝑡 ≥ 0,

𝜓 (𝑡, 𝜗𝑠𝜔, 𝜓 (𝑠, 𝜔, 𝑢
0
))

= 𝜙 (𝑡, 𝜗𝑠𝜔, 𝜙 (𝑠, 𝜔, 𝑢
0
− 𝑧

0
(𝜔))) + 𝑧

𝑡
(𝜗𝑠𝜔)

= 𝜙 (𝑡 + 𝑠, 𝜔, 𝑢
0
− 𝑧

0
(𝜔)) + 𝑧

𝑡+𝑠
(𝜔)

= 𝜓 (𝑡 + 𝑠, 𝜔, 𝑢
0
) .

(63)

Therefore, 𝜓 is also a continuous random dynamical system.
Furthermore, 𝜙 and 𝜓 are conjugated random dynamical
systems; that is,

𝜓 (𝑡, 𝜔, 𝑇 (𝜔, 𝜉)) = 𝑇 (𝜗𝑡𝜔, 𝜙 (𝑡, 𝜔, 𝜉)) , for any 𝜉 ∈ C,

(64)

where, for every 𝜔 ∈ Ω, 𝑇(𝜔, 𝜉) = 𝜉 + 𝑧
0
(𝜔) is a

homeomorphism ofC. The proof is complete.

4. Existence of Random Attractors

In this section, we prove the existence of a D-random
attractor for the random dynamical system 𝜓 associated
with the stochastic retarded reaction-diffusion equation (10)-
(11) on R𝑑. We first establish the existence of a D-random
attractor for its conjugated random dynamical system 𝜙,
then the existence of a D-random attractor for 𝜓 follows
from the conjugation relation between 𝜙 and 𝜓. To this end,
we will derive uniform estimates on the mild solutions of
problem (27)-(28) when 𝑡 → ∞with the purpose of proving
the existence of a bounded random absorbing set and the
asymptotic compactness for 𝜙. In particular, we will show
that the tails of the solutions, that is, solutions evaluated at
large value of |𝑥|, are uniformly small when time is sufficiently
large.

From now on, we always assume thatD is the collection
of all tempered subsets ofCwith respect to (Ω,F,P, (𝜗𝑡)𝑡∈R).
The next lemma shows that 𝜙 has a random absorbing set in
D.

Lemma 13. There exists 𝐾 ∈ D such that 𝐾 is a random
absorbing set for 𝜙 in D; that is, for any 𝐵 ∈ D and P a.e.
𝜔 ∈ Ω, there exists 𝑇𝐵(𝜔) > 0 such that

𝜙 (𝑡, 𝜗−𝑡𝜔, 𝐵 (𝜗−𝑡𝜔)) ⊆ 𝐾 (𝜔) ∀𝑡 ≥ 𝑇𝐵 (𝜔) . (65)

Proof. Replacing 𝜔with 𝜗−𝑡𝜔 in (41) and (44), we get that, for
all 𝑡 ≥ 0,

󵄩󵄩󵄩󵄩󵄩
V (𝑡, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

−𝛼𝑡

+ 𝑐1 ∫

𝑡

0

𝑒
𝛼(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑧(𝑠, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

−𝛼𝑡

+ 𝑐1 ∫

0

−∞

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝑠𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
,

(66)

󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

C

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(]−𝑡)

+ 𝑐1𝑒
𝛼]
∫

𝑡

0

𝑒
𝛼(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑧 (𝑠, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(]−𝑡)

+𝑐1𝑒
𝛼]
∫

0

−∞

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝑠𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
.

(67)

By assumption, 𝐵 ∈ D is tempered. On the other hand, by
Remark 6, ‖𝑧0

(𝜔)‖
2

C is also tempered.Therefore, if V0
(𝜗−𝑡𝜔) ∈

𝐵(𝜗−𝑡𝜔), then there exists 𝑇𝐵(𝜔) > 0 such that, for all 𝑡 ≥
𝑇𝐵(𝜔),

[(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

−𝛼𝑡

≤ 1 + 𝑟 (𝜔) ,

(68)

where

𝑟 (𝜔) = ∫

0

−∞

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝑠𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 (69)

is tempered by Remark 6.Then it follows from (66), (67), and
(68) that for all 𝑡 ≥ 𝑇𝐵(𝜔),

󵄩󵄩󵄩󵄩󵄩
V (𝑡, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

≤ (𝑐1 + 1) 𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
+ 1, (70)

󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

C
≤ (𝑐1 + 1) 𝑒

𝛼]
𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
+ 1.

(71)

Given 𝜔 ∈ Ω, we define

𝐾 (𝜔) = {𝜉 ∈ C :
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩
2

C
≤ 𝑟1 (𝜔)} , (72)
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where

𝑟1 (𝜔) = (𝑐1 + 1) 𝑒
𝛼]
𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
+ 1 (73)

is tempered. Then 𝐾 ∈ D. Further, (71) indicates that 𝐾 is a
random absorbing set for 𝜙 inD, which completes the proof.

We next derive uniform estimates for V in𝐻1
(R𝑑

). From
property (1) of Theorem 11 and the fact that [37, page 165]

𝑊
1,2
(𝜀, 𝑇; 𝐿

2
(R

𝑑
)) ∩ 𝐿

2
(𝜀, 𝑇;𝐻

2
(R

𝑑
))

⊂ 𝐶 ([𝜀, 𝑇] ;𝐻
1
(R

𝑑
)) ,

(74)

for any 0 < 𝜀 < 𝑇 < ∞, we get that V ∈ 𝐶((0,∞);𝐻
1
(R𝑑

)).

Lemma 14. Let 𝐵 ∈ D and V0
(𝜔) ∈ 𝐵(𝜔). Then for P a.e.

𝜔 ∈ Ω, the solution V(𝑡, 𝜔, V0
(𝜔)) of problem (27)-(28) satisfies,

for all 𝑡 ≥ 𝑇𝐵(𝜔),

∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩󵄩
V𝑠
(𝜗−𝑡−1𝜔, V

0
(𝜗−𝑡−1𝜔))

󵄩󵄩󵄩󵄩󵄩

2

C
𝑑𝑠 ≤ 𝑟2 (𝜔) ,

∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇V (𝑠, 𝜗−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2
𝑑𝑠 ≤ 𝑟3 (𝜔) ,

(75)

where 𝑟2 and 𝑟3 are tempered and 𝑇𝐵 is the random function in
Lemma 13.

Proof. Replacing 𝜔 with 𝜗−𝜏−1𝜔 in (44), we get that, for all
𝜏 ≥ 0 and 𝑡 ∈ [𝜏, 𝜏 + 1],

󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜗−𝜏−1𝜔, V

0
(𝜗−𝜏−1𝜔))

󵄩󵄩󵄩󵄩󵄩

2

C

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝜏−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C

+ 2]𝑐𝑓
󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝜏−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(]−𝑡)

+ 𝑐1𝑒
𝛼]
∫

𝑡

0

𝑒
𝛼(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑧 (𝑠, 𝜗−𝜏−1𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
.

(76)

Integrating (76) over the interval [𝜏, 𝜏 + 1] leads to

∫

𝜏+1

𝜏

󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜗−𝜏−1𝜔, V

0
(𝜗−𝜏−1𝜔))

󵄩󵄩󵄩󵄩󵄩

2

C
𝑑𝑡

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝜏−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝜏−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
]

× ∫

𝜏+1

𝜏

𝑒
𝛼(]−𝑡)

𝑑𝑡

+ 𝑐1𝑒
𝛼]
∫

𝜏+1

𝜏

∫

𝑡

0

𝑒
𝛼(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝑠−𝜏−1𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 𝑑𝑡 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝜏−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C

+2]𝑐𝑓
󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝜏−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(]−𝜏)

+ 𝑐1𝑒
𝛼(]+1)

𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
,

(77)

which, together with (68), implies that, for all 𝑡 ≥ 𝑇𝐵(𝜔),

∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩󵄩
V𝑠
(𝜗−𝑡−1𝜔, V

0
(𝜗−𝑡−1𝜔))

󵄩󵄩󵄩󵄩󵄩

2

C
𝑑𝑠

≤ [𝑐1𝑒
𝛼(]+1)

+ 𝑒
𝛼]
] 𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
+ 𝑒

𝛼]
:= 𝑟2 (𝜔) .

(78)

Obviously, 𝑟2 is tempered. Integrating (37) over the interval
[𝑡, 𝑡 + 1] leads to

𝑒
𝛼(𝑡+1)

‖V (𝑡 + 1)‖2 − 𝑒𝛼𝑡
‖V (𝑡)‖2

+ 2∫

𝑡+1

𝑡

𝑒
𝛼𝑠
‖∇V (𝑠)‖2𝑑𝑠

≤ − (2𝜆 − 𝑐𝑓 − 𝛼 − 𝛽)∫

𝑡+1

𝑡

𝑒
𝛼𝑠
‖V (𝑠)‖2𝑑𝑠

+

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛽
∫

𝑡+1

𝑡

𝑒
𝛼𝑠
𝑑𝑠

+
1

𝑐𝑓

∫

𝑡+1

𝑡

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑓 (V

𝑠
+ 𝑧

𝑠
)
󵄩󵄩󵄩󵄩
2
𝑑𝑠.

(79)

Using the Young inequality and (A3), we obtain that

1

𝑐𝑓

∫

𝑡+1

𝑡

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑓 (V

𝑠
+ 𝑧

𝑠
)
󵄩󵄩󵄩󵄩
2
𝑑𝑠

≤ 𝑐𝑓 ∫

𝑡+1

𝑡−]
𝑒
𝛼𝑠
‖V (𝑠) + 𝑧 (𝑠)‖2𝑑𝑠

≤ 𝑐𝑓 ∫

𝑡+1

𝑡

𝑒
𝛼𝑠
[(1 + 𝛾) ‖V (𝑠)‖2 + (1 + 𝛾−1

) ‖𝑧 (𝑠)‖
2
] 𝑑𝑠

+ 𝑐𝑓 ∫

𝑡

𝑡−]
𝑒
𝛼𝑠
‖V (𝑠) + 𝑧 (𝑠)‖2𝑑𝑠.

(80)

It follows from (79) and (80) that

𝑒
𝛼(𝑡+1)

‖V (𝑡 + 1)‖2 − 𝑒𝛼𝑡
‖V (𝑡)‖2 + 2∫

𝑡+1

𝑡

𝑒
𝛼𝑠
‖∇V (𝑠)‖2𝑑𝑠

≤ − (2𝜆 − (2 + 𝛾) 𝑐𝑓 − 𝛼 − 𝛽)∫

𝑡+1

𝑡

𝑒
𝛼𝑠
‖V (𝑠)‖2𝑑𝑠

+

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛽
𝑒
𝛼(𝑡+1)

+ ∫

𝑡

𝑡−]
𝑒
𝛼𝑠
‖V (𝑠) + 𝑧 (𝑠)‖2𝑑𝑠

+ 𝑐1 ∫

𝑡+1

𝑡

𝑒
𝛼𝑠
‖𝑧 (𝑠)‖

2
𝑑𝑠.

(81)
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Thus,

2∫

𝑡+1

𝑡

𝑒
𝛼𝑠
‖∇V (𝑠)‖2𝑑𝑠

≤ 𝑒
𝛼𝑡
‖V (𝑡)‖2 + ∫

𝑡

𝑡−]
𝑒
𝛼𝑠
‖V (𝑠) + 𝑧 (𝑠)‖2𝑑𝑠

+ 𝑐1 ∫

𝑡+1

𝑡

𝑒
𝛼𝑠
‖𝑧 (𝑠)‖

2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛽
𝑒
𝛼(𝑡+1)

.

(82)

Replacing 𝜔 with 𝜗−𝜏−1𝜔 in (82), we get from (71) that, for P
a.e. 𝜔 ∈ Ω and all 𝑡 ≥ 𝑇𝐵(𝜔),

2∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇V (𝑠, 𝜗−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2
𝑑𝑠

≤
󵄩󵄩󵄩󵄩V (𝑡, 𝜗−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2

+ ∫

𝑡

𝑡−]

󵄩󵄩󵄩󵄩V (𝑠, 𝜗−𝑡−1𝜔) + 𝑧 (𝑠, 𝜗−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2
𝑑𝑠

+ 𝑐1 ∫

𝑡+1

𝑡

𝑒
𝛼(𝑠−𝑡)󵄩󵄩󵄩󵄩𝑧 (𝑠, 𝜗−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛽
𝑒
𝛼

≤
󵄩󵄩󵄩󵄩V (𝑡, 𝜗−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2

+ 2∫

𝑡

𝑡−]
[
󵄩󵄩󵄩󵄩V (𝑠, 𝜗−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩𝑧 (𝑠, 𝜗−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2
] 𝑑𝑠

+ 𝑐1𝑒
𝛼
∫

0

−1

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝑠𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛽
𝑒
𝛼

≤ (1 + 2])
󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜗−𝑡−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C

+ 𝑐1𝑒
𝛼
𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛽
𝑒
𝛼

≤ (1 + 2]) 𝑟1 (𝜗−1𝜔) + 2]
󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C

+ 𝑐1𝑒
𝛼
𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛽
𝑒
𝛼
.

(83)

Therefore, we have that, for all 𝑡 ≥ 𝑇𝐵(𝜔),

∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩∇V (𝑠, 𝜗−𝑡−1𝜔)
󵄩󵄩󵄩󵄩
2
𝑑𝑠

≤
1 + 2]

2
𝑟1 (𝜗−1𝜔) + ]

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−1𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C

+
𝑐1

2
𝑒
𝛼
𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

2𝛽
𝑒
𝛼
:= 𝑟3 (𝜔) .

(84)

By Remark 6, 𝑟3 is tempered. Then the lemma follows from
(78) and (84).

Lemma 15. Let 𝐵 ∈ D and V0
(𝜔) ∈ 𝐵(𝜔). Then for P a.e.

𝜔 ∈ Ω, the solution V(𝑡, 𝜔, V0
(𝜔)) of problem (27)-(28) satisfies,

for all 𝑡 ≥ 𝑇𝐵(𝜔) + ] + 1 and 𝜎1,𝜎2 ∈ [−], 0],
󵄩󵄩󵄩󵄩󵄩
∇V (𝑡, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑟4 (𝜔) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝜎
2

𝑡+𝜎
1

󵄩󵄩󵄩󵄩󵄩
ΔV (𝑠, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑟5 (𝜔) ,

(85)

where 𝑟4 and 𝑟5 are tempered and 𝑇𝐵 is the random function in
Lemma 13.

Proof. Taking the inner product of (27) with ΔV in 𝐿2
(R𝑑

),
we get that

1

2

𝑑

𝑑𝑡
‖∇V‖2 + 𝜆‖∇V‖2 + ‖ΔV‖2

= − (𝑓 (V𝑡
+ 𝑧

𝑡
) , ΔV) − (𝑔, ΔV) .

(86)

Using the Young inequality, we obtain that

− (𝑓 (V𝑡
+ 𝑧

𝑡
) , ΔV) ≤

󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄩󵄩󵄩󵄩󵄩
‖ΔV‖

≤
1

4
‖ΔV‖2 +

󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄩󵄩󵄩󵄩󵄩

2

,

− (𝑔, ΔV) ≤ 󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 ‖ΔV‖ ≤

1

4
‖ΔV‖2 + 󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩
2
.

(87)

It follows from (86) and (87) that

1

2

𝑑

𝑑𝑡
‖∇V‖2 + 𝜆‖∇V‖2 +

1

2
‖ΔV‖2

≤
󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
.

(88)

Thus,
𝑑

𝑑𝑡
‖∇V‖2 + ‖ΔV‖2 ≤ 2

󵄩󵄩󵄩󵄩󵄩
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄩󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
. (89)

Let 𝑇𝐵(𝜔) be the positive constant in Lemma 13, and take 𝑡 ≥
𝑇𝐵(𝜔) and 𝑠 ∈ (𝑡, 𝑡 + 1). Integrating (89) over the interval
[𝑠, 𝑡 + 1] leads to

‖∇V (𝑡 + 1)‖2

≤ ‖∇V (𝑠)‖2 + 2∫
𝑡+1

𝑠

󵄩󵄩󵄩󵄩𝑓 (V
𝜏
+ 𝑧

𝜏
)
󵄩󵄩󵄩󵄩
2
𝑑𝜏

+ 2∫

𝑡+1

𝑠

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
𝑑𝜏

≤ ‖∇V (𝑠)‖2 + 2∫
𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓 (V
𝜏
+ 𝑧

𝜏
)
󵄩󵄩󵄩󵄩
2
𝑑𝜏 + 2

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
.

(90)

Integrating the above with respect to 𝑠 over the interval [𝑡, 𝑡 +
1], we get that

‖∇V (𝑡 + 1)‖2 ≤ ∫
𝑡+1

𝑡

‖∇V (𝑠)‖2𝑑𝑠

+ 2∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓 (V
𝑠
+ 𝑧

𝑠
)
󵄩󵄩󵄩󵄩
2
𝑑𝑠 + 2

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
.

(91)
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Replacing𝜔with𝜗−𝑡−1𝜔 and by (A1)-(A2) andLemmas 13 and
14, we find that, for all 𝑡 ≥ 𝑇𝐵(𝜔),

󵄩󵄩󵄩󵄩󵄩
∇V (𝑡 + 1, 𝜗−𝑡−1𝜔, V

0
(𝜗−𝑡−1𝜔))

󵄩󵄩󵄩󵄩󵄩

2

≤ ∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩󵄩
∇V (𝑠, 𝜗−𝑡−1𝜔, V

0
(𝜗−𝑡−1𝜔))

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑠 + 2
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+ 2∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩𝑓 (V
𝑠
(𝜗−𝑡−1𝜔) + 𝑧

𝑠
(𝜗−𝑡−1𝜔))

󵄩󵄩󵄩󵄩
2
𝑑𝑠

≤ ∫

𝑡+1

𝑡

󵄩󵄩󵄩󵄩󵄩
∇V (𝑠, 𝜗−𝑡−1𝜔, V

0
(𝜗−𝑡−1𝜔))

󵄩󵄩󵄩󵄩󵄩

2

𝑑𝑠 + 2
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

+ 4𝑙
2

𝑓
(𝑝1 (𝜔)) ∫

𝑡+1

𝑡

[
󵄩󵄩󵄩󵄩(V

𝑠
𝜗−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2

C
+
󵄩󵄩󵄩󵄩𝑧

𝑠
(𝜗−𝑡−1𝜔)

󵄩󵄩󵄩󵄩
2

C
] 𝑑𝑠

≤ 𝑟3 (𝜔) + 4𝑙
2

𝑓
(𝑝1 (𝜔))

× [𝑟2 (𝜔) + sup
𝜎∈[−1,0]

󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝜎𝜔)
󵄩󵄩󵄩󵄩
2
] + 2

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
,

(92)

where

𝑝1 (𝜔) = sup
𝜎∈[−1,0]

{√𝑟1 (𝜗𝜎𝜔) +
󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝜎𝜔)

󵄩󵄩󵄩󵄩} (93)

is tempered by Remark 6. Then we have that, for all 𝑡 ≥

𝑇𝐵(𝜔) + 1,

󵄩󵄩󵄩󵄩󵄩
∇V (𝑡, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑟3 (𝜔) + 4𝑙
2

𝑓
(𝑝1 (𝜔))

× [𝑟2 (𝜔) + sup
𝜎∈[−1,0]

󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝜎𝜔)
󵄩󵄩󵄩󵄩
2
] + 2

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
:= 𝑟4 (𝜔) .

(94)

By (A2), one can easily see that 𝑙𝑓(𝑝) is also tempered for any
tempered random variable 𝑝. Hence, 𝑟4 is tempered.

Let 𝑡 ≥ ], −] ≤ 𝜎1 ≤ 𝜎2 ≤ 0. Integrating (89) over the
interval [𝑡 + 𝜎1, 𝑡 + 𝜎2] leads to

󵄩󵄩󵄩󵄩∇V (𝑡 + 𝜎2)
󵄩󵄩󵄩󵄩
2
+ ∫

𝑡+𝜎
2

𝑡+𝜎
1

‖ΔV (𝑠)‖2𝑑𝑠

≤
󵄩󵄩󵄩󵄩∇V (𝑡 + 𝜎1)

󵄩󵄩󵄩󵄩
2
+ 2∫

𝑡+𝜎
2

𝑡+𝜎
1

󵄩󵄩󵄩󵄩𝑓 (V
𝑠
+ 𝑧

𝑠
)
󵄩󵄩󵄩󵄩
2
𝑑𝑠 + 2

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
𝑑𝑠.

(95)

Replacing 𝜔 with 𝜗−𝑡𝜔 in (95) and by (A1)-(A2), Lemma 13,
and (94), we find that, for all 𝑡 ≥ 𝑇𝐵(𝜔) + ] + 1 and 𝜎1,𝜎2 ∈

[−], 0],

∫

𝑡+𝜎
2

𝑡+𝜎
1

󵄩󵄩󵄩󵄩ΔV (𝑠, 𝜗−𝑡𝜔)
󵄩󵄩󵄩󵄩
2
𝑑𝑠

≤
󵄩󵄩󵄩󵄩∇V (𝑡 + 𝜎1, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+ 2∫

𝑡+𝜎
2

𝑡+𝜎
1

󵄩󵄩󵄩󵄩𝑓 (V
𝑠
(𝜗−𝑡𝜔) + 𝑧

𝑠
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩
2
𝑑𝑠 + 2]󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩
2

≤ 2]󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
+ sup

𝜎∈[−],0]

󵄩󵄩󵄩󵄩∇V (𝑡 + 𝜎, 𝜗−𝑡𝜔)
󵄩󵄩󵄩󵄩
2
+ 4𝑙

2

𝑓
(𝑝2 (𝜔))

× ∫

𝑡

𝑡−]
[
󵄩󵄩󵄩󵄩(V

𝑠
𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

C
+
󵄩󵄩󵄩󵄩𝑧

𝑠
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

C
] 𝑑𝑠

≤ 4]𝑙2
𝑓
(𝑝2 (𝜔)) sup

𝜎∈[−],0]
{𝑟1 (𝜗𝜎𝜔) +

󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝜎𝜔)
󵄩󵄩󵄩󵄩
2
}

+ sup
𝜎∈[−],0]

𝑟4 (𝜗𝜎𝜔) + 2]
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2
:= 𝑟5 (𝜔) ,

(96)

where

𝑝2 (𝜔) = sup
𝜎∈[−],0]

{√𝑟1 (𝜗𝜎𝜔) +
󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝜎𝜔)

󵄩󵄩󵄩󵄩} (97)

is tempered by Remark 6. Similar to 𝑟4, 𝑟5 is also tempered.
Then the lemma follows from (94) and (96).

Lemma 16. Let 𝐵 ∈ D and V0
(𝜔) ∈ 𝐵(𝜔). Then for every

𝜀 > 0 and P a.e. 𝜔 ∈ Ω, there exist 𝑇∗
= 𝑇

∗
(𝐵, 𝜔, 𝜀) > 0

and 𝑅∗
= 𝑅

∗
(𝜔, 𝜀) > 0 such that the solution V(𝑡, 𝜔, V0

(𝜔)) of
problem (27)-(28) satisfies, for all 𝑡 ≥ 𝑇∗,

sup
𝑠∈[−],0]

∫
|𝑥|≥𝑅∗

󵄨󵄨󵄨󵄨󵄨
V𝑡
(𝑠, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔)) (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝜀. (98)

Proof. Let 𝜌 be a smooth function defined on R+ such that
0 ≤ 𝜌(𝑠) ≤ 1 for all 𝑠 ≥ 0, and

𝜌 (𝑠) = {
0, 0 ≤ 𝑠 ≤ 1,

1, 𝑠 ≥ 2.
(99)

Then there exists a positive deterministic constant 𝑐2 such that
|𝜌

󸀠
(𝑠)| ≤ 𝑐2 for all 𝑠 ≥ 0. Taking the inner product of (27) with

𝜌(|𝑥|
2
/𝑘

2
)V in 𝐿2

(R𝑑
), we get that

1

2

𝑑

𝑑𝑡
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V|2𝑑𝑥 + 𝜆∫

R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V|2𝑑𝑥

− ∫
R𝑑
ΔV𝜌(

|𝑥|
2

𝑘2
) V 𝑑𝑥

= ∫
R𝑑
𝑓 (V𝑡

+ 𝑧
𝑡
) 𝜌(

|𝑥|
2

𝑘2
) V 𝑑𝑥 + ∫

R𝑑
𝑔𝜌(

|𝑥|
2

𝑘2
) V 𝑑𝑥.

(100)
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We now estimate the terms in (100). First, we have that

− ∫
R𝑑
ΔV𝜌(

|𝑥|
2

𝑘2
) V 𝑑𝑥

= ∫
R𝑑
|∇V|2𝜌(

|𝑥|
2

𝑘2
)𝑑𝑥 + ∫

R𝑑
V𝜌󸀠

(
|𝑥|

2

𝑘2
)
2𝑥

𝑘2
⋅ ∇V 𝑑𝑥

= ∫
R𝑑
|∇V|2𝜌(

|𝑥|
2

𝑘2
)𝑑𝑥

+ ∫
𝑘≤|𝑥|≤√2𝑘

V𝜌󸀠
(
|𝑥|

2

𝑘2
)
2𝑥

𝑘2
⋅ ∇V 𝑑𝑥.

(101)

Note that the second term on the right-hand side of (101) is
bounded by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑘≤|𝑥|≤√2𝑘

V𝜌󸀠
(
|𝑥|

2

𝑘2
)
2𝑥

𝑘2
⋅ ∇V 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2√2

𝑘
∫
𝑘≤|𝑥|≤√2𝑘

|V|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜌
󸀠
(
|𝑥|

2

𝑘2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

|∇V| 𝑑𝑥

≤
4𝑐2

𝑘
∫
𝑘≤|𝑥|≤√2𝑘

|V| |∇V| 𝑑𝑥 ≤
4𝑐2

𝑘
(‖V‖2 + ‖∇V‖2) .

(102)

By (101) and (102), we find that

− ∫
R𝑑
ΔV𝜌(

|𝑥|
2

𝑘2
) V 𝑑𝑥

≥ ∫
R𝑑
|∇V|2𝜌(

|𝑥|
2

𝑘2
)𝑑𝑥 −

4𝑐2

𝑘
(‖V‖2 + ‖∇V‖2) .

(103)

For the right-hand side of (100), applying the Young inequal-
ity, we obtain that

∫
R𝑑
𝑓 (V𝑡

+ 𝑧
𝑡
) 𝜌(

|𝑥|
2

𝑘2
) V 𝑑𝑥

≤
𝑐𝑓

2
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V|2𝑑𝑥

+
1

2𝑐𝑓

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨󵄨
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥,

∫
R𝑑
𝑔𝜌(

|𝑥|
2

𝑘2
) V 𝑑𝑥

≤
1

2𝛽
∫
R𝑑
𝑔

2
𝜌(

|𝑥|
2

𝑘2
)𝑑𝑥 +

𝛽

2
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V|2𝑑𝑥.

(104)

Then it follows from (100), (103), and (104) that

𝑑

𝑑𝑡
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V|2𝑑𝑥

≤ − (2𝜆 − 𝑐𝑓 − 𝛽)∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V|2𝑑𝑥

+
1

𝑐𝑓

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨󵄨
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+
1

𝛽
∫
R𝑑
𝑔

2
𝜌(

|𝑥|
2

𝑘2
)𝑑𝑥 +

8𝑐2

𝑘
(‖V‖2 + ‖∇V‖2) .

(105)

Consequently,

𝑑

𝑑𝑡
(𝑒

𝛼𝑡
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V|2𝑑𝑥)

≤ − (2𝜆 − 𝑐𝑓 − 𝛼 − 𝛽) 𝑒
𝛼𝑡
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V|2𝑑𝑥

+
1

𝑐𝑓

𝑒
𝛼𝑡
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨󵄨
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+
1

𝛽
𝑒
𝛼𝑡
∫
R𝑑
𝑔

2
𝜌(

|𝑥|
2

𝑘2
)𝑑𝑥 +

8𝑐2

𝑘
𝑒
𝛼𝑡
(‖V‖2 + ‖∇V‖2) .

(106)

Take 𝑇1 = 𝑇1(𝐵, 𝜔) ≥ 𝑇𝐵(𝜔) + ]+ 1. For all 𝑡 > 𝑇1, integrating
(106) over the interval [𝑇1, 𝑡] leads to

𝑒
𝛼𝑡
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V (𝑡)|2𝑑𝑥 − 𝑒𝛼𝑇

1 ∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨V (𝑇1)

󵄨󵄨󵄨󵄨
2
𝑑𝑥

≤ − (2𝜆 − 𝑐𝑓 − 𝛼 − 𝛽)∫

𝑡

𝑇
1

𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V (𝑠)|2𝑑𝑥 𝑑𝑠

+
1

𝑐𝑓

∫

𝑡

𝑇
1

𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨𝑓 (V

𝑠
+ 𝑧

𝑠
)
󵄨󵄨󵄨󵄨
2
𝑑𝑥 𝑑𝑠

+
1

𝛽
∫

𝑡

𝑇
1

𝑒
𝛼𝑠
∫
R𝑑
𝑔

2
𝜌(

|𝑥|
2

𝑘2
)𝑑𝑥𝑑𝑠

+
8𝑐2

𝑘
∫

𝑡

𝑇
1

𝑒
𝛼𝑠
(‖V‖2 + ‖∇V‖2) 𝑑𝑠.

(107)

Using the Young inequality and (A3), we obtain that

1

𝑐𝑓

∫

𝑡

𝑇
1

𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨󵄨
𝑓 (V𝑡

+ 𝑧
𝑡
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑠

≤ 𝑐𝑓 ∫

𝑡

𝑇
1
−]
𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V (𝑠) + 𝑧 (𝑠)|2𝑑𝑥 𝑑𝑠

≤ 𝑐𝑓 ∫

𝑡

𝑇
1

𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) [(1 + 𝛾) |V (𝑠)|2

+ (1 + 𝛾
−1
) |𝑧 (𝑠)|

2
] 𝑑𝑥 𝑑𝑠

+ 2𝑐𝑓 ∫

𝑇
1

𝑇
1
−]
𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)(|V (𝑠)|2 + |𝑧 (𝑠)|2) 𝑑𝑥 𝑑𝑠.

(108)
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By (107) and (108), we find that

𝑒
𝛼𝑡
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V (𝑡)|2𝑑𝑥 − 𝑒𝛼𝑇

1 ∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨V (𝑇1)

󵄨󵄨󵄨󵄨
2
𝑑𝑥

≤ − (2𝜆 − (2 + 𝛾) 𝑐𝑓 − 𝛼 − 𝛽)

× ∫

𝑡

𝑇
1

𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V (𝑠)|2𝑑𝑥 𝑑𝑠

+ 2𝑐𝑓 ∫

𝑇
1

𝑇
1
−]
𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)(|V (𝑠)|2 + |𝑧 (𝑠)|2) 𝑑𝑥 𝑑𝑠

+ 𝑐1 ∫

𝑡

𝑇
1

𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |𝑧 (𝑠)|

2
𝑑𝑥 𝑑𝑠

+
𝑒
𝛼𝑡

𝛼𝛽
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)𝑔

2
𝑑𝑥

+
8𝑐2

𝑘
∫

𝑡

𝑇
1

𝑒
𝛼𝑠
(‖V‖2 + ‖∇V‖2) 𝑑𝑠

≤ 2𝑐𝑓 ∫

𝑇
1

𝑇
1
−]
𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)(|V (𝑠)|2 + |𝑧 (𝑠)|2) 𝑑𝑥 𝑑𝑠

+ 𝑐1 ∫

𝑡

𝑇
1

𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |𝑧 (𝑠)|

2
𝑑𝑥 𝑑𝑠

+
2𝑒

𝛼𝑡

𝛼𝛽
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)𝑔

2
𝑑𝑥

+
8𝑐2

𝑘
∫

𝑡

𝑇
1

𝑒
𝛼𝑠
(‖V‖2 + ‖∇V‖2) 𝑑𝑠.

(109)

Then we have, for all 𝑡 > 𝑇1,

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V (𝑡)|2𝑑𝑥

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V𝑇
1 (𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑇
1 (𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(𝑇
1
−𝑡)

+ 𝑐1 ∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |𝑧 (𝑠)|

2
𝑑𝑥 𝑑𝑠

+
1

𝛼𝛽
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)𝑔

2
𝑑𝑥

+
8𝑐2

𝑘
∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

(‖V‖2 + ‖∇V‖2) 𝑑𝑠.

(110)

If we take 𝑡 ≥ 𝑇1 + ], then by (110) we find that, for all 𝜎 ∈

[−], 0],

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |V (𝑡 + 𝜎)|2𝑑𝑥

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V𝑇
1 (𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑇
1 (𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(𝑇
1
−𝑡−𝜎)

+ 𝑐1 ∫

𝑡+𝜎

𝑇
1

𝑒
𝛼(𝑠−𝑡−𝜎)

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |𝑧 (𝑠)|

2
𝑑𝑥 𝑑𝑠

+
1

𝛼𝛽
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)𝑔

2
𝑑𝑥

+
8𝑐2

𝑘
∫

𝑡+𝜎

𝑇
1

𝑒
𝛼(𝑠−𝑡−𝜎)

(‖V‖2 + ‖∇V‖2) 𝑑𝑠

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V𝑇
1 (𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑇
1 (𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(𝑇
1
+]−𝑡)

+ 𝑐1𝑒
𝛼]
∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |𝑧 (𝑠)|

2
𝑑𝑥 𝑑𝑠

+
1

𝛼𝛽
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)𝑔

2
𝑑𝑥

+
8𝑐2

𝑘
𝑒
𝛼]
∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

(‖V‖2 + ‖∇V‖2) 𝑑𝑠.

(111)

Then we have, for all 𝑡 ≥ 𝑇1 + ],

sup
𝜎∈[−],0]

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨󵄨
V𝑡
(𝜎)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V𝑇
1 (𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑇
1 (𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(𝑇
1
+]−𝑡)

+ 𝑐1𝑒
𝛼]
∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
) |𝑧 (𝑠)|

2
𝑑𝑥 𝑑𝑠

+
1

𝛼𝛽
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)𝑔

2
𝑑𝑥

+
8𝑐2

𝑘
𝑒
𝛼]
∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

(‖V‖2 + ‖∇V‖2) 𝑑𝑠.

(112)

Replacing 𝜔 with 𝜗−𝑡𝜔, we find that

sup
𝜎∈[−],0]

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨󵄨
V𝑡
(𝜎, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V𝑇
1 (𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C

+2]𝑐𝑓
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑇
1 (𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(𝑇
1
+]−𝑡)

+ 𝑐1𝑒
𝛼]
∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨𝑧 (0, 𝜗𝑠−𝑡𝜔)

󵄨󵄨󵄨󵄨
2
𝑑𝑥 𝑑𝑠

+
8𝑐2

𝑘
𝑒
𝛼]
∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

(
󵄩󵄩󵄩󵄩V (𝑠, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩∇V (𝑠, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2
) 𝑑𝑠

+
1

𝛼𝛽
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)𝑔

2
𝑑𝑥.

(113)
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We now estimate the terms in (113) as follows. First, replacing
𝑡 with 𝑇1 and then replacing 𝜔 with 𝜗𝑇

1
−𝑡𝜔 in (67), we find

that

󵄩󵄩󵄩󵄩󵄩
V𝑇
1 (𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

C

≤ [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(]−𝑇
1
)𝑡

+ 𝑐1𝑒
𝛼]
𝑟 (𝜗𝑇

1
−𝑡𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
.

(114)

Thus,

[(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V𝑇
1 (𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑇
1 (𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(𝑇
1
+]−𝑡)

≤ (1 + 2]𝑐𝑓) [(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C

+2]𝑐𝑓
󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(2]−𝑡)

+ (1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
𝑒
𝛼(𝑇
1
+]−𝑡)

+ 𝑐1 (1 + 2]𝑐𝑓) 𝑒
𝛼]
𝑟 (𝜗𝑇

1
−𝑡𝜔) 𝑒

𝛼(2]+𝑇
1
−𝑡)

+ 2]𝑐𝑓
󵄩󵄩󵄩󵄩󵄩
𝑧
0
(𝜗𝑇
1
−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
𝑒
𝛼(𝑇
1
+]−𝑡)

.

(115)

Since 𝑟(𝜔) and ‖𝑧0
(𝜔)‖

2

C are tempered functions, 𝐵 ∈ D is
tempered set and V0

(𝜗−𝑡𝜔) ∈ 𝐵(𝜗−𝑡𝜔); we find from (115) that,
for every 𝜀 > 0, there exists 𝑇2 = 𝑇2(𝐵, 𝜔, 𝜀) ≥ 𝑇1 + ] such
that, for all 𝑡 ≥ 𝑇2,

[(1 + 2]𝑐𝑓)
󵄩󵄩󵄩󵄩󵄩
V𝑇
1 (𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
+ 2]𝑐𝑓

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑇
1 (𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩󵄩

2

C
] 𝑒

𝛼(𝑇
1
+]−𝑡)

≤
𝜀

4
.

(116)

Next, note that

∫

0

−∞

𝑒
𝛼𝑠󵄩󵄩󵄩󵄩𝑧 (0, 𝜗𝑠𝜔)

󵄩󵄩󵄩󵄩
2
𝑑𝑠

= ∫

0

−∞

𝑒
𝛼𝑠
∫
R𝑑

󵄨󵄨󵄨󵄨𝑧 (0, 𝜗𝑠𝜔)
󵄨󵄨󵄨󵄨
2
𝑑𝑥 𝑑𝑠 < ∞.

(117)

By the Lebesgue theorem of dominated convergence, there
exists 𝑅1 = 𝑅1(𝜔, 𝜀) > 0 such that, for all 𝑘 ≥ 𝑅1,

∫

0

−∞

𝑒
𝛼𝑠
∫
|𝑥|≥𝑘

󵄨󵄨󵄨󵄨𝑧 (0, 𝜗𝑠𝜔)
󵄨󵄨󵄨󵄨
2
𝑑𝑥 𝑑𝑠 ≤

𝜀

4𝑐1𝑒
𝛼]
. (118)

Then it follows from (118) that, for all 𝑡 ≥ 𝑇2 and 𝑘 ≥ 𝑅1,

∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨𝑧 (0, 𝜗𝑠−𝑡𝜔)

󵄨󵄨󵄨󵄨
2
𝑑𝑥 𝑑𝑠

≤ ∫

0

−∞

𝑒
𝛼𝑠
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨𝑧 (0, 𝜗𝑠𝜔)

󵄨󵄨󵄨󵄨
2
𝑑𝑥 𝑑𝑠

≤ ∫

0

−∞

𝑒
𝛼𝑠
∫
|𝑥|≥𝑘

󵄨󵄨󵄨󵄨𝑧 (0, 𝜗𝑠𝜔)
󵄨󵄨󵄨󵄨
2
𝑑𝑥 𝑑𝑠

≤
𝜀

4𝑐1𝑒
𝛼]
.

(119)

For the third term on the right-side of (113), we get from (70)
and (94) that, for all 𝑡 ≥ 𝑇𝐵(𝜔) + ] + 1,

󵄩󵄩󵄩󵄩V (𝑡, 𝜗−𝑡𝜔)
󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩∇V (𝑡, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2

≤ 𝑟5 (𝜔) + (𝑐1 + 1) 𝑟 (𝜔) +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝛼𝛽
+ 1 := 𝑟6 (𝜔) .

(120)

Then by (120), we obtain that

∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

(
󵄩󵄩󵄩󵄩V (𝑠, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩∇V (𝑠, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2
) 𝑑𝑠

≤ ∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

𝑟6 (𝜗𝑠−𝑡𝜔) 𝑑𝑠 ≤ ∫

0

−∞

𝑒
𝛼𝑠
𝑟6 (𝜗𝑠𝜔) 𝑑𝑠.

(121)

Since 𝑟6 is tempered, the last integral in (121) exists.Therefore,
there exists 𝑅2 = 𝑅2(𝜔, 𝜀) > 0 such that, for all 𝑘 ≥ 𝑅2,
8𝑐2

𝑘
𝑒
𝛼]
∫

𝑡

𝑇
1

𝑒
𝛼(𝑠−𝑡)

(
󵄩󵄩󵄩󵄩V (𝑠, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2
+
󵄩󵄩󵄩󵄩∇V (𝑠, 𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩
2
) 𝑑𝑠 ≤

𝜀

4
.

(122)

Finally, since 𝑔 ∈ 𝐿2
(R𝑑

), there exists 𝑅3 = 𝑅3(𝜔, 𝜀) > 0 such
that, for all 𝑘 ≥ 𝑅3(𝜔, 𝜀),

1

𝛼𝛽
∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)𝑔

2
𝑑𝑥 ≤

1

𝛼𝛽
∫
|𝑥|≥𝑘

𝑔
2
𝑑𝑥 ≤

𝜀

4
. (123)

Taking 𝑅4 = 𝑅4(𝜔, 𝜀) = max{𝑅1, 𝑅2, 𝑅3}, it follows from (116),
(119), (122), and (123) that, for all 𝑡 ≥ 𝑇2 and 𝑘 ≥ 𝑅4,

sup
𝜎∈[−],0]

∫
|𝑥|≥√2𝑘

󵄨󵄨󵄨󵄨󵄨
V𝑡
(𝜎, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔)) (𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ sup
𝜎∈[−],0]

∫
R𝑑
𝜌(

|𝑥|
2

𝑘2
)
󵄨󵄨󵄨󵄨󵄨
V𝑡
(𝜎, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝜀,

(124)
which completes the lemma.

Lemma 17. Let 𝐵 ∈ D and V0
(𝜔) ∈ 𝐵(𝜔). Then the solution

V(𝑡, 𝜔, V0
(𝜔)) of problem (27)-(28) satisfies, for all 𝑡 ≥ 𝑇𝐵(𝜔) +

] + 1 and 𝜎,𝜏1,𝜏2 ∈ [−], 0],
󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜎, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

𝐻1(R𝑑)
≤ 𝑟7 (𝜔) ,

󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜏1, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔)) − V𝑡

(𝜏2, 𝜗−𝑡𝜔, V
0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

≤ 𝑟8 (𝜔)
󵄨󵄨󵄨󵄨𝜏1 − 𝜏2

󵄨󵄨󵄨󵄨
1/2
,

(125)

where 𝑟7 and 𝑟8 are tempered random functions.
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Proof. By (120), we find that, for all 𝑡 ≥ 𝑇𝐵(𝜔) + ] + 1 and
𝜎 ∈ [−], 0],

󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜎, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

𝐻1(R𝑑)

=
󵄩󵄩󵄩󵄩󵄩
V (𝑡 + 𝜎, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
∇V (𝑡 + 𝜎, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

2

≤ sup
𝜎∈[−],0]

𝑟6 (𝜗𝜎𝜔) := 𝑟7 (𝜔) .

(126)

Next, by (A1)-(A2) and Lemma 14, we find that, for all 𝑡 ≥
𝑇𝐵(𝜔) + ] + 1 and 𝜏1, 𝜏2 ∈ [−], 0] (assuming 𝜏1 ≤ 𝜏2 for
simplicity),

∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩𝑓 (V
𝑠
(𝜗−𝑡𝜔) + 𝑧

𝑠
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑙𝑓 (𝑝2 (𝜔)) ∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩V
𝑠
(𝜗−𝑡𝜔) + 𝑧

𝑠
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩C𝑑𝑠

≤ 𝑙𝑓 (𝑝2 (𝜔)) ∫

𝑡+𝜏
2

𝑡+𝜏
1

[
󵄩󵄩󵄩󵄩V

𝑠
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩C +
󵄩󵄩󵄩󵄩𝑧

𝑠
(𝜗−𝑡𝜔)

󵄩󵄩󵄩󵄩C] 𝑑𝑠

≤ 𝑙𝑓 (𝑝2 (𝜔)) [ sup
𝜎∈[−],0]

√𝑟1 (𝜗𝜎𝜔) + sup
𝜎∈[−2],0]

󵄩󵄩󵄩󵄩𝑧 (𝜗𝜎)
󵄩󵄩󵄩󵄩]

×
󵄨󵄨󵄨󵄨𝜏1 − 𝜏2

󵄨󵄨󵄨󵄨 ,

(127)

∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩V (𝑠, 𝜗−𝑡𝜔)
󵄩󵄩󵄩󵄩 𝑑𝑠 ≤ sup

𝜎∈[−],0]

√𝑟1 (𝜗𝜎𝜔)
󵄨󵄨󵄨󵄨𝜏1 − 𝜏2

󵄨󵄨󵄨󵄨 . (128)

By Lemma 15, we obtain that

∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩ΔV (𝑠, 𝜗−𝑡𝜔)
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ {
󵄨󵄨󵄨󵄨𝜏1 − 𝜏2

󵄨󵄨󵄨󵄨 ∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩ΔV(𝑠, 𝜗−𝑡𝜔)
󵄩󵄩󵄩󵄩
2
𝑑𝑠}

1/2

≤ √𝑟5 (𝜔)
󵄨󵄨󵄨󵄨𝜏1 − 𝜏2

󵄨󵄨󵄨󵄨
1/2
.

(129)

Then it follows from (127), (128), and (129) that
󵄩󵄩󵄩󵄩󵄩
V𝑡
(𝜏2, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔)) − V𝑡

(𝜏1, 𝜗−𝑡𝜔, V
0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
V (𝑡 + 𝜏2, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔)) − V (𝑡 + 𝜏1, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡+𝜏
2

𝑡+𝜏
1

V󸀠
(𝑠, 𝜗−𝑡𝜔) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩ΔV (𝑠, 𝜗−𝑡𝜔)
󵄩󵄩󵄩󵄩 𝑑𝑠 + 𝜆∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩V (𝑠, 𝜗−𝑡𝜔)
󵄩󵄩󵄩󵄩 𝑑𝑠

+ ∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩𝑓 (V
𝑠
(𝜗−𝑡𝜔) + 𝑧

𝑠
(𝜗−𝑡𝜔))

󵄩󵄩󵄩󵄩 𝑑𝑠 + ∫

𝑡+𝜏
2

𝑡+𝜏
1

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ 𝑟8 (𝜔)
󵄨󵄨󵄨󵄨𝜏1 − 𝜏2

󵄨󵄨󵄨󵄨
1/2
,

(130)

where

𝑟8 (𝜔) = √𝑟5 (𝜔)

+ √]{(𝑙𝑓 (𝑝2 (𝜔)) + 𝜆)√ sup
𝜎∈[−],0]

𝑟1 (𝜗𝜎𝜔)

+𝑙𝑓 (𝑝2 (𝜔)) sup
𝜎∈[−2],0]

󵄨󵄨󵄨󵄨𝑧 (𝜗𝜎𝜔)
󵄨󵄨󵄨󵄨 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩} .

(131)

It is not difficult to see that 𝑟7 and 𝑟8 are tempered.The lemma
follows from (127) and (131).

Lemma 18. The random dynamical system 𝜙 is D-pullback
asymptotically compact in C; that is, for P a.e. 𝜔 ∈ Ω, the
sequence {𝜙(𝑡𝑛, 𝜗−𝑡

𝑛

𝜔, V0

𝑛
(𝜗−𝑡
𝑛

𝜔))}
∞

𝑛=1
has a convergent subse-

quence in C provided 𝑡𝑛 → ∞, 𝐵 ∈ D, and V0

𝑛
(𝜗−𝑡
𝑛

𝜔) ∈

𝐵(𝜗−𝑡
𝑛

𝜔).

Proof. Denote by 𝑄𝑘 the set {𝑥 ∈ R𝑑
: |𝑥| < 𝑘} for each

𝑘 ∈ N. Since 𝑡𝑛 → ∞, there exists 𝑛0 = 𝑛0(𝐵, 𝜔) ∈ N such
that 𝑡𝑛 > 𝑇𝐵(𝜔) + ] + 1 for all 𝑛 ≥ 𝑛0. Then by Lemma 17, we
find that, for all 𝑛 ≥ 𝑛0 and 𝜎 ∈ [−], 0],

󵄩󵄩󵄩󵄩󵄩
V𝑡
𝑛 (𝜎, 𝜗−𝑡

𝑛

𝜔, V0
(𝜗−𝑡

𝑛

𝜔))
󵄩󵄩󵄩󵄩󵄩

2

𝐻1(𝑄𝑘)
≤ 𝑟7 (𝜔) . (132)

By the compactness of embedding 𝐻1
(𝑄𝑘) 󳨅→ 𝐿

2
(𝑄𝑘), it

follows from (132) that for each 𝜎 ∈ [−], 0] the sequence
{V𝑡
𝑛(𝜎, 𝜗−𝑡

𝑛

𝜔, V0
(𝜗−𝑡
𝑛

𝜔))}
∞

𝑛=1
is relatively compact in 𝐿2

(𝑄𝑘).
On the other hand, by Lemma 17, we also find that, for all
𝑛 ≥ 𝑛0 and 𝜏1,𝜏2 ∈ [−], 0],
󵄩󵄩󵄩󵄩󵄩
V𝑡
𝑛 (𝜏1, 𝜗−𝑡

𝑛

𝜔, V0
(𝜗−𝑡

𝑛

𝜔)) − V𝑡
𝑛 (𝜏2, 𝜗−𝑡

𝑛

𝜔, V0
(𝜗−𝑡

𝑛

𝜔))
󵄩󵄩󵄩󵄩󵄩𝐿2(𝑄

𝑘
)

≤ 𝑟8 (𝜔)
󵄨󵄨󵄨󵄨𝜏1 − 𝜏2

󵄨󵄨󵄨󵄨
1/2
.

(133)

Hence, the sequence {V𝑡
𝑛(⋅, 𝜗−𝑡

𝑛

𝜔, V0
(𝜗−𝑡
𝑛

𝜔))}
∞

𝑛=1
is equicon-

tinuous. By the Ascoli-Arzelà theorem, for each 𝑘 ∈ N the
sequence {V𝑡

𝑛(⋅, 𝜗−𝑡
𝑛

𝜔, V0
(𝜗−𝑡
𝑛

𝜔))}
∞

𝑛=1
is relatively compact in

𝐶([−], 0]; 𝐿2
(𝑄𝑘)). Then, by a diagonal procedure, we can

extract a subsequence {𝑡𝑛
𝑖

} such that for each 𝑘 ∈ N, the
sequence {V𝑡

𝑛
𝑖 (⋅, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡
𝑛
𝑖

𝜔))}
∞

𝑖=1
converges to 𝜉𝑘(⋅, 𝜔) in

𝐶([−], 0]; 𝐿2
(𝑄𝑘)).

Obviously, for fixed 𝜎 ∈ [−], 0] and 𝜔 ∈ Ω, 𝜉𝑘+1(𝜎, 𝜔)(⋅)

coincides with 𝜉𝑘(𝜎, 𝜔)(⋅) on 𝑄𝑘. Therefore, one can define
unambiguously a measurable function 𝜉(𝜎, 𝜔)(⋅) by stipulat-
ing that it is equal to 𝜉𝑘(𝜎, 𝜔)(⋅) on 𝑄𝑘. By Lemma 13, we
obtain that, for all 𝜎 ∈ [−], 0], 𝑘 ∈ N, and 𝑖 > 𝑛0,

∫
𝑄
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ sup
𝜎∈[−],0]

∫
R𝑑

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, 𝑢
0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝑟1 (𝜔) .

(134)
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Thus,

∫
𝑄
𝑘

󵄨󵄨󵄨󵄨𝜉 (𝜎, 𝜔) (𝑥)
󵄨󵄨󵄨󵄨
2
𝑑𝑥

= lim
𝑖→∞

∫
𝑄
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝑟1 (𝜔) ,

(135)

which implies

󵄩󵄩󵄩󵄩𝜉(𝜎, 𝜔)
󵄩󵄩󵄩󵄩
2
≤ sup

𝑘∈N

∫
𝑄
𝑘

󵄨󵄨󵄨󵄨𝜉 (𝜎, 𝜔) (𝑥)
󵄨󵄨󵄨󵄨
2
𝑑𝑥 ≤ 𝑟1 (𝜔) . (136)

Hence, 𝜉(𝜎, 𝜔) ∈ 𝐿2
(R𝑑

).
For every 𝐵 ∈ D and 𝜀 > 0, by Lemma 16, there exist

𝑅
∗
= 𝑅

∗
(𝜔, 𝜀) > 0 and 𝑇∗

= 𝑇
∗
(𝐵, 𝜔, 𝜀) > 0 such that, for all

𝑢
0
∈ 𝐵 and 𝑡 ≥ 𝑇∗,

sup
𝜎∈[−],0]

∫
|𝑥|≥𝑅∗

󵄨󵄨󵄨󵄨󵄨
V𝑡
(𝜎, 𝜗−𝑡𝜔, V

0
(𝜗−𝑡𝜔))

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤
𝜀
2

8
. (137)

Since 𝑡𝑛
𝑖

→ ∞, there exists 𝑞1 = 𝑞1(𝜔, 𝜀) ∈ N such that
𝑡𝑛
𝑖

≥ 𝑇
∗ for all 𝑖 > 𝑞1. Then we get from (137) that, for all

𝑖 > 𝑞1,

sup
𝜎∈[−],0]

∫
|𝑥|≥𝑅∗

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤
𝜀
2

8
.

(138)

Take a fixed integer 𝑘 ≥ 𝑅∗. Then we find from (138) that, for
all integer 𝑙 > 𝑘 and 𝜎 ∈ [−], 0],

∫
𝑘≤|𝑥|<𝑙

󵄨󵄨󵄨󵄨𝜉 (𝜎, 𝜔) (𝑥)
󵄨󵄨󵄨󵄨
2
𝑑𝑥

= lim
𝑖→∞

∫
𝑘≤|𝑥|<𝑙

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ sup
𝜎∈[−],0], 𝑖>𝑞

1

∫
|𝑥|≥𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
𝜀
2

8
,

(139)

which implies

sup
𝜎∈[−],0]

∫
|𝑥|≥𝑘

󵄨󵄨󵄨󵄨𝜉 (𝜎, 𝜔) (𝑥)
󵄨󵄨󵄨󵄨
2
𝑑𝑥

≤ sup
𝜎∈[−],0], 𝑙>𝑘

∫
𝑘≤|𝑥|<𝑙

󵄨󵄨󵄨󵄨𝜉 (𝜎, 𝜔) (𝑥)
󵄨󵄨󵄨󵄨
2
𝑑𝑥 ≤

𝜀
2

8
.

(140)

As the sequence {V𝑡
𝑛
𝑖 (⋅, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡
𝑛
𝑖

𝜔))}
∞

𝑖=1
converges to

𝜉(⋅, 𝜔) in 𝐶([−], 0]; 𝐿2
(𝑄𝑘)), there exists 𝑞2 = 𝑞2(𝜔, 𝜀) ∈ N

such that, for all 𝑖 > 𝑞2,

sup
𝜎∈[−],0]

∫
𝑄
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥) − 𝜉 (𝜎, 𝜔) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
𝜀
2

2
.

(141)

Let 𝑞 = max{𝑞1, 𝑞2}. Then it follows from (138), (140), and
(141) that, for all 𝑖 > 𝑞,

sup
𝜎∈[−],0]

󵄩󵄩󵄩󵄩󵄩󵄩
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡

𝑛
𝑖

𝜔)) − 𝜉 (𝜎, 𝜔)
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ sup
𝜎∈[−],0]

∫
𝑄
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢

𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, 𝑢
0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥)

− 𝜉 (𝜎, 𝜔) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ 2 sup
𝜎∈[−],0]

∫
|𝑥|≥𝑘

󵄨󵄨󵄨󵄨𝜉 (𝜎, 𝜔) (𝑥)
󵄨󵄨󵄨󵄨
2
𝑑𝑥

+ 2 sup
𝜎∈[−],0]

∫
|𝑥|≥𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
V𝑡
𝑛
𝑖 (𝜎, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡

𝑛
𝑖

𝜔)) (𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝜀
2
,

(142)

which shows that the sequence {V𝑡
𝑛
𝑖 (⋅, 𝜗−𝑡

𝑛
𝑖

𝜔, V0
(𝜗−𝑡
𝑛
𝑖

𝜔))}
∞

𝑖=1

converges to 𝜉(⋅, 𝜔) inC. This completes the proof.

We are now in a position to present our main result about
the existence of aD-random attractor for 𝜓 inC.

Theorem 19. The random dynamical system 𝜓 has a unique
D-random attractor inC.

Proof. Notice that 𝜙 has a closed absorbing set 𝐾 in D by
Lemma 13 and is D-pullback asymptotically compact in C
by Lemma 18. Hence, the existence of a unique D-random
attractor {A1(𝜔)}𝜔∈Ω

for 𝜙 follows from Proposition 10
immediately.

Since 𝜓 and 𝜙 are conjugated by the random homeomor-
phism𝑇(𝜔, 𝜉) = 𝜉+𝑧

0
(𝜔) and 𝑧0

(𝜔) ∈ C is tempered, then, by
Proposition 1.8.3 in [33], 𝜓 has a uniqueD-random attractor
{A2(𝜔)}𝜔∈Ω

inC which is given by

A2 (𝜔) = {𝜉 (𝜔) + 𝑧
0
(𝜔) : 𝜉 (𝜔) ∈ A1 (𝜔)} . (143)

The proof is complete.
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