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This paper presents two-level iteration penalty finite element methods to approximate the solution of the Navier-Stokes equations
with friction boundary conditions.The basic idea is to solve the Navier-Stokes type variational inequality problem on a coarsemesh
with mesh size 𝐻 in combining with solving a Stokes, Oseen, or linearized Navier-Stokes type variational inequality problem for
Stokes, Oseen, or Newton iteration on a fine mesh with mesh size ℎ. The error estimate obtained in this paper shows that if𝐻, ℎ,
and 𝜀 can be chosen appropriately, then these two-level iteration penalty methods are of the same convergence orders as the usual
one-level iteration penalty method.

1. Introduction

In this paper, we consider a two-level iteration penalty
method for the incompressible flows which are governed by
the incompressible Navier-Stokes equations:

−𝜇Δu + (u ⋅ ∇)u − ∇𝑝 = f , in Ω,

div u = 0, in Ω,

(1)

where Ω is a bounded domain in R2 assumed to have a
Lipschitz continuous boundary 𝜕Ω, 𝜇 > 0 represents the
viscous coefficient, u = (𝑢

1
(𝑥), 𝑢
2
(𝑥)) denotes the velocity

vector, 𝑝 = 𝑝(𝑥) the pressure and f = (𝑓
1
(𝑥), 𝑓
2
(𝑥)) the

prescribed body force vector. The solenoidal condition
div u = 0means that the flows are incompressible.

Instead of the classical whole homogeneous boundary
conditions, here we consider the following slip boundary
conditions with friction type:

u = 0, on Γ,

u
𝑛
= 0, −𝜎

𝜏
(u) ∈ 𝑔𝜕 u𝜏

 on 𝑆,

(2)

where Γ ∩ 𝑆 = 0, Γ ∪ 𝑆 = 𝜕Ω, and 𝑔 is a scalar function;
u
𝑛
= u ⋅ n and u

𝜏
= u − u

𝑛
n are the normal and tangential

components of the velocity, where n stands for the unit vector

of the external normal to 𝑆; 𝜎
𝜏
(u) = 𝜎 − 𝜎

𝑛
n, independent

of 𝑝, is the tangential components of the stress vector 𝜎
which is defined by 𝜎

𝑖
= 𝜎
𝑖
(u, 𝑝) = (𝜇𝑒

𝑖𝑗
(u) − 𝑝𝛿

𝑖𝑗
)𝑛
𝑗
with

𝑒
𝑖𝑗
(u) = (𝜕𝑢

𝑖
/𝜕𝑥
𝑗
) + (𝜕𝑢

𝑗
/𝜕𝑥
𝑖
), 𝑖, 𝑗 = 1, 2. The set 𝜕𝜓(a)

denotes a subdifferential of the function 𝜓 at a ∈ 𝐿
2
(𝑆)
2,

whose definition will be given in the next section.
This type of boundary condition is firstly introduced

by Fujita [1] where some problems in hydrodynamics are
studied. Some theoretical problems are also studied by many
scholars, such as Fujita in [2–4], Y. Li and K. Li [5, 6], and
Saito and Fujita [7, 8] and references cited in their work.

The development of appropriate mixed finite element
approximations is a key component in the search for efficient
techniques for solving the problem (1) quickly and efficiently.
Roughly speaking, there exist two main difficulties. One is
the nonlinear term (u ⋅ ∇)u, which can be processed by the
linearization method such as the Newton iteration method,
Stokes iteration method, Oseen iteration method [9], or the
two-level methods [10–17]. The other is that the velocity and
the pressure are coupled by the solenoidal condition. The
popular technique to overcome the second difficulty is to
relax the solenoidal condition in an appropriate method and
to result in a pseudocompressible system, such as the penalty
method and the artificial compressiblemethod [18]. Recently,
using the Taylor-Hood element, the authors [19] study the



2 Abstract and Applied Analysis

penalty finite elementmethod for the problem (1)-(2). Denote
(uℎ
𝜀
, 𝑝
ℎ

𝜀
) as the penalty finite element approximation solution

to (u, 𝑝) ∈ (𝐻
3
(Ω)
2
, 𝐻
2
(Ω)). The error estimate derived in

[19] is

u − uℎ
𝜀

1
+

𝑝 − 𝑝
ℎ

𝜀


≤ 𝑐 (𝜀 + ℎ

5/4
) , (3)

where 𝜀 > 0 is the penalty parameter. However, the
condition number of the numerical discretization for the
penalty methods is 𝑂(𝜀−1ℎ−2), which will result in an ill-
conditioned problem when mesh size ℎ → 0. In order to
avoid the choice of the small parameter 𝜀, Dai et al. [20]
have studied the iteration penalty finite element method and
derive


u − uℎ𝑘
𝜀

1
+

𝑝 − 𝑝
ℎ𝑘

𝜀


≤ 𝑐 (𝜀

𝑘+1
+ ℎ
5/4
) , (4)

where 𝑘 ∈ N+ is the iteration step number.
In this paper, we combine the iteration penalty method

with the two-level method to approximate the solution of
the problem (1)-(2). The iterative penalty method was first
introduced by Cheng and Shaikh [21] for the Stokes equations
and further used to solve the pure Neumann problem [22].
This iteration penalty method can be considered as the time
discretization of the artificial compressible method [23]. The
two-level iteration penalty methods studied in this paper
can be described as follows. The first step and the second
step are required to solve a small Navier-Stokes equations
on the coarse mesh in terms of the iteration penalty method
[20, 21].The third step is required to solve a large linearization
problem on the fine mesh in terms of the Stokes iteration,
Oseen iteration, or Newtonian iteration, respectively. We
prove that these two-level iteration penalty finite element
solutions (u

𝜀ℎ
, 𝑝
𝜀ℎ
) are of the following error estimate:

u − u
𝜀ℎ

1
+
𝑝 − 𝑝𝜀ℎ



≤

{{{

{{{

{

𝑐 (ℎ
5/4

+ 𝐻
9/4

+ 𝜀𝐻
5/4

+ 𝜀
𝑘+1

) ,

(Stokes and Oseen iteration) ,
𝑐 (ℎ
5/4

+ 𝐻
5/2

+ 𝜀𝐻
5/4

+ 𝜀
𝑘+2

) ,

(Newtonian iteration) ,

(5)

Finally, we propose an improved correction iteration scheme
for (𝑢

𝜀ℎ
, 𝑝
𝜀ℎ
) in terms of the Newton iteration method. We

prove that the correction finite element solutions (𝑢⋆
𝜀ℎ
, 𝑝
⋆

𝜀ℎ
)

are of the following error estimates:
u − u⋆

𝜀ℎ

1
+
𝑝 − 𝑝

⋆

𝜀ℎ



≤

{{{

{{{

{

𝑐 (ℎ
5/4

+ 𝐻
9/2

+ 𝜀
3/2
𝐻
5/4

+ 𝜀
1/2
𝐻
9/4

+ 𝜀
𝑘+1/2

) ,

(Stokes and Oseen iteration) ,
𝑐 (ℎ
5/4

+ 𝐻
5
+ 𝜀
3/2
𝐻
5/4

+ 𝜀
1/2
𝐻
5/2

+ 𝜀
𝑘+1/2

) ,

(Newtonian iteration) .
(6)

Throughout this paper, we will use 𝑐 to denote a positive
constant whose valuemay change from place to place but that
remains independent of ℎ,𝐻, and 𝜀 and that may depend on
𝜇, Ω and the norms of u, 𝑝, f , and 𝑔.

2. Preliminary

First, we give the definition of the subdifferential property. Let
𝜓 be a given function possessing the properties of convexity
and weak semicontinuity from below. We say that the set
𝜕𝜓(a) is a subdifferential of the function 𝜓 at a ∈ 𝐿

2
(𝑆)
2 if

and only if

𝜕𝜓 (a) = {b ∈ 𝐿2(𝑆)2 : 𝜓 (h) − 𝜓 (a)

≥ b ⋅ (h − a) , ∀h ∈ 𝐿2(𝑆)2} .
(7)

In what follows, we employ the standard notation𝐻𝑙(Ω)
(or 𝐻𝑙(Ω)2) and || ⋅ ||

𝑙
, 𝑙 ≥ 0, for the Sobolev spaces of all

functions having square integrable derivatives up to order 𝑙
in Ω and the standard Sobolev norm. When 𝑙 = 0, we write
𝐿
2
(Ω) (or 𝐿2(Ω)2) and || ⋅ || instead of𝐻0(Ω) (or𝐻0(Ω)2) and

|| ⋅ ||
0
, respectively.

For the mathematical setting, we introduce the following
spaces:

𝑉 = {u ∈ 𝐻1(Ω)2, u|Γ = 0, u ⋅ n|𝑆 = 0} ,

𝑉
0
= 𝐻
1

0
(Ω)
2
,

𝑉
𝜎
= {u ∈ 𝑉, div u = 0} ,

𝑀 = 𝐿
2

0
(Ω) = {𝑞 ∈ 𝐿

2
(Ω) , ∫

Ω

𝑞𝑑𝑥 = 0} .

(8)

The space 𝑉 is equipped with the norm

‖v‖𝑉 = (∫
Ω

|∇v|2𝑑𝑥)
1/2

. (9)

It is well known that ||v||
𝑉

is equivalent to ||v||
1
due to

Poincare’s inequality. Introduce two bilinear forms

𝑎 (u, v) = 𝜇∫
Ω

∇u ⋅ ∇v𝑑𝑥, ∀u, v ∈ 𝑉,

𝑑 (V, 𝑞) = ∫
Ω

𝑞 div v𝑑𝑥, ∀v ∈ 𝑉, 𝑞 ∈ 𝑀,

(10)

and a trilinear form

𝑏 (u, v,w) = ∫
Ω

(u ⋅ ∇) v ⋅ w𝑑𝑥 − 1

2
∫
Ω

div uv ⋅ w𝑑𝑥

=
1

2
∫
Ω

(u ⋅ ∇) v ⋅ w𝑑𝑥 − 1

2
∫
Ω

(u ⋅ ∇)w ⋅ v𝑑𝑥.
(11)

It is easy to verify that this trilinear form satisfies the following
important properties [12, 23]:

𝑏 (u, v,w) = −𝑏 (u,w, v) , (12)

𝑏 (u, v,w) ≤ 𝑁‖u‖𝑉‖v‖𝑉‖w‖𝑉, (13)

𝑏 (u, v,w) ≤ 𝑁

2
‖u‖1/2‖u‖1/2

𝑉

× (‖v‖𝑉‖w‖
1/2
‖w‖1/2
𝑉

+ ‖w‖𝑉‖v‖
1/2
‖v‖1/2
𝑉
) ,

(14)
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for all u, v,w ∈ 𝑉, and

|𝑏 (u, v,w)| + |𝑏 (v, u,w)| + |𝑏 (w, u, v)| ≤ 𝑁‖u‖𝑉‖v‖2 ‖w‖ ,
(15)

for all u ∈ 𝑉, v ∈ 𝐻
2
(Ω)
2, and w ∈ 𝐿

2
(Ω)
2, where 𝑁 > 0

depends only onΩ.
Given f ∈ 𝐿

2
(Ω)
2 and 𝑔 ∈ 𝐿

2
(𝑆) with 𝑔 > 0 on 𝑆,

under the above notation, the variational formulation of the
problem (1)-(2) reads as follows: find (u, 𝑝) ∈ (𝑉,𝑀) such
that for all (v, 𝑞) ∈ (𝑉,𝑀)

𝑎 (u, v − u) + 𝑏 (u, u, v − u) + 𝑗 (v
𝜏
) − 𝑗 (u

𝜏
)

− 𝑑 (v − u, 𝑝) ≥ (f , v − u) ,

𝑑 (u, 𝑞) = 0,

(16)

where 𝑗(𝜂) = ∫
𝑆
𝑔|𝜂|𝑑𝑠 for all 𝜂 ∈ 𝐿2(𝑆)2. Saito in [8] showed

that there exists some positive 𝛽 > 0 such that

𝛽
𝑞
 ≤ sup

V∈𝑉

𝑑 (v, 𝑞)
‖v‖𝑉

; (17)

then the variational inequality (16) is equivalent to the
following: find u ∈ 𝑉

𝜎
such that for all v ∈ 𝑉

𝜎

𝑎 (u, v − u) + 𝑏 (u, u, v − u) + 𝑗 (v
𝜏
) − 𝑗 (u

𝜏
) ≥ (f , v − u) .

(18)

The existence and uniqueness theoremof the solutionu to the
problem (18) has been shown in [19]. Here, we only recall it.

Theorem 1. If the following uniqueness condition holds

4𝜅
1
𝑁(‖f‖ + 𝑔

𝐿2(𝑆)
)

𝜇2
< 1, (19)

then there exists a unique solution u ∈ 𝑉
𝜎
to the variational

inequality problem (18) such that

‖u‖𝑉 ≤
2𝜅
1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
) <

𝜇

2𝑁
, (20)

where 𝜅
1
> 0 satisfies

(f , v) − 𝑗 (v𝜏)
 ≤ 𝜅1 (‖f‖ +

𝑔
𝐿2(𝑆)

) ‖v‖𝑉, ∀v ∈ 𝑉
𝜎
. (21)

3. Iteration Penalty Finite
Element Approximation

Suppose that Ω is a convex and polygon domain. LetT
ℎ
be a

family of quasi-uniform triangular partition ofΩ. The corre-
sponding ordered triangles are denoted by𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑛
. Let

ℎ
𝑖
= diam(𝐾

𝑖
), 𝑖 = 1, . . . , 𝑛, and ℎ = max{ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
}. For

every 𝐾 ∈ T
ℎ
, let 𝑃
𝑟
(𝐾) denote the space of the polynomials

on 𝐾 of degree at most 𝑟. For simplicity, we consider the
conforming finite element spaces 𝑉

ℎ
and𝑀

ℎ
defined by

𝑉
ℎ
= 𝑉 ∩𝑊

ℎ
with 𝑊

ℎ
= {v
ℎ
∈ 𝐶(Ω)

2

, v
ℎ

𝐾

∈ [𝑃
2
(𝐾)]
2

, ∀𝐾 ∈ T
ℎ
, } ,

𝑀
ℎ
={𝑞
ℎ
∈𝐶 (Ω) , 𝑞

ℎ

𝐾
∈𝑃
1
(𝐾) , ∀𝐾∈T

ℎ
, ∫
Ω

𝑞
ℎ
𝑑𝑥=0} .

(22)

Denote 𝑉
0ℎ

= 𝑉
0
∩ 𝑊
ℎ
. It is well known that 𝑉

0ℎ
and 𝑀

ℎ

satisfy the Babuška-Brezzi condition [24, 25]:

𝜅
𝑞ℎ

 ≤ sup
w
ℎ
∈𝑉
0ℎ

𝑑 (w
ℎ
, 𝑞
ℎ
)

wℎ
𝑉

, (23)

where 𝜅 > 0 is a constant independent of ℎ. Denote𝑅
ℎ
and𝑄

ℎ

as the𝐿2 orthogonal projections onto𝑉
ℎ
and𝑀

ℎ
, respectively,

which satisfy
v − 𝑅ℎv

 + ℎ
v − 𝑅ℎv

𝑉
≤ 𝑐ℎ
𝑖
‖v‖𝑖,

∀v ∈ 𝐻3(Ω)2 ∩ 𝑉, 𝑖 = 1, 2, 3,

(24)

𝑞 − 𝑄ℎ𝑞
 ≤ 𝑐ℎ

𝑗𝑞
𝑗
, ∀𝑞 ∈ 𝐻

2
(Ω) ∩𝑀, 𝑗 = 1, 2. (25)

It follows from the trace inequality ||v||
𝐿
2
(𝑆)

≤ 𝑐||v||1/2||v||1/2
𝑉

[26] that
v − 𝑅ℎv

𝐿2(𝑆)

≤ 𝑐
v − 𝑅ℎv



1/2v − 𝑅ℎv


1/2

𝑉

≤ 𝑐ℎ
𝑖−1/2

‖v‖𝑖, ∀v ∈ 𝐻3(Ω)2 ∩ 𝑉, 𝑖 = 1, 2, 3.

(26)

Let 𝜀 > 0 be some small parameter.The one-level iteration
penalty finite element method for the problem (16) has been
studied in [20], which can be described as follows.

Step 1. Find (u0
𝜀ℎ
, 𝑝
0

𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) such that for all (v

ℎ
, 𝑞
ℎ
) ∈

(𝑉
ℎ
,𝑀
ℎ
)

𝑎 (u0
𝜀ℎ
, v
ℎ
− u0
𝜀ℎ
) + 𝑏 (u0

𝜀ℎ
, u0
𝜀ℎ
, v
ℎ
− u0
𝜀ℎ
) + 𝑗 (v

ℎ𝜏
)

− 𝑗 (u0
𝜀ℎ𝜏
) − 𝑑 (v

ℎ
− u0
𝜀ℎ
, 𝑝
0

𝜀ℎ
) ≥ (f , v

ℎ
− u0
𝜀ℎ
) ,

𝑑 (u0
𝜀ℎ
, 𝑞
ℎ
) + 𝜀 (𝑝

0

𝜀ℎ
, 𝑞
ℎ
) = 0.

(27)

Step 2. For 𝑘 = 1, 2, . . ., find (u𝑘
𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) such that

for all (v
ℎ
, 𝑞
ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
)

𝑎 (u𝑘
𝜀ℎ
, v
ℎ
− u𝑘
𝜀ℎ
) + 𝑏 (u𝑘

𝜀ℎ
, u𝑘
𝜀ℎ
, v
ℎ
− u𝑘
𝜀ℎ
) + 𝑗 (v

ℎ𝜏
)

− 𝑗 (u𝑘
𝜀ℎ𝜏
) − 𝑑 (v

ℎ
− u𝑘
𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
) ≥ (f , v

ℎ
− u𝑘
𝜀ℎ
) ,

𝑑 (u𝑘
𝜀ℎ
, 𝑞
ℎ
) + 𝜀 (𝑝

𝑘

𝜀ℎ
, 𝑞
ℎ
) = 𝜀 (𝑝

𝑘−1

𝜀ℎ
, 𝑞
ℎ
) .

(28)

First, we give the a priori estimate of the solution (u𝑘
𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
)

to the problem (28).
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Theorem 2. Suppose that (u𝑘
𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) is the solution

to the problem (28); then it satisfies

𝜇

u𝑘
𝜀ℎ



2

𝑉
+ 𝜀


𝑝
𝑘

𝜀ℎ



2

≤
(2𝑘 + 1) 𝜅

2

1

2𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

. (29)

Proof. Setting v
ℎ
= 0, 𝑞

ℎ
= 𝑝
0

𝜀ℎ
in (27), using (12) and Young’s

inequality, it yields that

𝜇

u0
𝜀ℎ



2

𝑉
+ 𝜀


𝑝
0

𝜀ℎ



2

≤ (f , u0
𝜀ℎ
) − 𝑗 (u0

𝜀ℎ𝜏
)

≤ 𝜅
1
(‖f‖ + 𝑔

𝐿2(𝑆)
)

u0
𝜀ℎ

𝑉

≤
𝜇

2


u0
𝜀ℎ



2

𝑉
+
𝜅
2

1

2𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

.

(30)

Then we have

𝜇

u0
𝜀ℎ



2

𝑉
+ 2𝜀


𝑝
0

𝜀ℎ



2

≤
𝜅
2

1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

. (31)

For 𝑘 = 1, 2, . . ., setting v
ℎ
= 0, 𝑞

ℎ
= 𝑝
𝑘

𝜀ℎ
in (28), it yields that

𝜇

u𝑘
𝜀ℎ



2

𝑉
+ 𝜀


𝑝
𝑘

𝜀ℎ



2

≤ (f , u𝑘
𝜀ℎ
) − 𝑗 (u𝑘

𝜀ℎ𝜏
) + 𝜀 (𝑝

𝑘−1

𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
)

≤
𝜇

2


u𝑘
𝜀ℎ



2

𝑉
+
𝜅
2

1

2𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

+
𝜀

2


𝑝
𝑘

𝜀ℎ



2

+
𝜀

2


𝑝
𝑘−1

𝜀ℎ



2

.

(32)

Thus, we obtain

𝜇

u𝑘
𝜀ℎ



2

𝑉
+ 𝜀


𝑝
𝑘

𝜀ℎ



2

≤
𝜅
2

1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

+ 𝜀

𝑝
𝑘−1

𝜀ℎ



2

≤ ⋅ ⋅ ⋅ ≤
𝑘𝜅
2

1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

+ 𝜀

𝑝
0

𝜀ℎ



2

≤
(2𝑘 + 1) 𝜅

2

1

2𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

.

(33)

The next theorem gives the error estimate between the
solutions (u, 𝑝) and (u𝑘

𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
) to the problems (16) and (28),

respectively. The proof can be found in [20].

Theorem 3. Let (u, 𝑝) ∈ 𝐻
3
(Ω)
2
∩ 𝑉 × 𝐻

2
(Ω) ∩ 𝑀 and

(u𝑘
𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) be the solutions to the problems (16) and

(28), respectively; then they satisfy

u − u𝑘
𝜀ℎ

𝑉
+

𝑝 − 𝑝
𝑘

𝜀ℎ


≤ 𝑐 (ℎ

5/4
+ 𝜀
𝑘+1

) . (34)

Next, we will show the error estimate ||u − u𝑘
𝜀ℎ
|| for

the penalty finite element approximation (28). This 𝐿2 error
analysis is based on the regularity assumption that the
following linearized problem (35) is (𝐻2(Ω)2, 𝐻1(Ω)) regular.

Given z ∈ 𝐿
2
(Ω)
2, find (w, 𝜋) ∈ (𝑉,𝑀) such that for all

(v, 𝑞) ∈ (𝑉,𝑀)

𝑎 (w, v) + 𝑏 (u𝑘
𝜀ℎ
, v,w) + 𝑏 (v, u,w) − 𝑑 (v, 𝜋) = (z, v) ,

𝑑 (w, 𝑞) = 0.
(35)

According to (12) and (20), it is easy to verify that there exists
a unique solution (w, 𝜋) to the problem (35).The assumption
that (35) is (𝐻2(Ω)2, 𝐻1(Ω)) regular means that (w, 𝜋) also
belongs to (𝐻

2
(Ω)
2
, 𝐻
1
(Ω)) and the following inequality

holds:

‖w‖2 + ‖𝜋‖1 ≤ 𝑐 ‖𝑧‖ . (36)

Let 𝐼
ℎ
be the 𝐿2 orthogonal projections onto 𝑉

0ℎ
and satisfy

w − 𝐼
ℎ
w𝑉 ≤ 𝑐ℎ‖w‖2. (37)

Theorem 4. Let (u, 𝑝) ∈ 𝐻
3
(Ω)
2
∩ 𝑉 × 𝐻

2
(Ω) ∩ 𝑀 and

(u𝑘
𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) be the solutions to the problems (16) and

(28), respectively; then they satisfy


u − u𝑘
𝜀ℎ


≤ 𝑐 (ℎ

9/4
+ 𝜀ℎ
5/4

+ 𝜀
𝑘+1

) . (38)

Proof. Setting z = u−u𝑘
𝜀ℎ
and v = u−u𝑘

𝜀ℎ
in the first equation

of (35), we get


u − u𝑘
𝜀ℎ



2

= 𝑎 (w, u − u𝑘
𝜀ℎ
) + 𝑏 (u𝑘

𝜀ℎ
, u − u𝑘

𝜀ℎ
, 𝑤)

+ 𝑏 (u − u𝑘
𝜀ℎ
, u,w) − 𝑑 (u − u𝑘

𝜀ℎ
, 𝜋) .

(39)

Taking v = u± 𝐼
ℎ
w, 𝑞 = 𝑄

ℎ
𝜋 in (16) and v

ℎ
= u𝑘
𝜀ℎ
± 𝐼
ℎ
w, 𝑞
ℎ
=

𝑄
ℎ
𝜋 in (28), respectively, we obtain

𝑎 (u, 𝐼
ℎ
w) + 𝑏 (u, u, 𝐼

ℎ
w) − 𝑑 (𝐼

ℎ
w, 𝑝) = (f , 𝐼

ℎ
w) ,

𝑑 (u, 𝑄
ℎ
𝜋) = 0,

𝑎 (u𝑘
𝜀ℎ
, 𝐼
ℎ
w) + 𝑏 (u𝑘

𝜀ℎ
, u𝑘
𝜀ℎ
, 𝐼
ℎ
w) − 𝑑 (𝐼

ℎ
w, 𝑝𝑘
𝜀ℎ
) = (f , 𝐼

ℎ
w) ,

𝑑 (u𝑘
𝜀ℎ
, 𝑄
ℎ
𝜋) + 𝜀 (𝑝

𝑘

𝜀ℎ
, 𝑄
ℎ
𝜋) = 𝜀 (𝑝

𝑘−1

𝜀ℎ
, 𝑄
ℎ
𝜋) .

(40)

Subtracting them, we get

𝑎 (u − u𝑘
𝜀ℎ
, 𝐼
ℎ
w) + 𝑏 (u, u, 𝐼

ℎ
w) − 𝑏 (u𝑘

𝜀ℎ
, u𝑘
𝜀ℎ
, 𝐼
ℎ
w)

− 𝑑 (𝐼
ℎ
w, 𝑝 − 𝑝𝑘

𝜀ℎ
) = 0,

𝑑 (u − u𝑘
𝜀ℎ
, 𝑄
ℎ
𝜋) + 𝜀 (𝑝

𝑘−1

𝜀ℎ
, 𝑄
ℎ
𝜋) − 𝜀 (𝑝

𝑘

𝜀ℎ
, 𝑄
ℎ
𝜋) = 0.

(41)
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Substituting the previous equation into (39), it yields that


u − u𝑘
𝜀ℎ



2

= 𝑎 (w − 𝐼
ℎ
w, u − u𝑘

𝜀ℎ
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽
1

+ 𝑏 (u𝑘
𝜀ℎ
, u − u𝑘

𝜀ℎ
,w)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽
2

+ 𝑏 (u − u𝑘
𝜀ℎ
, u,w) + 𝑏 (u𝑘

𝜀ℎ
, u𝑘
𝜀ℎ
, 𝐼
ℎ
w) − 𝑏 (u, u, 𝐼

ℎ
w)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽
2

+ 𝑑 (𝐼
ℎ
w − w, 𝑝 − 𝑝𝑘

𝜀ℎ
) − 𝑑 (u − u𝑘

𝜀ℎ
, 𝜋 − 𝑄

ℎ
𝜋)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽
3

+ 𝜀 (𝑝
𝑘−1

𝜀ℎ
, 𝑄
ℎ
𝜋) − 𝜀 (𝑝

𝑘

𝜀ℎ
, 𝑄
ℎ
𝜋)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐽
4

.

(42)

Using (34), (36), and (37), 𝐽
1
is estimated by

𝐽
1
= 𝑎 (w − 𝐼

ℎ
w, u − u𝑘

𝜀ℎ
)

≤ 𝜇

u − u𝑘
𝜀ℎ

𝑉

w − 𝐼
ℎ
w𝑉

≤ 𝑐ℎ (ℎ
5/4

+ 𝜀
𝑘+1

) ‖w‖2

≤ 𝑐ℎ (ℎ
5/4

+ 𝜀
𝑘+1

)

u − u𝑘
𝜀ℎ


.

(43)

Similarly, using (25), (34), (36), and (37), 𝐽
3
is estimated by

𝐽
3
= 𝑑 (𝐼

ℎ
w − w, 𝑝 − 𝑝𝑘

𝜀ℎ
) − 𝑑 (u − u𝑘

𝜀ℎ
, 𝜋 − 𝑄

ℎ
𝜋)

≤
𝐼ℎw − w𝑉


𝑝 − 𝑝
𝑘

𝜀ℎ


+

u − u𝑘
𝜀ℎ

𝑉

𝜋 − 𝑄ℎ𝜋


≤ 𝑐ℎ (ℎ
5/4

+ 𝜀
𝑘+1

) (‖w‖2 + ‖𝜋‖1)

≤ 𝑐ℎ (ℎ
5/4

+ 𝜀
𝑘+1

)

u − u𝑘
𝜀ℎ


.

(44)

We rewrite 𝐽
2
as

𝐽
2
= 𝑏 (u𝑘

𝜀ℎ
, u − u𝑘

𝜀ℎ
, 𝑤) + 𝑏 (u − u𝑘

𝜀ℎ
, u,w)

+ 𝑏 (u𝑘
𝜀ℎ
, u𝑘
𝜀ℎ
, 𝐼
ℎ
w) − 𝑏 (u, u, 𝐼

ℎ
w)

= 𝑏 (u𝑘
𝜀ℎ
, u − u𝑘

𝜀ℎ
,w) + 𝑏 (u − u𝑘

𝜀ℎ
, u,w)

+ 𝑏 (u𝑘
𝜀ℎ
, u𝑘
𝜀ℎ
− u, 𝐼
ℎ
w) − 𝑏 (u − u𝑘

𝜀ℎ
, u, 𝐼
ℎ
w)

= 𝑏 (u𝑘
𝜀ℎ
, u − u𝑘

𝜀ℎ
,w − 𝐼

ℎ
w) + 𝑏 (u − u𝑘

𝜀ℎ
, u,w − 𝐼

ℎ
w) .
(45)

Then, from (13), (20), (29), (34), (36), and (37), it holds that

𝐽
2
≤ 𝑁(


u𝑘
𝜀ℎ

𝑉
+ ‖u‖𝑉)


u − u𝑘
𝜀ℎ

𝑉

w − 𝑅
ℎ
w𝑉

≤ 𝑐ℎ (ℎ
5/4

+ 𝜀
𝑘+1

) ‖w‖2

≤ 𝑐ℎ (ℎ
5/4

+ 𝜀
𝑘+1

)

u − u𝑘
𝜀ℎ


.

(46)

Finally, we estimate 𝐽
4
by

𝐽
4
= 𝜀 (𝑝

𝑘−1

𝜀ℎ
, 𝑄
ℎ
𝜋) − 𝜀 (𝑝

𝑘

𝜀ℎ
, 𝑄
ℎ
𝜋)

= 𝜀 (𝑝
𝑘−1

𝜀ℎ
− 𝑝,𝑄

ℎ
𝜋) + 𝜀 (𝑝 − 𝑝

𝑘

𝜀ℎ
, 𝑄
ℎ
𝜋)

≤ 𝜀 (

𝑝
𝑘−1

𝜀ℎ
− 𝑝


+

𝑝 − 𝑝
𝑘

𝜀ℎ


)
𝑄ℎ𝜋



≤ 𝑐𝜀 (ℎ
5/4

+ 𝜀
𝑘
) ‖𝜋‖1

≤ 𝑐𝜀 (ℎ
5/4

+ 𝜀
𝑘
)

u − u𝑘
𝜀ℎ


.

(47)

Combining these estimates with (42), we conclude that (38)
holds.

4. Two-Level Iteration Penalty Methods

In this section, based on the iteration penalty method
described in the previous section, the two-level iteration
penalty finite element methods for (16) are proposed in terms
of the Stokes iteration, Oseen iteration, or Newtonian itera-
tion. From now on,𝐻 and ℎ with ℎ < 𝐻 are two real positive
parameters. The coarse mesh triangulation T

𝐻
is made as

in Section 3. And a fine mesh triangulation T
ℎ
is generated

by a mesh refinement process to T
𝐻
. The conforming finite

element space pairs (𝑉
ℎ
,𝑀
ℎ
) and (𝑉

𝐻
,𝑀
𝐻
) ⊂ (𝑉

ℎ
,𝑀
ℎ
)

corresponding to the triangulationsT
ℎ
andT

𝐻
, respectively,

are constructed as in Section 3.With the preavious notations,
we propose the following two-level iteration finite element
methods.

4.1. Two-Level Stokes Iteration Penalty Method. In Steps 1
and 2, we solve (27) and (28) on the coarse mesh, as in the
follwing.

Step 1. Find (u0
𝜀𝐻
, 𝑝
0

𝜀𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
) such that for all

(v
𝐻
, 𝑞
𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
)

𝑎 (u0
𝜀𝐻
, v
𝐻
− u0
𝜀𝐻
) + 𝑏 (u0

𝜀𝐻
, u0
𝜀𝐻
, v
𝐻
− u0
𝜀𝐻
) + 𝑗 (v

𝐻𝜏
)

− 𝑗 (u0
𝜀𝐻𝜏

) − 𝑑 (v
𝐻
− u0
𝜀𝐻
, 𝑝
0

𝜀𝐻
) ≥ (f , v

𝐻
− u0
𝜀𝐻
) ,

𝑑 (u0
𝜀𝐻
, 𝑞
𝐻
) + 𝜀 (𝑝

0

𝜀𝐻
, 𝑞
𝐻
) = 0.

(48)

Step 2. For 𝑘 = 1, 2, . . ., find (u𝑘
𝜀𝐻
, 𝑝
𝑘

𝜀𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
) such that

for all (v
𝐻
, 𝑞
𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
)

𝑎 (u𝑘
𝜀𝐻
, v
𝐻
− u𝑘
𝜀𝐻
) + 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, v
𝐻
− u𝑘
𝜀𝐻
) + 𝑗 (v

𝐻𝜏
)

− 𝑗 (u𝑘
𝜀𝐻𝜏

) − 𝑑 (v
𝐻
− u𝑘
𝜀𝐻
, 𝑝
𝑘

𝜀𝐻
) ≥ (f , v

𝐻
− u𝑘
𝜀𝐻
) ,

𝑑 (u𝑘
𝜀𝐻
, 𝑞
𝐻
) + 𝜀 (𝑝

𝑘

𝜀𝐻
, 𝑞
𝐻
) = 𝜀 (𝑝

𝑘−1

𝜀𝐻
, 𝑞
ℎ
) .

(49)

In Step 3, we solve a Stokes-type variational inequality
problem on the fine mesh in terms of the Stokes iteration, as
in the following.



6 Abstract and Applied Analysis

Step 3. Find (u
𝜀ℎ
, 𝑝
𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) such that for all (v

ℎ
, 𝑞
ℎ
) ∈

(𝑉
ℎ
,𝑀
ℎ
)

𝑎 (u
𝜀ℎ
, v
ℎ
− u
𝜀ℎ
) + 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, v
ℎ
− u
𝜀ℎ
) + 𝑗 (v

ℎ𝜏
)

− 𝑗 (u
𝜀ℎ𝜏
) − 𝑑 (v

ℎ
− u
𝜀ℎ
, 𝑝
𝜀ℎ
) ≥ (f , v

ℎ
− u
𝜀ℎ
) ,

𝑑 (u
𝜀ℎ
, 𝑞
ℎ
) + 𝜀 (𝑝

𝜀ℎ
, 𝑞
ℎ
) = 𝜀 (𝑝

𝑘

𝜀𝐻
, 𝑞
ℎ
) .

(50)

As a direct consequence of Theorem 2, the solution
(u𝑘
𝜀𝐻
, 𝑝
𝑘

𝜀𝐻
) to the problem (49) satisfies


u𝑘
𝜀𝐻

𝑉
≤ √

2𝑘 + 1

2

𝜅
1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
) , (51)

𝜀

𝑝
𝑘

𝜀𝐻



2

≤
(2𝑘 + 1) 𝜅

2

1

2𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

. (52)

Next, we estimateu
𝜀ℎ
. Taking v

ℎ
= 0, 𝑞
ℎ
= 𝑝
𝜀ℎ
in (50), it yields

𝜇
u𝜀ℎ



2

𝑉
+ 𝜀

𝑝𝜀ℎ


2

≤ (f , u
𝜀ℎ
) − 𝑗 (u

𝜀ℎ𝜏
) − 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, u
𝜀ℎ
) + 𝜀 (𝑝

𝑘

𝜀𝐻
, 𝑝
𝜀ℎ
)

≤ 𝜅
1
(‖f‖ + 𝑔

𝐿2(𝑆)
)
u𝜀ℎ

𝑉

+ 𝑁

u𝑘
𝜀𝐻



2

𝑉

u𝜀ℎ
𝑉

+ 𝜀

𝑝
𝑘

𝜀𝐻



𝑝𝜀ℎ


≤
𝜇

2

u𝜀ℎ


2

𝑉
+
𝜀

2

𝑝𝜀ℎ


2

+
𝜀

2


𝑝
𝑘

𝜀𝐻



2

+
𝜅
2

1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

+
𝑁
2

𝜇


u𝑘
𝜀𝐻



4

𝑉
.

(53)

That is,

u𝜀ℎ
𝑉
≤
√2𝜅
1

𝜇
(‖f‖+𝑔

𝐿2(𝑆)
)+

√2𝑁

𝜇


u𝑘
𝜀𝐻



2

𝑉
+
√𝜀

√𝜇


𝑝
𝑘

𝜀𝐻


.

(54)

Suppose that the initial data satisfies

7𝑁𝜅
1

𝜇2
√
2𝑘 + 1

2
(‖f‖ + 𝑔

𝐿2(𝑆)
) < 1; (55)

then using (51)-(52), we can estimate 𝑢
𝜀ℎ
by

u𝜀ℎ
𝑉

≤
√2𝜅
1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
) +

√2

7


u𝑘
𝜀𝐻

𝑉
+

𝜇

7𝑁

≤ (√2 +
√2𝑘 + 1

7
)
𝜅
1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
) +

𝜇

12𝑁

≤ (√2 +
√2𝑘 + 1

7
)

√2𝜇

7√2𝑘 + 1𝑁

+
𝜇

12𝑁

< (
2

7
+
2

49
+
1

7
)
𝜇

𝑁
=
23𝜇

49𝑁
<

𝜇

2𝑁
.

(56)

By the classical existence theorem for the variational inequal-
ity problem of the second kind in the finite dimension [27],
we have the following.

Theorem 5. Under the uniqueness condition (55), there exists
a unique solution (u

𝜀ℎ
, 𝑝
𝜀ℎ
) to the problem (50). Moreover, u

𝜀ℎ

satisfy (56).

It follows fromTheorems 3 and 4 that (u𝑘
𝜀𝐻
, 𝑝
𝑘

𝜀𝐻
) is of the

following error estimates:

u − u𝑘
𝜀𝐻

𝑉
+

𝑝 − 𝑝
𝑘

𝜀𝐻


≤ 𝑐 (𝐻

5/4
+ 𝜀
𝑘+1

) , (57)


u − u𝑘
𝜀𝐻


≤ 𝑐 (𝐻

9/4
+ 𝜀𝐻
5/4

+ 𝜀
𝑘+1

) . (58)

Next, we begin to prove the following error estimate for the
solution (u

𝜀ℎ
, 𝑝
𝜀ℎ
) to the problem (50).

Theorem 6. Suppose that the uniqueness condition (55) holds.
Let (u, 𝑝) ∈ 𝐻

3
(Ω)
2
∩ 𝑉 × 𝐻

2
(Ω) ∩ 𝑀 and (u

𝜀ℎ
, 𝑝
𝜀ℎ
) ∈

(𝑉
ℎ
,𝑀
ℎ
) be the solutions to the problems (16) and (50),

respectively; then they satisfy
u − u

𝜀ℎ

𝑉
+
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐 (ℎ
5/4

+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) .

(59)

Proof. Define a generalized bilinear form on (𝑉
ℎ
,𝑀
ℎ
) ×

(𝑉
ℎ
,𝑀
ℎ
) by

B
𝜀ℎ
(u
ℎ
, 𝑝
ℎ
; v
ℎ
, 𝑞
ℎ
) = 𝑎 (u

ℎ
, v
ℎ
) − 𝑑 (v

ℎ
, 𝑝
ℎ
)

+ 𝑑 (u
ℎ
, 𝑞
ℎ
) + 𝜀 (𝑝

ℎ
, 𝑞
ℎ
) .

(60)

Taking v
ℎ
= 𝑅
ℎ
u, 𝑞
ℎ
= 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝 in (50), we have

𝜇
u𝜀ℎ − 𝑅ℎu



2

𝑉
+ 𝜀

𝑝𝜀ℎ − 𝑄ℎ𝑝


2

= B
𝜀ℎ
(u
𝜀ℎ
− 𝑅
ℎ
u, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝; u
𝜀ℎ
− 𝑅
ℎ
u, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)

= 𝑎 (u
𝜀ℎ
, u
𝜀ℎ
− 𝑅
ℎ
u) − 𝑑 (u

𝜀ℎ
− 𝑅
ℎ
u, 𝑝
𝜀ℎ
)

+ 𝑑 (u
𝜀ℎ
, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝) + 𝜀 (𝑝

𝜀ℎ
, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)

−B
𝜀ℎ
(𝑅
ℎ
u, 𝑄
ℎ
𝑝; u
𝜀ℎ
− 𝑅
ℎ
u, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)

≤ (f , u
𝜀ℎ
− 𝑅
ℎ
u) + 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

+ 𝜀 (𝑝
𝑘

𝜀𝐻
, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝) + 𝑗 (𝑅

ℎ
u
𝜏
) − 𝑗 (u

𝜀ℎ𝜏
)

−B
𝜀ℎ
(𝑅
ℎ
u, 𝑄
ℎ
𝑝; u
𝜀ℎ
− 𝑅
ℎ
u, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝) .

(61)

Let v = u
𝜀ℎ
and v = 2u − 𝑅

ℎ
u in the first inequality of (16);

then

𝑎 (u, u
𝜀ℎ
− u) + 𝑏 (u, u, u

𝜀ℎ
− 𝑢) + 𝑗 (u

𝜀ℎ𝜏
)

− 𝑗 (u
𝜏
) − 𝑑 (u

𝜀ℎ
− u, 𝑝) ≥ (f , u

𝜀ℎ
− u) ,

𝑎 (u, u − 𝑅
ℎ
u) + 𝑏 (u, u, u − 𝑅

ℎ
u) + 𝑗 (2u

𝜏
− 𝑅
ℎ
u
𝜏
)

− 𝑗 (u
𝜏
) − 𝑑 (u − 𝑅

ℎ
u, 𝑝) ≥ (f , u − 𝑅

ℎ
u) .

(62)
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Adding the above two inequalities gives

(f , u
𝜀ℎ
− 𝑅
ℎ
u) ≤ 𝑎 (u, u

𝜀ℎ
− 𝑅
ℎ
u)

+ 𝑏 (u, u, u
𝜀ℎ
− 𝑅
ℎ
u) − 𝑑 (u

𝜀ℎ
− 𝑅
ℎ
u, 𝑝)

+ 𝑗 (2u
𝜏
− 𝑅
ℎ
u
𝜏
) + 𝑗 (u

𝜀ℎ𝜏
) − 2𝑗 (u

𝜏
) .

(63)

Substituting the above inequality into (61), it yields that

𝜇
u𝜀ℎ − 𝑅ℎu



2

𝑉
+ 𝜀

𝑝𝜀ℎ − 𝑄ℎ𝑝


2

= 𝑎 (u − 𝑅
ℎ
u, u
𝜀ℎ
− 𝑅
ℎ
u)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
1

+ 𝑏 (u𝑘
𝜀𝐻
, u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
) − 𝑏 (u, u, 𝑅

ℎ
u − u
𝜀ℎ
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
2

−𝑑 (u
𝜀ℎ
− 𝑅
ℎ
u, 𝑝 − 𝑄

ℎ
𝑝) + 𝑑 (u − 𝑅

ℎ
u, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
3

+ 𝜀 (𝑝
𝑘

𝜀𝐻
− 𝑄
ℎ
𝑝, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
4

+ 𝑗 (2u
𝜏
− 𝑅
ℎ
u
𝜏
) − 2𝑗 (u

𝜏
) + 𝑗 (𝑅

ℎ
u
𝜏
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
5

.

(64)

It follows fromHölder’s inequality andYoung’s inequality that

𝐼
1
= 𝑎 (u − 𝑅

ℎ
u, u
𝜀ℎ
− 𝑅
ℎ
u) ≤ 𝜇u − 𝑅ℎu

𝑉

u𝜀ℎ − 𝑅ℎu
𝑉

≤
𝜇

8

u𝜀ℎ − 𝑅ℎu


2

𝑉
+ 2𝜇

u − 𝑅ℎu


2

𝑉
,

𝐼
3
= 𝑑 (u − 𝑅

ℎ
u, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝) − 𝑑 (u

𝜀ℎ
− 𝑅
ℎ
u, 𝑝 − 𝑄

ℎ
𝑝)

≤
u − 𝑅ℎu

𝑉

𝑝𝜀ℎ − 𝑄ℎ𝑝
 +

u𝜀ℎ − 𝑅ℎu
𝑉

𝑝 − 𝑄ℎ𝑝


≤
𝜇

8

u𝜀ℎ − 𝑅ℎu


2

𝑉
+ 𝜂
2𝑝𝜀ℎ − 𝑄ℎ𝑝



2

+
1

𝜇

𝑝 − 𝑄ℎ𝑝


2

+
1

4𝜂2

u − 𝑅ℎu


2

𝑉
,

(65)

where 𝜂 > 0 is some small constant determined later. We
rewrite 𝐼

2
as

𝐼
2
= 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
) − 𝑏 (u, u, 𝑅

ℎ
u − u
𝜀ℎ
)

= 𝑏 (u𝑘
𝜀𝐻
− u, u, 𝑅

ℎ
u − u
𝜀ℎ
) + 𝑏 (u, u𝑘

𝜀𝐻
− u, 𝑅

ℎ
u − u
𝜀ℎ
)

+ 𝑏 (u𝑘
𝜀𝐻
− u, u𝑘

𝜀𝐻
− 𝑢, 𝑅

ℎ
u − u
𝜀ℎ
) .

(66)

Then using (13), (15), and Young’s inequality, we can estimate
𝐼
2
by

𝐼
2
≤ 𝑁‖u‖2

𝑅ℎu − u
𝜀ℎ

𝑉


u𝑘
𝜀𝐻
− u

+ 𝑁

u𝑘
𝜀𝐻
− u
2

𝑉

𝑅ℎu − u
𝜀ℎ

𝑉

≤
𝜇

8

𝑅ℎu − u
𝜀ℎ



2

𝑉
+ 𝑐 (


u𝑘
𝜀𝐻
− u
2

+

u𝑘
𝜀𝐻
− u
4

𝑉
) .

(67)

It is easy to show that

𝐼
4
= 𝜀 (𝑝

𝑘

𝜀𝐻
− 𝑄
ℎ
𝑝, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)

≤ 𝜀

𝑝
𝑘

𝜀𝐻
− 𝑄
ℎ
𝑝


𝑝𝜀ℎ − 𝑄ℎ𝑝


≤ 𝜂
2𝑝𝜀ℎ − 𝑄ℎ𝑝



2

+
𝜀
2

4𝜂2


𝑝
𝑘

𝜀𝐻
− 𝑄
ℎ
𝑝


2

≤ 𝜂
2𝑝𝜀ℎ − 𝑄ℎ𝑝



2

+
𝜀
2

2𝜂2
(

𝑝 − 𝑝
𝑘

𝜀𝐻



2

+
𝑝 − 𝑄ℎ𝑝



2

) .

(68)

Finally, from triangle inequality, 𝐼
5
is estimated by

𝐼
5
= 𝑗 (2u

𝜏
− 𝑅
ℎ
u
𝜏
) − 2𝑗 (u

𝜏
) + 𝑗 (𝑅

ℎ
u
𝜏
)

≤ 2∫
𝑆

𝑔
u𝜏 − 𝑅ℎu𝜏

 𝑑𝑠

≤ 2
𝑔
𝐿2(𝑆)

u𝜏 − 𝑅ℎu𝜏
𝐿2(𝑆)

.

(69)

Substituting (65)–(69) into (64), it yields that

u − u
𝜀ℎ

𝑉

≤
u − 𝑅ℎu

𝑉
+
u𝜀ℎ − 𝑅ℎu

𝑉

≤
2𝜂

√𝜇

𝑝𝜀ℎ − 𝑄ℎ𝑝


+ 𝑐 (
u − 𝑅ℎu

𝑉
+
𝑝 − 𝑄ℎ𝑝

 +
u𝜏 − 𝑅ℎu𝜏



1/2

𝐿
2
(𝑆)

+ 𝜀

𝑝 − 𝑝
𝑘

𝜀𝐻


+

u − u𝑘
𝜀𝐻


+

u − u𝑘
𝜀𝐻



2

𝑉
)

≤
2𝜂

√𝜇

𝑝𝜀ℎ − 𝑄ℎ𝑝
 + 𝑐 (ℎ

5/4
+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) ,

(70)

where we use (24)–(26) and (57)-(58). Next, we estimate
||𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝||. For all w

ℎ
∈ 𝑉
0ℎ
, let v = u ± w

ℎ
in (16) and

v
ℎ
= u
𝜀ℎ
± w
ℎ
in (50), respectively. Then we get

𝑎 (u,w
ℎ
) + 𝑏 (u, u,w

ℎ
) − 𝑑 (w

ℎ
, 𝑝) = (f ,w

ℎ
) ,

𝑎 (u
𝜀ℎ
,w
ℎ
) + 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
,w
ℎ
) − 𝑑 (w

ℎ
, 𝑝
𝜀ℎ
) = (f ,w

ℎ
) .

(71)

Subtracting them and using (13), (15), we obtain

𝑑 (w
ℎ
, 𝑝 − 𝑝

𝜀ℎ
)

= 𝑎 (u − u
𝜀ℎ
,w
ℎ
) + 𝑏 (u, u,w

ℎ
) − 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
,w
ℎ
)

= 𝑎 (u − u
𝜀ℎ
,w
ℎ
) + 𝑏 (u, u − u𝑘

𝜀𝐻
,w
ℎ
)

+ 𝑏 (u − u𝑘
𝜀𝐻
, u,w
ℎ
) − 𝑏 (u − u𝑘

𝜀𝐻
, u − u𝑘

𝜀𝐻
,w
ℎ
)

≤ (𝜇
u − u

𝜀ℎ

𝑉
+ 𝑁‖u‖2


u − u𝑘
𝜀𝐻



+𝑁

u − u𝑘
𝜀𝐻



2

𝑉
)
wℎ

𝑉
.

(72)
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Therefore, it follows from (23) that ||𝑄
ℎ
𝑝 − 𝑝

𝜀ℎ
|| can be

estimated by

𝜅
𝑄ℎ𝑝 − 𝑝𝜀ℎ



≤ sup
w
ℎ
∈𝑉
0ℎ

𝑑 (w
ℎ
, 𝑄
ℎ
𝑝 − 𝑝
𝜀ℎ
)

wℎ
𝑉

= sup
w
ℎ
∈𝑉
0ℎ

𝑑 (w
ℎ
, 𝑄
ℎ
𝑝 − 𝑝) + 𝑑 (w

ℎ
, 𝑝 − 𝑝

𝜀ℎ
)

wℎ
𝑉

≤
𝑝 − 𝑄ℎ𝑝

 + 𝜇
u − u

𝜀ℎ

𝑉

+ 𝑁‖u‖2

u − u𝑘
𝜀𝐻


+ 𝑁


u − u𝑘
𝜀𝐻



2

𝑉

≤ 𝜇
u − u

𝜀ℎ

𝑉
+ 𝑐 (ℎ

5/4
+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) .

(73)

If we choose 𝜂 = 𝜅/4√𝜇 such that (2𝜂/√𝜇)⋅(𝜇/𝜅) = 1/2, then
substituting (73) into (70), we show

u − u
𝜀ℎ

𝑉
≤ 𝑐 (ℎ

5/4
+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) . (74)

From (73), again, we obtain

𝑝 − 𝑝𝜀ℎ
 ≤ 𝑐 (ℎ

5/4
+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) . (75)

Thus, we complete the proof of (59).

4.2. Two-Level Oseen Iteration Penalty Method. In Steps 1
and 2, we solve (48) and (49) on the coarse mesh, as in the
following.

Step 1. Find (u0
𝜀𝐻
, 𝑝
0

𝜀𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
) by (48).

Step 2. For 𝑘 = 1, 2, . . ., find (u𝑘
𝜀𝐻
, 𝑝
𝑘

𝜀𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
) by (49).

In Step 3, we solve an Oseen type variational inequality
problem on the fine mesh in terms of the Oseen iteration, as
in the following.

Step 3. Find (u
𝜀ℎ
, 𝑝
𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) such that for all (v

ℎ
, 𝑞
ℎ
) ∈

(𝑉
ℎ
,𝑀
ℎ
)

𝑎 (u
𝜀ℎ
, v
ℎ
− u
𝜀ℎ
) + 𝑏 (u𝑘

𝜀𝐻
, u
𝜀ℎ
, v
ℎ
− u
𝜀ℎ
) + 𝑗 (v

ℎ𝜏
)

− 𝑗 (u
𝜀ℎ𝜏
) − 𝑑 (v

ℎ
− u
𝜀ℎ
, 𝑝
𝜀ℎ
) ≥ (f , v

ℎ
− u
𝜀ℎ
) ,

𝑑 (u
𝜀ℎ
, 𝑞
ℎ
) + 𝜀 (𝑝

𝜀ℎ
, 𝑞
ℎ
) = 𝜀 (𝑝

𝑘

𝜀𝐻
, 𝑞
ℎ
) .

(76)

From (12), it is easy to show that the solution (u
𝜀ℎ
, 𝑝
𝜀ℎ
) to

the problem (76) satisfies

𝜇
u𝜀ℎ



2

𝑉
+ 𝜀

𝑝𝜀ℎ


2

≤ (f , u
𝜀ℎ
) − 𝑗 (u

𝜀ℎ𝜏
) + 𝜀 (𝑝

𝑘

𝜀𝐻
, 𝑝
𝜀ℎ
)

≤ 𝜅
1
(‖f‖ + 𝑔

𝐿2(𝑆)
)
u𝜀ℎ

𝑉
+ 𝜀


𝑝
𝑘

𝜀𝐻



𝑝𝜀ℎ


≤
𝜇

2

u𝜀ℎ


2

𝑉
+
𝜀

2

𝑝𝜀ℎ


2

+
𝜀

2


𝑝
𝑘

𝜀𝐻



2

+
𝜅
2

1

2𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

.

(77)

Suppose that the initial data satisfies

2√4𝑘 + 2𝑁𝜅
1

𝜇2
(‖f‖ + 𝑔

𝐿2(𝑆)
) < 1; (78)

then using (52), we can estimate u
𝜀ℎ
by

u𝜀ℎ
𝑉

≤ √
𝜀

𝜇


𝑝
𝑘

𝜀𝐻


+
𝜅
1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)

≤ (√
2𝑘 + 1

2
+ 1)

𝜅
1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)

≤

√4𝑘 + 2𝜅
1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
) ≤

𝜇

2𝑁
.

(79)

For two-level Oseen iteration penalty method, the solu-
tion (u

𝜀ℎ
, 𝑝
𝜀ℎ
) is of the following error estimate.

Theorem 7. Suppose that the uniqueness condition (78) holds.
Let (u, 𝑝) ∈ 𝐻

3
(Ω)
2
∩ 𝑉 × 𝐻

2
(Ω) ∩ 𝑀 and (u

𝜀ℎ
, 𝑝
𝜀ℎ
) ∈

(𝑉
ℎ
,𝑀
ℎ
) be the solutions to the problems (16) and (76),

respectively; then they satisfy

u − u
𝜀ℎ

𝑉
+
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐 (ℎ
5/4

+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) .

(80)

Proof. Proceeding as in the proof of (64), we can get

𝜇
u𝜀ℎ − 𝑅ℎu



2

𝑉
+ 𝜀

𝑝𝜀ℎ − 𝑄ℎ𝑝


2

= 𝑎 (u − 𝑅
ℎ
u, u
𝜀ℎ
− 𝑅
ℎ
u)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
1

+ 𝑏 (u𝑘
𝜀𝐻
, u
𝜀ℎ
, 𝑅
ℎ
u − u
𝜀ℎ
) − 𝑏 (u, u, 𝑅

ℎ
u − u
𝜀ℎ
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
6

−𝑑 (u
𝜀ℎ
− 𝑅
ℎ
u, 𝑝 − 𝑄

ℎ
𝑝) + 𝑑 (u − 𝑅

ℎ
u, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
3

+ 𝜀 (𝑝
𝑘

𝜀𝐻
− 𝑄
ℎ
𝑝, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
4

+ 𝑗 (2u
𝜏
− 𝑅
ℎ
u
𝜏
) − 2𝑗 (u

𝜏
) + 𝑗 (𝑅

ℎ
u
𝜏
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
5

.

(81)
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In the above equation, 𝐼
1
, 𝐼
3
, 𝐼
4
, and 𝐼

5
have been estimated

in the proof of Theorem 6. Here, we only estimate 𝐼
6
. Using

(12), (13), (15), and Young’s inequality, we have

𝐼
6
= 𝑏 (u𝑘

𝜀𝐻
, u
𝜀ℎ
, 𝑅
ℎ
u − u
𝜀ℎ
) − 𝑏 (u, u, 𝑅

ℎ
u − u
𝜀ℎ
)

= 𝑏 (u𝑘
𝜀𝐻
, u
𝜀ℎ
− 𝑅
ℎ
u, 𝑅
ℎ
u − u
𝜀ℎ
)

+ 𝑏 (u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u, 𝑅

ℎ
u − u
𝜀ℎ
)

+ 𝑏 (u𝑘
𝜀𝐻
− u, u, 𝑅

ℎ
u − u
𝜀ℎ
)

= 𝑏 (u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u, 𝑅

ℎ
u − u
𝜀ℎ
)

+ 𝑏 (u𝑘
𝜀𝐻
− u, u, 𝑅

ℎ
u − u
𝜀ℎ
)

≤ 𝑁

u𝑘
𝜀𝐻

𝑉

𝑅ℎu − u𝑉
𝑅ℎu − u

𝜀ℎ

𝑉

+ 𝑁‖𝑢‖2
𝑅ℎu − u

𝜀ℎ

𝑉


u𝑘
𝜀𝐻
− u

≤
𝜇

8

𝑅ℎu − u
𝜀ℎ



2

𝑉
+ 𝑐 (


u𝑘
𝜀𝐻
− u
2

+
𝑅ℎu − u

2

𝑉
) .

(82)

Then substituting (65), (68), (69), and (82) into (81), it yields
that

u − u
𝜀ℎ

𝑉
≤

2𝜂

√𝜇

𝑝𝜀ℎ − 𝑄ℎ𝑝


+ 𝑐 (ℎ
5/4

+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) .

(83)

In (83), we use (24)–(26) and (57)-(58). Next, we estimate
||𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝||. For all 𝑤

ℎ
∈ 𝑉
0ℎ
, proceeding as in the proof

of (72), from (51) and (78), we can show
𝑑 (w
ℎ
, 𝑝 − 𝑝

𝜀ℎ
)

= 𝑎 (u − u
𝜀ℎ
,w
ℎ
) + 𝑏 (u, u,w

ℎ
)

− 𝑏 (u𝑘
𝜀𝐻
, u
𝜀ℎ
,w
ℎ
)

= 𝑎 (u − u
𝜀ℎ
,w
ℎ
) + 𝑏 (u𝑘

𝜀𝐻
, u − u

𝜀ℎ
,w
ℎ
)

+ 𝑏 (u − u𝑘
𝜀𝐻
, u,w
ℎ
)

≤ (𝜇
u − u

𝜀ℎ

𝑉
+ 𝑁‖u‖2


u − u𝑘
𝜀𝐻



+𝑁

u𝑘
𝜀𝐻

𝑉

u − u
𝜀ℎ

𝑉
)
wℎ

𝑉

≤ (
5𝜇

4

u − u
𝜀ℎ

𝑉
+ 𝑁‖u‖2


u − u𝑘
𝜀𝐻


)
wℎ

𝑉
.

(84)

It follows from (23) and (84) that
𝜅
𝑄ℎ𝑝 − 𝑝𝜀ℎ



≤ sup
w
ℎ
∈𝑉
0ℎ

𝑑 (w
ℎ
, 𝑄
ℎ
𝑝 − 𝑝
𝜀ℎ
)

wℎ
𝑉

= sup
w
ℎ
∈𝑉
0ℎ

𝑑 (w
ℎ
, 𝑄
ℎ
𝑝 − 𝑝) + 𝑑 (w

ℎ
, 𝑝 − 𝑝

𝜀ℎ
)

wℎ
𝑉

≤
𝑝 − 𝑄ℎ𝑝

 +
5𝜇

4

u − u
𝜀ℎ

𝑉
+ 𝑁‖u‖2


u − u𝑘
𝜀𝐻



≤
5𝜇

4

u − u
𝜀ℎ

𝑉
+ 𝑐 (ℎ

5/4
+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) .

(85)

If we choose 𝜂 = 𝜅/5√𝜇 such that (2𝜂/√𝜇) ⋅ (5𝜇/4𝜅) = 1/2,
then substituting (85) into (83), we show

u − u
𝜀ℎ

𝑉
≤ 𝑐 (ℎ

5/4
+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) . (86)

From (85), again, we obtain

𝑝 − 𝑝𝜀ℎ
 ≤ 𝑐 (ℎ

5/4
+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) . (87)

Thus, we complete the proof of (80).

4.3. Two-Level Newton Iteration Penalty Method. In Steps 1
and 2, we solve (48) and (49) on the coarse mesh, as in the
following.

Step 1. Find (u0
𝜀𝐻
, 𝑝
0

𝜀𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
) by (48).

Step 2. For 𝑘 = 1, 2, . . ., find (u𝑘
𝜀𝐻
, 𝑝
𝑘

𝜀𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
) by (49).

In Step 3, we solve a linearized Navier-Stokes type
variational inequality problem on the fine mesh in terms of
the Newton iteration, as in the following.

Step 3. Find (u
𝜀ℎ
, 𝑝
𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) such that for all (v

ℎ
, 𝑞
ℎ
) ∈

(𝑉
ℎ
,𝑀
ℎ
)

𝑎 (u
𝜀ℎ
, v
ℎ
− u
𝜀ℎ
) + 𝑏 (u𝑘

𝜀𝐻
, u
𝜀ℎ
, v
ℎ
− u
𝜀ℎ
)

+ 𝑏 (u
𝜀ℎ
, u𝑘
𝜀𝐻
, v
ℎ
− u
𝜀ℎ
)

+ 𝑗 (v
ℎ𝜏
) − 𝑗 (u

𝜀ℎ𝜏
) − 𝑑 (v

ℎ
− u
𝜀ℎ
, 𝑝
𝜀ℎ
)

≥ (f , v
ℎ
− u
𝜀ℎ
) + 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, v
ℎ
− u
𝜀ℎ
) ,

𝑑 (u
𝜀ℎ
, 𝑞
ℎ
) + 𝜀 (𝑝

𝜀ℎ
, 𝑞
ℎ
) = 𝜀 (𝑝

𝑘

𝜀𝐻
, 𝑞
ℎ
) .

(88)

In this section, we will suppose that the initial data
satisfies

8𝑁𝜅
1

𝜇2
√
2𝑘 + 1

2
(‖f‖ + 𝑔

𝐿2(𝑆)
) < 1. (89)

Then from (51), u𝑘
𝜀𝐻

satisfies ||u𝑘
𝜀𝐻
||
𝑉

≤ 𝜇/8𝑁. Let v
ℎ
=

0, 𝑞
ℎ
= 𝑝
𝜀ℎ
in (88). Using (12), we obtain

𝜇
u𝜀ℎ



2

𝑉
− 𝑏 (u𝑘

𝜀𝐻
, u
𝜀ℎ
, u
𝜀ℎ
) + 𝜀

𝑝𝜀ℎ


2

≤ (f , u
𝜀ℎ
) − 𝑗 (u

𝜀ℎ𝜏
) − 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, u
𝜀ℎ
) + 𝜀 (𝑝

𝑘

𝜀𝐻
, 𝑝
𝜀ℎ
)

≤ 𝜅
1
(‖f‖ + 𝑔

𝐿2(𝑆)
)
u𝜀ℎ

𝑉

+ 𝑁

u𝑘
𝜀𝐻



2

𝑉

u𝜀ℎ
𝑉

+ 𝜀

𝑝
𝑘

𝜀𝐻



𝑝𝜀ℎ


≤
𝜇

2

u𝜀ℎ


2

𝑉
+
𝜀

2

𝑝𝜀ℎ


2

+
𝜀

2


𝑝
𝑘

𝜀𝐻



2

+
𝜅
2

1

𝜇
(‖f‖ + 𝑔

𝐿2(𝑆)
)
2

+
𝑁
2

𝜇


u𝑘
𝜀𝐻



4

𝑉
.

(90)

Since

𝜇
u𝜀ℎ



2

𝑉
− 𝑏 (u𝑘

𝜀𝐻
, u
𝜀ℎ
, u
𝜀ℎ
)

≥ 𝜇
u𝜀ℎ



2

𝑉
− 𝑁


u𝑘
𝜀𝐻

𝑉

u𝜀ℎ


2

𝑉
≥
7𝜇

8

u𝜀ℎ


2

𝑉
,

(91)
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then

u𝜀ℎ
𝑉

≤
2𝜅
1

√3𝜇

(‖f‖ + 𝑔
𝐿2(𝑆)

) +
2√𝜀

√3𝜇


𝑝
𝑘

𝜀𝐻


+
2𝑁

√3𝜇


u𝑘
𝜀𝐻



2

𝑉

≤
√2

4√3

1

√2𝑘 + 1

𝜇

𝑁
+

1

4√3


u𝑘
𝜀𝐻

𝑉
+

𝜇

4√3𝑁

< (
1

4
+
1

55
+
1

6
)
𝜇

𝑁
=

574𝜇

1320𝑁
<

𝜇

2𝑁
.

(92)

Theorem 8. Suppose that the uniqueness condition (89) holds.
Let (u, 𝑝) ∈ 𝐻

3
(Ω)
2
∩ 𝑉 × 𝐻

2
(Ω) ∩ 𝑀 and (u

𝜀ℎ
, 𝑝
𝜀ℎ
) ∈

(𝑉
ℎ
,𝑀
ℎ
) be the solutions to the problems (16) and (88),

respectively; then they satisfy

u − u
𝜀ℎ

𝑉
+
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐 (ℎ
5/4

+ 𝜀𝐻
5/4

+ 𝐻
5/2

+ 𝜀
𝑘+2

) .

(93)
Proof. Proceeding as the in proof of (64), we can get

𝜇
u𝜀ℎ − 𝑅ℎu



2

𝑉
+ 𝜀

𝑝𝜀ℎ − 𝑄ℎ𝑝


2

= 𝑎 (u − 𝑅
ℎ
u, u
𝜀ℎ
− 𝑅
ℎ
u)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
1

+ −𝑑 (u
𝜀ℎ
− 𝑅
ℎ
u, 𝑝 − 𝑄

ℎ
𝑝) + 𝑑 (u − 𝑅

ℎ
u, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
3

+ 𝜀 (𝑝
𝑘

𝜀𝐻
− 𝑄
ℎ
𝑝, 𝑝
𝜀ℎ
− 𝑄
ℎ
𝑝)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
4

+ 𝑗 (2u
𝜏
− 𝑅
ℎ
u
𝜏
) − 2𝑗 (u

𝜏
) + 𝑗 (𝑅

ℎ
u
𝜏
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
5

+ 𝑏 (u𝑘
𝜀𝐻
, u
𝜀ℎ
, 𝑅
ℎ
u − u
𝜀ℎ
) + 𝑏 (u

𝜀ℎ
, u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
) − 𝑏 (u, u, 𝑅

ℎ
u − u
𝜀ℎ
) − 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
7

.

(94)

In the above equation, 𝐼
1
, 𝐼
3
, 𝐼
4
, and 𝐼

5
have been estimated

in the proof of Theorem 6. Here, we only estimate 𝐼
7
. We

rewrite 𝐼
7
as

𝐼
7
= 𝑏 (u𝑘

𝜀𝐻
, u
𝜀ℎ
, 𝑅
ℎ
u − u
𝜀ℎ
) + 𝑏 (u

𝜀ℎ
, u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

− 𝑏 (u, u, 𝑅
ℎ
u − u
𝜀ℎ
) − 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

= 𝑏 (u
𝜀ℎ
− u, u, 𝑅

ℎ
u − u
𝜀ℎ
) + 𝑏 (u

𝜀ℎ
, u
𝜀ℎ
− u, 𝑅

ℎ
u − u
𝜀ℎ
)

− 𝑏 (u
𝜀ℎ
− u𝑘
𝜀𝐻
, u
𝜀ℎ
− u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

= 𝑏 (u
𝜀ℎ
− 𝑅
ℎ
u, u, 𝑅

ℎ
u − u
𝜀ℎ
) + 𝑏 (𝑅

ℎ
u − u, u, 𝑅

ℎ
u − u
𝜀ℎ
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
8

+ 𝑏 (u
𝜀ℎ
, 𝑅
ℎ
u − u, 𝑅

ℎ
u − u
𝜀ℎ
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
9

+ 𝑏 (𝑅
ℎ
u − u
𝜀ℎ
, 𝑅
ℎ
u − u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
10

+ 𝑏 (u𝑘
𝜀𝐻
− 𝑅
ℎ
u, 𝑅
ℎ
u − u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐼
11

.

(95)

From (13), (20), and Young’s inequality, 𝐼
8
is estimated by

𝐼
8
= 𝑏 (u

𝜀ℎ
− 𝑅
ℎ
u, u, 𝑅

ℎ
u − u
𝜀ℎ
) + 𝑏 (𝑅

ℎ
u − u, u, 𝑅

ℎ
u − u
𝜀ℎ
)

≤ 𝑁‖u‖𝑉
𝑅ℎu − u

𝜀ℎ



2

𝑉
+ 𝑁‖u‖𝑉

𝑅ℎu − u
𝜀ℎ

𝑉

𝑅ℎu − u𝑉

≤
𝜇

2

𝑅ℎu − u
𝜀ℎ



2

𝑉
+
𝜇

2

𝑅ℎu − u
𝜀ℎ

𝑉

𝑅ℎu − u𝑉

≤
𝜇

2

𝑅ℎu − u
𝜀ℎ



2

𝑉
+
𝜇

32

𝑅ℎu − u
𝜀ℎ



2

𝑉
+ 4𝜇

𝑅ℎu − u
2

𝑉
.

(96)

Using (13) and (24), we estimate 𝐼
9
by

𝐼
9
= 𝑏 (u

𝜀ℎ
, 𝑅
ℎ
u − u, 𝑅

ℎ
u − u
𝜀ℎ
)

= 𝑏 (u
𝜀ℎ
− 𝑅
ℎ
u, 𝑅
ℎ
u − u, 𝑅

ℎ
u − u
𝜀ℎ
)

+ 𝑏 (𝑅
ℎ
u, 𝑅
ℎ
u − u, 𝑅

ℎ
u − u
𝜀ℎ
)

≤ 𝑁
𝑅ℎu − u𝑉

𝑅ℎu − u
𝜀ℎ



2

𝑉

+ 𝑁
𝑅ℎu

𝑉

𝑅ℎu − u𝑉
𝑅ℎu − u

𝜀ℎ

𝑉

≤ 𝐶
1
ℎ
2𝑅ℎu − u

𝜀ℎ



2

𝑉
+
𝜇

32

𝑅ℎu − u
𝜀ℎ



2

𝑉
+ 𝑐

𝑅ℎu − u
2

𝑉
,

(97)

where 𝐶
1
> 0 is independent of ℎ, 𝐻, and 𝜀. Similarly, it

follows from (13), (24), and (57) that

𝐼
10
= 𝑏 (𝑅

ℎ
u − u
𝜀ℎ
, 𝑅
ℎ
u − u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

≤ 𝑁

𝑅
ℎ
u − u𝑘
𝜀𝐻

𝑉

𝑅ℎu − u
𝜀ℎ



2

𝑉
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≤ 𝑁(
𝑅ℎu − u𝑉 +


u − u𝑘
𝜀𝐻

𝑉
)
𝑅ℎu − u

𝜀ℎ



2

𝑉

≤ 𝐶
2
(ℎ
2
+ 𝐻
5/4

+ 𝜀
𝑘+1

)
𝑅ℎu − u

𝜀ℎ



2

𝑉
,

(98)

where 𝐶
2
> 0 is independent of ℎ, 𝐻, and 𝜀. Finally, we can

estimate 𝐼
11
by

𝐼
11
= 𝑏 (u𝑘

𝜀𝐻
− 𝑅
ℎ
u, 𝑅
ℎ
u − u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u
𝜀ℎ
)

≤ 𝑁

𝑅
ℎ
u − u𝑘
𝜀𝐻



2

𝑉

𝑅ℎu − u
𝜀ℎ

𝑉

≤
𝜇

32

𝑅ℎu − u
𝜀ℎ



2

𝑉
+ 𝑐 (

𝑅ℎu − u
4

𝑉
+

u − u𝑘
𝜀𝐻



4

𝑉
) .

(99)

For sufficiently small ℎ, 𝐻, and 𝜀 such that 𝐶
1
ℎ
2
+ 𝐶
2
(ℎ
2
+

𝐻
5/4

+ 𝜀
𝑘+1

) = 1/32, substituting (65), (68), (69), and (95)–
(99) into (94), it yields that

u − u
𝜀ℎ

𝑉
≤

4𝜂

√𝜇

𝑝𝜀ℎ − 𝑄ℎ𝑝


+ 𝑐 (ℎ
5/4

+ 𝜀𝐻
5/4

+ 𝐻
5/2

+ 𝜀
𝑘+2

) .

(100)

For all 𝑤
ℎ
∈ 𝑉
0ℎ
, proceeding as in the proof of (72), we can

show
𝑑 (v
ℎ
, 𝑝 − 𝑝

𝜀ℎ
)

= 𝑎 (u − u
𝜀ℎ
, v
ℎ
) + 𝑏 (u, u, v

ℎ
) − 𝑏 (u𝑘

𝜀𝐻
, u
𝜀ℎ
, v
ℎ
)

− 𝑏 (u
𝜀ℎ
, u𝑘
𝜀𝐻
, v
ℎ
) + 𝑏 (u𝑘

𝜀𝐻
, u𝑘
𝜀𝐻
, v
ℎ
) .

(101)

Since

𝑏 (u, u, v
ℎ
) − 𝑏 (u𝑘

𝜀𝐻
, u
𝜀ℎ
, v
ℎ
) − 𝑏 (𝑢

𝜀ℎ
, u𝑘
𝜀𝐻
, v
ℎ
)

+ 𝑏 (u𝑘
𝜀𝐻
, u𝑘
𝜀𝐻
, v
ℎ
)

= 𝑏 (u − u
𝜀ℎ
, u, v
ℎ
) + 𝑏 (u, u − 𝑅

ℎ
u, Vh)

− 𝑏 (u − u
𝜀ℎ
, u − 𝑅

ℎ
u, v
ℎ
)

+ 𝑏 (u
𝜀ℎ
− u𝑘
𝜀𝐻
, 𝑅
ℎ
u − u𝑘
𝜀𝐻
, v
ℎ
)

− 𝑏 (u𝑘
𝜀𝐻
, u
𝜀ℎ
− 𝑅
ℎ
u, v
ℎ
)

≤ (𝑁‖u‖𝑉
u − u

𝜀ℎ

𝑉
+ 𝑁‖u‖𝑉

u − 𝑅ℎu
𝑉

+
u − 𝑅ℎu

𝑉

u − u
𝜀ℎ

𝑉
)
vℎ

𝑉

+ (
u − u

𝜀ℎ

𝑉
+

u − u𝑘
𝜀𝐻

𝑉
)

× (
u − 𝑅ℎu

𝑉
+

u − u𝑘
𝜀𝐻

𝑉
)
vℎ

𝑉

+ 𝑁

u𝑘
𝜀𝐻

𝑉
(
u − u

𝜀ℎ

𝑉
+
u − 𝑅ℎu

𝑉
)
vℎ

𝑉

≤ 𝐶
3
(1 + ℎ

2
+ 𝐻
2
+ 𝜀
𝑘+1

)
u − u

𝜀ℎ

𝑉

vℎ
𝑉

+ 𝑐 (
u − 𝑅ℎu

𝑉
+
u − 𝑅ℎu



2

𝑉
+

u − u𝑘
𝜀𝐻



2

𝑉
)
vℎ

𝑉
,

(102)

where 𝐶
3
> 0 is independent of ℎ, 𝐻, and 𝜀, then from (23)

we have

𝜅
𝑄ℎ𝑝 − 𝑝𝜀ℎ

 ≤ 𝐶3 (1 + ℎ
2
+ 𝐻
2
+ 𝜀
𝑘+1

)
u − u

𝜀ℎ

𝑉

+ 𝑐 (
u − 𝑅ℎu

𝑉
+
𝑝 − 𝑄ℎ𝑝



+
u − 𝑅ℎu



2

𝑉
+

u − u𝑘
𝜀𝐻



2

𝑉
) .

(103)

Thus, for sufficiently small ℎ, 𝐻, 𝜀, and 𝜂 such that

𝐶
3
(1 + ℎ

2
+ 𝐻
2
+ 𝜀
𝑘+1

)

𝜅

4𝜂

√𝜇
<
1

2
, (104)

substituting (103) into (100), we obtain
u − u

𝜀ℎ

𝑉
≤ 𝑐 (ℎ

5/4
+ 𝜀𝐻
5/4

+ 𝐻
5/2

+ 𝜀
𝑘+2

) . (105)

From (103), again, we obtain
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐 (ℎ
5/4

+ 𝜀𝐻
5/4

+ 𝐻
5/2

+ 𝜀
𝑘+2

) . (106)

Thus, we complete the proof of (93).

Remark 9. In terms of Theorems 6, 7, and 8, if we choose
𝜀 = 𝑂(𝐻), 𝐻 = 𝑂(ℎ

5/9
) for the two-level Stokes or Oseen

iteration penalty methods and 𝜀 = 𝑂(𝐻5/4), 𝐻 = 𝑂(ℎ
1/2
) for

the two-level Newton iteration penalty method, then
u − u

𝜀ℎ

𝑉
+
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐ℎ
5/4
. (107)

4.4. An Improved Scheme. In this section, we will propose a
scheme to improve the error estimates derived in Theorems
6–8, which is described as follows.

In Steps 1 and 2, we solve (48) and (49) on the coarse
mesh, as in the following.

Step 1. Find (u0
𝜀𝐻
, 𝑝
0

𝜀𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
) by (48).

Step 2. For 𝑘 = 1, 2, . . ., find (u𝑘
𝜀𝐻
, 𝑝
𝑘

𝜀𝐻
) ∈ (𝑉

𝐻
,𝑀
𝐻
) by (49).

At Step 3, we solve a linearized problem (50) or (76) or
(88) on the fine mesh in terms of Stokes iteration or Oseen
iteration or Newton iteration, as in the following.

Step 3. Find (u
𝜀ℎ
, 𝑝
𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) by (50) or (76) or (88).

At Step 4, we solve a Newton correction of (u
𝜀ℎ
, 𝑝
𝜀ℎ
)

on the fine mesh in terms of Newton iteration, as in the
following.

Step 4. Find (u⋆
𝜀ℎ
, 𝑝
⋆

𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) such that for all (v

ℎ
, 𝑞
ℎ
) ∈

(𝑉
ℎ
,𝑀
ℎ
)

𝑎 (u⋆
𝜀ℎ
, v
ℎ
− u⋆
𝜀ℎ
) + 𝑏 (u

𝜀ℎ
, u⋆
𝜀ℎ
, v
ℎ
− u⋆
𝜀ℎ
)

+ 𝑏 (u⋆
𝜀ℎ
, u
𝜀ℎ
, v
ℎ
− u⋆
𝜀ℎ
)

+ 𝑗 (v
ℎ𝜏
) − 𝑗 (u⋆

𝜀ℎ𝜏
) − 𝑑 (v

ℎ
− u⋆
𝜀ℎ
, 𝑝
⋆

𝜀ℎ
)

≥ (f , v
ℎ
− u⋆
𝜀ℎ
) + 𝑏 (u

𝜀ℎ
, u
𝜀ℎ
, v
ℎ
− u⋆
𝜀ℎ
) ,

𝑑 (u⋆
𝜀ℎ
, 𝑞
ℎ
) + 𝜀 (𝑝

⋆

𝜀ℎ
, 𝑞
ℎ
) = 𝜀 (𝑝

𝜀ℎ
, 𝑞
ℎ
) .

(108)

First, we show the following theorem.
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Theorem 10. Let (u𝑘
𝜀ℎ
, 𝑝
𝑘

𝜀ℎ
) and (u⋆

𝜀ℎ
, 𝑝
⋆

𝜀ℎ
) be the solutions of

(28) and (108), respectively. Then there holds that

u𝑘
𝜀ℎ
− u⋆
𝜀ℎ

𝑉
+

𝑝
𝑘

𝜀ℎ
− 𝑝
⋆

𝜀ℎ



≤ 𝑐 (

u𝑘
𝜀ℎ
− u
𝜀ℎ



2

𝑉
+ 𝜀
1/2 

𝑝
𝜀ℎ
− 𝑝
𝑘−1

𝜀ℎ


) ,

(109)

where (u
𝜀ℎ
, 𝑝
𝜀ℎ
) is the solution to the problem (50) or (76) or

(88).

Proof. Under the uniqueness condition (89), the solution u
𝜀ℎ

satisfies ||u
𝜀ℎ
||
𝑉
≤ 𝜇/2𝑁. Taking v

ℎ
= u⋆
𝜀ℎ
, 𝑞
ℎ
= 𝑝
⋆

𝜀ℎ
− 𝑝
𝑘

𝜀ℎ
in

(28) and v
ℎ
= u𝑘
𝜀ℎ
, 𝑞
ℎ
= 𝑝
𝑘

𝜀ℎ
− 𝑝
⋆

𝜀ℎ
in (108) and adding them

yield

𝜇

u⋆
𝜀ℎ
− u𝑘
𝜀ℎ



2

𝑉
+ 𝜀


𝑝
⋆

𝜀ℎ
− 𝑝
𝑘

𝜀ℎ



2

≤ 𝜀 (𝑝
𝜀ℎ
− 𝑝
𝑘−1

𝜀ℎ
, 𝑝
⋆

𝜀ℎ
− 𝑝
𝑘

𝜀ℎ
) + 𝑏 (u𝑘

𝜀ℎ
, u𝑘
𝜀ℎ
, u⋆
𝜀ℎ
− u𝑘
𝜀ℎ
)

− 𝑏 (u
𝜀ℎ
, u⋆
𝜀ℎ
, u⋆
𝜀ℎ
− u𝑘
𝜀ℎ
)

− 𝑏 (u⋆
𝜀ℎ
, u
𝜀ℎ
, u⋆
𝜀ℎ
− u𝑘
𝜀ℎ
) + 𝑏 (u

𝜀ℎ
, u
𝜀ℎ
, u⋆
𝜀ℎ
− u𝑘
𝜀ℎ
)

= 𝜀 (𝑝
𝜀ℎ
− 𝑝
𝑘−1

𝜀ℎ
, 𝑝
⋆

𝜀ℎ
) + 𝑏 (u

𝜀ℎ
−u𝑘
𝜀ℎ
, u
𝜀ℎ
−u𝑘
𝜀ℎ
, u⋆
𝜀ℎ
−u𝑘
𝜀ℎ
)

+ 𝑏 (u𝑘
𝜀ℎ
− u⋆
𝜀ℎ
, u
𝜀ℎ
, u⋆
𝜀ℎ
− u𝑘
𝜀ℎ
) .

(110)

Using (13), Hölder’s inequality, and Young’s inequality, we
obtain

𝜇

u⋆
𝜀ℎ
− u𝑘
𝜀ℎ



2

𝑉
+ 𝜀


𝑝
⋆

𝜀ℎ
− 𝑝
𝑘

𝜀ℎ



2

≤ 𝜀

𝑝
𝜀ℎ
− 𝑝
𝑘−1

𝜀ℎ




𝑝
⋆

𝜀ℎ
− 𝑝
𝑘

𝜀ℎ


+ 𝑁


u
𝜀ℎ
− u𝑘
𝜀ℎ



2

𝑉

×

u⋆
𝜀ℎ
− u𝑘
𝜀ℎ

𝑉
+ 𝑁

u𝜀ℎ
𝑉


u⋆
𝜀ℎ
− u𝑘
𝜀ℎ



2

𝑉

≤
𝜀

2


𝑝
⋆

𝜀ℎ
− 𝑝
𝑘

𝜀ℎ



2

+
𝜀

2


𝑝
𝜀ℎ
− 𝑝
𝑘−1

𝜀ℎ



2

+
𝜇

2


u⋆
𝜀ℎ
− u𝑘
𝜀ℎ



2

𝑉

+
𝜇

4


u⋆
𝜀ℎ
− u𝑘
𝜀ℎ



2

𝑉
+
𝑁
2

𝜇


u
𝜀ℎ
− u𝑘
𝜀ℎ



4

𝑉
.

(111)

That is,


u⋆
𝜀ℎ
− u𝑘
𝜀ℎ

𝑉
≤ √

2𝜀

𝜇


𝑝
𝜀ℎ
− 𝑝
𝑘−1

𝜀ℎ


+
2𝑁

𝜇


u
𝜀ℎ
− u𝑘
𝜀ℎ



2

𝑉
.
(112)

For all w
ℎ
∈ 𝑉
0ℎ
, taking v

ℎ
= u𝑘
𝜀ℎ
± w
ℎ
in the first inequality

of (28) and v
ℎ
= u⋆
𝜀ℎ
± w
ℎ
in the first inequality of (108), it

yields that

𝑎 (u𝑘
𝜀ℎ
,w
ℎ
) + 𝑏 (u𝑘

𝜀ℎ
, u𝑘
𝜀ℎ
,w
ℎ
) − 𝑑 (w

ℎ
, 𝑝
𝑘

𝜀ℎ
) = (f ,w

ℎ
) ,

𝑎 (u⋆
𝜀ℎ
,w
ℎ
) + 𝑏 (u

𝜀ℎ
, u⋆
𝜀ℎ
,w
ℎ
) + 𝑏 (u⋆

𝜀ℎ
, u
𝜀ℎ
,w
ℎ
)

− 𝑑 (w
ℎ
, 𝑝
⋆

𝜀ℎ
) = (f ,w

ℎ
) + 𝑏 (u

𝜀ℎ
, u
𝜀ℎ
,w
ℎ
) .

(113)
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1
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Figure 1: Domain Ω.

Subtracting them and using (23), (112), we obtain

𝜅

𝑝
⋆

𝜀ℎ
− 𝑝
𝑘

𝜀ℎ



≤ sup
w
ℎ
∈𝑉
0ℎ

𝑑 (w
ℎ
, 𝑝
⋆

𝜀ℎ
− 𝑝
𝑘

𝜀ℎ
)

wℎ
𝑉

= sup
w
ℎ
∈𝑉
0ℎ

𝑎 (u⋆
𝜀ℎ
− u𝑘
𝜀ℎ
,w
ℎ
) + 𝑏 (u

𝜀ℎ
, u⋆
𝜀ℎ
,w
ℎ
)

wℎ
𝑉

+ sup
w
ℎ
∈𝑉
0ℎ

𝑏 (u⋆
𝜀ℎ
, u
𝜀ℎ
,w
ℎ
)−𝑏 (u𝑘

𝜀ℎ
, u𝑘
𝜀ℎ
,w
ℎ
)−𝑏 (u

𝜀ℎ
, u
𝜀ℎ
,w
ℎ
)

wℎ
𝑉

= sup
w
ℎ
∈𝑉
0ℎ

𝑎 (u⋆
𝜀ℎ
− u𝑘
𝜀ℎ
,w
ℎ
) + 𝑏 (u⋆

𝜀ℎ
− u𝑘
𝜀ℎ
, u
𝜀ℎ
,w
ℎ
)

wℎ
𝑉

+ sup
w
ℎ
∈𝑉
0ℎ

𝑏 (u
𝜀ℎ
, u⋆
𝜀ℎ
− u𝑘
𝜀ℎ
,w
ℎ
)−𝑏 (u𝑘

𝜀ℎ
− u
𝜀ℎ
, u𝑘
𝜀ℎ
− u
𝜀ℎ
,w
ℎ
)

wℎ
𝑉

≤ 𝜇

u⋆
𝜀ℎ
− u𝑘
𝜀ℎ

𝑉
+ 2𝑁

u𝜀ℎ
𝑉


u⋆
𝜀ℎ
− u𝑘
𝜀ℎ

𝑉

+ 𝑁

u𝑘
𝜀ℎ
− u
𝜀ℎ



2

𝑉

≤ 2𝜇

u⋆
𝜀ℎ
− u𝑘
𝜀ℎ

𝑉
+ 𝑁


u𝑘
𝜀ℎ
− u
𝜀ℎ



2

𝑉

≤ 2√2𝜇𝜀

𝑝
𝜀ℎ
− 𝑝
𝑘−1

𝜀ℎ


+ 5𝑁


u𝑘
𝜀ℎ
− u
𝜀ℎ



2

𝑉
.

(114)

From (34) andTheorems 6–10, we get the following error
estimates.

Theorem 11. Let (u, 𝑝) ∈ 𝐻
3
(Ω)
2
∩ 𝑉 × 𝐻

2
(Ω) ∩ 𝑀 and

(u⋆
𝜀ℎ
, 𝑝
⋆

𝜀ℎ
) ∈ (𝑉

ℎ
,𝑀
ℎ
) be the solutions to the problems (16)
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Figure 2: Streamline of flow and pressure contour for exact solution.

and (108), respectively. Then for the two-level Stokes or Oseen
iteration penalty methods, they satisfy

u − u⋆
𝜀ℎ

𝑉
+
𝑝 − 𝑝

⋆

𝜀ℎ



≤ 𝑐 (ℎ
5/4

+ 𝐻
9/2

+ 𝜀
3/2
𝐻
5/4

+ 𝜀
1/2
𝐻
9/4

+ 𝜀
𝑘+1/2

) .

(115)

And for the two-level Newton iteration penalty method, they
satisfy
u − u⋆

𝜀ℎ

𝑉
+
𝑝 − 𝑝

⋆

𝜀ℎ



≤ 𝑐 (ℎ
5/4

+ 𝐻
5
+ 𝜀
3/2
𝐻
5/4

+ 𝜀
1/2
𝐻
5/2

+ 𝜀
𝑘+1/2

) .

(116)

Remark 12. If we choose 𝐻 = 𝑂(ℎ
5/18

), 𝜀 = 𝑂(ℎ
5/4
) in (115)

for two-level Stokes or Oseen iteration penalty methods and
𝐻 = 𝑂(ℎ

1/4
), 𝜀 = 𝑂(ℎ

5/4
) in (116) for the two-level Newton

iteration penalty method, then we obtain

u − u⋆
𝜀ℎ

𝑉
+
𝑝 − 𝑝

⋆

𝜀ℎ

 ≤ 𝑐ℎ
5/4
. (117)

5. Numerical Results

In this section, we will give numerical results to confirm the
error analysis obtained in Section 4. Since these two-level
Stokes/Oseen/Newton iteration penalty methods are given in

the form of the variational inequality problems which are
not directly solved, the appropriate iteration algorithm must
be constructed. Here we use the Uzawa iteration algorithm
introduced in [28].

For simplicity, we only give the Uzawa iteration
method for solving the variational inequality problem
(16). Similar schemes can be used to solve the two-
level Stokes/Oseen/Newton iteration penalty schemes in
Section 4. First, there exists a multiplier 𝜆 ∈ Λ such that
the variational inequality problem (16) is equivalent to the
following variational identity problem:

𝑎 (u, v) + 𝑏 (u, u, v) − 𝑑 (v, 𝑝) + ∫
𝑆

𝜆𝑔v
𝜏
𝑑𝑠 = (f , v) ,

∀v ∈ 𝑉,

𝑑 (u, 𝑞) = 0, ∀𝑞 ∈ 𝑀,

𝜆𝑢
𝜏
=
𝑢𝜏

 , a.e. on 𝑆,

(118)

where 𝜆 ∈ Λ = {𝛾 ∈ 𝐿
2
(𝑆) : |𝛾(𝑥)| ≤ 1 a.e. on 𝑆}. In this

case, we can solve the problem (16) by the following Uzawa
iteration scheme:

𝜆
0
∈ Λ is given; (119)
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Figure 3: Streamline of flow and pressure contour by Stokes method.

then 𝜆𝑛 is known; we compute (u𝑛, 𝑝𝑛) and 𝜆𝑛+1 by

𝑎 (u𝑛, v) + 𝑏 (u𝑛, u𝑛, v) − 𝑑 (v, 𝑝𝑛)

= (f , v) − ∫
𝑆

𝜆
𝑛
𝑔v
𝜏
𝑑𝑠, ∀v ∈ 𝑉,

𝑑 (u𝑛, 𝑞) = 0, ∀𝑞 ∈ 𝑀,

𝜆
𝑛+1

= 𝑃
Λ
(𝜆
𝑛
+ 𝜌𝑔u𝑛

𝜏
) , 𝜌 > 0,

(120)

where

𝑃
Λ
(𝛾) = sup (−1, inf (1, 𝛾)) , ∀𝛾 ∈ 𝐿

2
(𝑆) . (121)

Consider the problems (1)-(2) in the fixed square domain
(0, 1) × (0, 1) (see Figure 1). Let 𝜇 = 0.1. The external force 𝑓
is chosen such that the exact solution (u, 𝑝) is

u (𝑥, 𝑦) = (𝑢
1
(𝑥, 𝑦) , 𝑢

2
(𝑥, 𝑦)) ,

𝑝 (𝑥, 𝑦) = (2𝑥 − 1) (2𝑦 − 1) ,

𝑢
1
(𝑥, 𝑦) = −𝑥

2
𝑦 (𝑥 − 1) (3𝑦 − 2) ,

𝑢
2
(𝑥, 𝑦) = 𝑥𝑦

2
(𝑦 − 1) (3𝑥 − 2) .

(122)

It is easy to verify that the exact solution u satisfies u = 0

on Γ, u ⋅n = 𝑢
1
= 0, 𝑢

2
̸= 0 on 𝑆

1
and 𝑢
1
̸= 0, u ⋅n = 𝑢

2
= 0 on

𝑆
2
. Moreover, the tangential vector 𝜏 on 𝑆

1
and 𝑆

2
are (0, 1)

and (−1, 0). Thus, we have

𝜎
𝜏
= 4𝜇𝑦

2
(𝑦 − 1) on 𝑆

1
,

𝜎
𝜏
= 4𝜇𝑥

2
(𝑥 − 1) on 𝑆

2
.

(123)

On the other hand, from the nonlinear slip boundary condi-
tions (2), there holds that

𝜎𝜏
 ≤ 𝑔; (124)

then the function 𝑔 can be chosen as 𝑔 = −𝜎
𝜏
≥ 0 on 𝑆

1
and

𝑆
2
.
In all experiments, we choose 𝜇 = 0.1, iteration initial

value 𝜆0 = 1, and 𝜌 = 𝜇/2. In terms of Theorems 6 and 7, for
the two-level Stokes/Oseen penalty iteration methods, there
holds that
u − u

𝜀ℎ

𝑉
+
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐 (ℎ
5/4

+ 𝜀𝐻
5/4

+ 𝐻
9/4

+ 𝜀
𝑘+1

) .

(125)

Then we choose 𝜀 = 𝑂(𝐻), 𝐻 = 𝑂(ℎ
5/9
), 𝑘 = 2 such that

u − u
𝜀ℎ

𝑉
+
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐ℎ
5/4
. (126)

We pick eight coarse mesh size values; that is, 𝐻 =

1/4, 1/6, 1/8, . . . , 1/18. In Table 1, the scaling between 1/𝐻

and 1/ℎ = (1/𝐻)9/5 is given.
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Figure 4: Streamline of flow and pressure contour by Oseen method.
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Figure 5: Streamline of flow and pressure contour by Newton method.
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Table 1: Comparison of the scaling between 1/𝐻 and 1/ℎ.

1/𝐻 4 6 8 10 12 14 16 18
1/ℎ 12.125 25.157 42.224 63.095 87.604 115.619 147.033 181.756

Table 2: Numerical relative error for velocity with 𝐻 = 1/14 and
ℎ = 1/115.

𝜀
0

0.01 0.001 0.0001 0.00001
Stokes 1.04374𝑒 − 03 1.84283𝑒 − 04 1.52977𝑒 − 04 1.52631𝑒 − 04

Oseen 1.04345𝑒 − 03 1.78281𝑒 − 04 1.45638𝑒 − 04 1.45275𝑒 − 04

Table 3: Numerical relative error for pressure with 𝐻 = 1/14 and
ℎ = 1/115.

𝜀
0

0.01 0.001 0.0001 0.00001
Stokes 1.85222𝑒 − 04 6.20827𝑒 − 05 5.96578𝑒 − 05 5.96412𝑒 − 05

Oseen 1.85112𝑒 − 04 6.13519𝑒 − 05 5.88604𝑒 − 05 5.88398𝑒 − 05

Table 4: Numerical relative error for Stokes method.

1/𝐻 1/ℎ ‖u − u
𝜀ℎ
‖
𝑉
/‖u‖
𝑉

‖𝑝 − 𝑝
𝜀ℎ
‖/‖𝑝‖ Iteration CPU(s)

4 12 1.51517𝑒 − 02 5.41171𝑒 − 03 2 0.281
6 25 3.30825𝑒 − 03 1.25062𝑒 − 03 2 0.889
8 42 1.15862𝑒 − 03 4.44992𝑒 − 04 2 2.302
10 63 5.25908𝑒 − 04 1.99251𝑒 − 04 2 5.038
12 87 2.91391𝑒 − 04 1.05862𝑒 − 04 2 9.806
14 115 1.84283𝑒 − 04 6.20827𝑒 − 05 2 17.621
16 147 1.30602𝑒 − 04 3.96161𝑒 − 05 2 40.549
18 181 1.01944𝑒 − 04 2.77123𝑒 − 05 2 53.445
Order 1.727 1.913

Setting 𝜀 = 𝜀
0
𝐻, the comparison of relative error

||u − u
𝜀ℎ
||
𝑉
/||u||
𝑉

and ||𝑝 − 𝑝
𝜀ℎ
||/||𝑝|| for different 𝜀

0
>

0 is shown in Tables 2 and 3 when we use the two-level
Stokes/Oseen penalty iteration methods with 1/𝐻 = 14 and
1/ℎ = 115. We can see that, for our present testing case, it
suffices to set 𝜀 = 0.001𝐻 if it is hoped to be as large as
possible.

Thus, set 𝜀 = 0.001𝐻 and 1/ℎ ≈ (1/𝐻)
9/5. Tables

4 and 5 display the relative 𝐻1 errors of the velocity and
the relative 𝐿

2 errors of the pressure and their average
convergence orders and CPU time when we use the two-
level Stokes iteration penalty method and two-level Oseen
iteration penalty method, respectively. Based on Tables 4 and
5, the two-level Stokes/Oseen iteration penalty methods can
reach the convergence orders of 𝑂(ℎ5/4) for both velocity
and pressure, in𝐻1- and 𝐿2-norms, respectively, as shown in
(126).

Next, we give the numerical results by using the two-level
Newton iteration penalty method. In terms of Theorem 8,
there holds that

u − u
𝜀ℎ

𝑉
+
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐 (ℎ
5/4

+ 𝜀𝐻
5/4

+ 𝐻
5/2

+ 𝜀
𝑘+2

) .

(127)

Table 5: Numerical relative error for Oseen method.

1/𝐻 1/ℎ ‖u − u
𝜀ℎ
‖
𝑉
/‖u‖
𝑉

‖𝑝 − 𝑝
𝜀ℎ
‖/‖𝑝‖ Iteration CPU(s)

4 12 1.49411𝑒 − 02 5.38449𝑒 − 03 2 0.316
6 25 3.23052𝑒 − 03 1.24245𝑒 − 03 2 1.006
8 42 1.12567𝑒 − 03 4.41332𝑒 − 04 2 2.613
10 63 5.08693𝑒 − 04 1.93710𝑒 − 04 2 5.728
12 87 2.81455𝑒 − 04 1.04715𝑒 − 04 2 11.213
14 115 1.78281𝑒 − 04 6.13519𝑒 − 05 2 20.045
16 147 1.26872𝑒 − 04 3.91207𝑒 − 05 2 42.242
18 181 9.95916𝑒 − 05 2.73676𝑒 − 05 2 59.391
Order 1.728 1.915

Table 6: Numerical relative error for Newton method.

1/𝐻 1/ℎ ‖u − u
𝜀ℎ
‖
𝑉
/‖u‖
𝑉

‖𝑝 − 𝑝
𝜀ℎ
‖/‖𝑝‖ Iteration CPU(s)

4 16 8.10332𝑒 − 03 3.02474𝑒 − 03 2 0.535
6 36 1.51165𝑒 − 03 5.98186𝑒 − 04 2 2.256
8 64 4.76536𝑒 − 04 1.89983𝑒 − 04 2 6.991
10 100 2.08297𝑒 − 04 8.02333𝑒 − 05 2 16.977
12 144 1.10901𝑒 − 04 3.89471𝑒 − 05 2 37.804
14 196 7.20875𝑒 − 05 2.21184𝑒 − 05 2 78.811
Order 1.811 1.947

Then we choose 𝜀 = 0.01𝐻5/4 and 1/ℎ = (1/𝐻)2 such that
u − u

𝜀ℎ

𝑉
+
𝑝 − 𝑝𝜀ℎ

 ≤ 𝑐ℎ
5/4
. (128)

Because when 𝐻 = 1/16 and ℎ = 1/256, this method does
not work and the computer displays “out of memory”. Thus,
in this experiment, we pick six coarse mesh size values; that
is, 𝐻 = 1/4, 1/6, . . . , 1/14. Table 6 displays the relative 𝐻1
errors of the velocity and the relative 𝐿2 errors of the pressure
and their average convergence orders and CPU time when
we use the two-level Newton iteration penalty method. Based
on Tables 4 and 5, we can see that the two-level Newton
iteration penalty method also reaches the convergence orders
of 𝑂(ℎ5/4) for both velocity and pressure, in 𝐻

1- and 𝐿
2-

norms, respectively, as shown in (128).
Figures 2, 3, 4, and 5 show the streamline of flow and

the pressure contour of the numerical solution by the two-
level Stokes/Oseen/Newton iteration penalty methods and
the exact solution, respectively.
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tions,” Leçcons, Collèege de France, 1993.

[2] H. Fujita, “A mathematical analysis of motions of viscous
incompressible fluid under leak or slip boundary conditions,”
RIMS Kokyuroku, no. 888, pp. 199–216, 1994.



Abstract and Applied Analysis 17

[3] H. Fujita, “Non-stationary Stokes flows under leak boundary
conditions of friction type,” Journal of Computational Mathe-
matics, vol. 19, no. 1, pp. 1–8, 2001.

[4] H. Fujita, “A coherent analysis of Stokes flows under boundary
conditions of friction type,” Journal of Computational and
Applied Mathematics, vol. 149, no. 1, pp. 57–69, 2002.

[5] Y. Li and K. Li, “Existence of the solution to stationary Navier-
Stokes equations with nonlinear slip boundary conditions,”
Journal of Mathematical Analysis and Applications, vol. 381, no.
1, pp. 1–9, 2011.

[6] Y. Li and K. Li, “Global strong solutions of two-dimensional
Navier-Stokes equations with nonlinear slip boundary condi-
tions,” Journal of Mathematical Analysis and Applications, vol.
393, no. 1, pp. 1–13, 2012.

[7] N. Saito and H. Fujita, “Regularity of solutions to the Stokes
equation under a certain nonlinear boundary condition, The
Navier-Stokes Equations,” in Proceedings of the 2nd Interna-
tional Conference on the Navier Stokes-Equations: Theory and
NumericalMethods, vol. 223 ofDekker Lecture Notes in Pure and
Applied Mathematics, pp. 73–86, 2001.

[8] N. Saito, “On the Stokes equation with the leak and slip
boundary conditions of friction type: regularity of solutions,”
Publications of the Research Institute for Mathematical Sciences,
Kyoto University, vol. 40, no. 2, pp. 345–383, 2004.

[9] Y. He and J. Li, “Convergence of three iterative methods based
on the finite element discretization for the stationary Navier-
Stokes equations,” Computer Methods in Applied Mechanics and
Engineering, vol. 198, no. 15-16, pp. 1351–1359, 2009.

[10] R. An and H. L. Qiu, “Two-Level Newton iteration methods
for Navier-Stokes type variational inequality problem,” The
Advances in Applied Mathematics and Mechanics, vol. 5, no. 1,
pp. 36–54, 2013.

[11] V. Girault and J.-L. Lions, “Two-grid finite-element schemes
for the steady Navier-Stokes problem in polyhedra,” Portugaliae
Mathematica, vol. 58, no. 1, pp. 25–57, 2001.

[12] Y. He and K. Li, “Two-level stabilized finite element methods
for the steady Navier-Stokes problem,” Computing, vol. 74, no.
4, pp. 337–351, 2005.

[13] W. Layton and H. W. J. Lenferink, “A multilevel mesh indepen-
dence principle for the Navier-Stokes equations,” SIAM Journal
on Numerical Analysis, vol. 33, no. 1, pp. 17–30, 1996.

[14] Y. Li and R. An, “Two-level pressure projection finite ele-
ment methods for Navier-Stokes equations with nonlinear slip
boundary conditions,” Applied Numerical Mathematics, vol. 61,
no. 3, pp. 285–297, 2011.

[15] K. Li and Y. Hou, “An AIM and one-step Newton method
for the Navier-Stokes equations,” Computer Methods in Applied
Mechanics and Engineering, vol. 190, no. 46-47, pp. 6141–6155,
2001.

[16] M. Marion and J. Xu, “Error estimates on a new nonlinear
Galerkin method based on two-grid finite elements,” SIAM
Journal onNumerical Analysis, vol. 32, no. 4, pp. 1170–1184, 1995.

[17] J. Xu, “Two-grid discretization techniques for linear and non-
linear PDEs,” SIAM Journal on Numerical Analysis, vol. 33, no.
5, pp. 1759–1777, 1996.

[18] R. Temam, Navier-Stokes Equations: Theory and Numerical
analysis, AMS Chelsea, Providence, RI, USA, 2001.

[19] Y. Li and R. An, “Penalty finite element method for Navier-
Stokes equations with nonlinear slip boundary conditions,”
International Journal for Numerical Methods in Fluids, vol. 69,
no. 3, pp. 550–566, 2012.

[20] X. X. Dai, P. P. Tang, and M. H. Wu, “Analysis of an iterative
penalty method for Navier-Stokes equations with nonlinear
slip boundary conditions,” International Journal for Numerical
Methods in Fluids, vol. 72, no. 4, pp. 403–413, 2013.

[21] X. L. Cheng and A. W. Shaikh, “Analysis of the iterative penalty
method for the Stokes equations,” Applied Mathematics Letters,
vol. 19, no. 10, pp. 1024–1028, 2006.

[22] X. Dai, “Finite element approximation of the pure Neumann
problem using the iterative penalty method,” Applied Mathe-
matics and Computation, vol. 186, no. 2, pp. 1367–1373, 2007.

[23] J. Shen, “On error estimates of the penalty method for unsteady
Navier-Stokes equations,” SIAM Journal on Numerical Analysis,
vol. 32, no. 2, pp. 386–403, 1995.
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