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We deal with nonlocal boundary value problems of fractional equations of Volterra type involving Riemann-Liouville derivative.
Firstly, by defining a weighted norm and using the Banach fixed point theorem, we show the existence and uniqueness of solutions.
Then, we obtain the existence of extremal solutions by use of the monotone iterative technique. Finally, an example illustrates the
results.

1. Introduction
Fractional differential equations arise in many engineering
and scientific disciplines as the mathematical modeling of
systems and processes in the fields of physics, chemistry,
aerodynamics, and so forth. There has been a significant
theoretical development in fractional differential equations
in recent years (see [1–18]). Monotone iterative technique is
a useful tool for analyzing fractional differential equations.

In [3], Jankowski considered the existence of the solutions
of the following problem:

𝐷
𝑞
𝑥 (𝑡) = 𝑓(𝑡, 𝑥 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠) , 0 < 𝑞 < 1,

𝑡 ∈ (0, 𝑇] ,

𝑥 (0) = 𝑟,

(1)

where 𝑓 ∈ 𝐶([0, 𝑇] × 𝑅
2
, 𝑅), 𝑥(0) = 𝑡

1−𝑞
𝑥(𝑡)|𝑡=0 by using

the Banach fixed point theorem and monotone iterative
technique.

Motivated by [3], in this paper we investigate the follow-
ing nonlocal boundary value problem:

𝐷
𝛼
𝑥 (𝑡) = 𝑓(𝑡, 𝑥 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠)

≡ 𝐹𝑥 (𝑡) , 0 < 𝛼 < 1, 𝑡 ∈ (0, 𝑇] ,

𝑥 (0) = 𝑔 (𝑥) ,

(2)

where 𝑓 ∈ 𝐶([0, 𝑇] × 𝑅
2
, 𝑅), 𝑔 : 𝐶1−𝛼([0, 𝑇]) → 𝑅 is a conti-

nuous functional, 𝐽 = [0, 𝑇],𝑥(0) = 𝑡
1−𝛼

𝑥(𝑡)|𝑡=0, and 𝑘(𝑡, 𝑠) ∈

𝐶(Δ, 𝑅); here Δ = {(𝑡, 𝑠) ∈ 𝐽 × 𝐽 : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇}.
Firstly, the nonlocal condition can be more useful

than the standard initial condition to describe many phys-
ical and chemical phenomena. In contrast to the case
for initial value problems, not much attention has been
paid to the nonlocal fractional boundary value problems.
Some recent results on the existence and uniqueness of
nonlocal fractional boundary value problems can be found
in [1, 2, 12, 14, 18]. However, discussion on nonlocal boundary
value problems of fractional equations of Volterra type
involving Riemann-Liouville derivative is rare. Secondly,
in [3], in order to discuss the existence and uniqueness
of problem (1), Jankowski divided 𝑞 ∈ (0, 1) into two
situations to discuss; one is 0 < 𝑞 ≤ 1/2 with an add-
itional condition and the other is 1/2 < 𝑞 < 1. In this
paper, we unify the two situations without using the
additional condition. Thirdly, for the study of differential
equation, monotone iterative technique is a useful tool
(see [9, 10, 16, 17]). We know that it is important to build
a comparison result when we use the monotone iterative
technique. We transform the differential equation into inte-
gral equation and use the integral equation to build the
comparison result which is different from [3]. It makes the
calculation easier and is suitable for the more complicated
forms of equations.
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The paper is organized as follows. In Section 2, we present
some useful definitions and fundamental facts of fractional
calculus theory. In Section 3, by applying Banach fixed point
theorem, we prove the existence and uniqueness of solution
for problem (2). In Section 4, by the utility of the monotone
iterative technique, we prove that (2) has extremal solutions.
At last, we give an example to illustrate our main results.

2. Preliminaries

Let 𝐶1−𝛼(𝐽, 𝑅) = {𝑥 ∈ 𝐶((0, 𝑇], 𝑅) : 𝑡
1−𝛼

𝑥(𝑡) ∈ 𝐶(𝐽, 𝑅)} with
the norm ‖𝑥‖𝐶

1−𝛼

= max𝑡∈𝐽|𝑡
1−𝛼

𝑒
−𝜆𝑡

𝑥(𝑡)|, where 𝜆 is a fixed
positive constant which will be fixed in Section 3. Obviously,
the space 𝐶1−𝛼(𝐽, 𝑅) is a Banach space. Now, let us recall
the following definitions from fractional calculus. For more
details, one can see [5, 11].

Definition 1. For 𝛼 > 0, the integral

𝐼
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠 (3)

is called the Riemann-Liouville fractional integral of order 𝛼.

Definition 2. TheRiemann-Liouville derivative of order𝛼(𝑛−
1 < 𝛼 ≤ 𝑛) can be written as

𝐷
𝛼
𝑓 (𝑡) = (

𝑑

𝑑𝑡
)

𝑛

(𝐼
𝑛−𝛼

𝑓 (𝑡))

=
1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0.

(4)

Lemma 3 (see [5]). Let 𝑛 − 1 < 𝛼 ≤ 𝑛. If 𝑓(𝑡) ∈ 𝐿(0, 𝑇) and
𝐷
𝛼−𝑛

0+
𝑓(𝑡) ∈ 𝐴𝐶

𝑛
[0, 𝑇], then one has the following equality:

𝐼
𝛼
𝐷
𝛼
𝑓 (𝑡) = 𝑓 (𝑡) −

𝑛

∑

𝑖=1

[𝐷
𝛼−𝑖

𝑓 (𝑡)]
𝑡=0

𝑡
𝛼−𝑖

Γ (𝛼 − 𝑖 + 1)
. (5)

3. Existence and Uniqueness of Solutions

In what follows, to discuss the existence and uniqueness of
solutions of nonlocal boundary value problems for fractional
equations of Volterra type involving Riemann-Liouville
derivative, we suppose the following.

(H1) There exist nonnegative constants 𝐿1, 𝐿2, and𝑊 such
that |𝑘(𝑡, 𝑠)| ≤ 𝑊, for all (𝑡, 𝑠) ∈ Δ, and

𝑓 (𝑡, V1, V2) − 𝑓 (𝑡, 𝑢1, 𝑢2)
 ≤ 𝐿1

V1 − 𝑢1
 + 𝐿2

V2 − 𝑢2
 ,

∀𝑡 ∈ 𝐽, ∀V1, V2, 𝑢1, 𝑢2 ∈ 𝑅.

(6)

(H2) There exists a nonnegative constant 𝐿3 ∈ (0, 1) such
that
𝑔 (𝑢1) − 𝑔 (𝑢2)

 ≤ 𝐿3
𝑢1 − 𝑢2

𝐶
1−𝛼

, ∀𝑡 ∈ 𝐽,

∀𝑢1, 𝑢2 ∈ 𝐶1−𝛼 (𝐽) .

(7)

Lemma 4. Let (H1) hold. 𝑥 ∈ 𝐶1−𝛼(𝐽) and 𝑥 is a solution of
the following problem:

𝐷
𝛼
𝑥 (𝑡) = 𝑓(𝑡, 𝑥 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠) ≡ 𝐹𝑥 (𝑡) ,

𝑥 (0) = 𝑔 (𝑥) ,

(8)

if and only if𝑥(𝑡) is a solution of the following integral equation:

𝑥 (𝑡) = 𝑔 (𝑥) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹𝑥 (𝑠) 𝑑𝑠. (9)

Proof. Assume that 𝑥(𝑡) satisfies (8). From the first equation
of (8) and Lemma 3, we have

𝑥 (𝑡) =

𝐼
1−𝛼

0+
𝑥 (𝑡)

𝑡=0
𝑡
𝛼−1

Γ (𝛼)
+ 𝐼
𝛼

0+
𝐹𝑥 (𝑡)

= 𝑔 (𝑥) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹𝑥 (𝑠) 𝑑𝑠.

(10)

Conversely, assume that 𝑥(𝑡) satisfies (9). Applying the
operator𝐷𝛼 to both sides of (9), we have

𝐷
𝛼
𝑥 (𝑡) = 𝐹𝑥 (𝑡) . (11)

In addition, by calculation, we can conclude 𝑥(0) = 𝑡
1−𝛼

𝑥(𝑡)|𝑡=0 = 𝑔(𝑥). The proof is completed.

Theorem 5. Let (H1), (H2) hold, 𝑓 ∈ 𝐶(𝐽 × 𝑅
2
, 𝑅), and 𝑘 ∈

𝐶(Δ, 𝑅). Then problem (2) has a unique solution.

Proof. Define the operator𝑁 : 𝐶1−𝛼(𝐽) → 𝐶1−𝛼(𝐽) by

𝑁𝑥 (𝑡) = 𝑔 (𝑥) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹𝑥 (𝑠) 𝑑𝑠. (12)

It is easy to check that the operator 𝑁 is well defined on
𝐶1−𝛼(𝐽). Next we show that𝑁 is a contradiction operator on
𝐶1−𝛼(𝐽). For convenience, let

𝜌 ≡
1

𝑞1/𝑞 (1 − 𝐿3)

×

{

{

{

𝐿1

Γ (𝛼)
[𝑇
𝑝𝛼−𝑝+1

Γ(𝑝𝛼 − 𝑝 + 1)
2

Γ (2𝑝𝛼 − 2𝑝 + 2)
]

1/𝑝

+
𝐿2𝑊

𝛼Γ (𝛼)
[𝑇
𝑝𝛼+1

Γ (𝑝𝛼 − 𝑝 + 1) Γ (𝑝𝛼 + 1)

Γ (2𝑝𝛼 − 𝑝 + 2)
]

1/𝑝
}

}

}

,

(13)

and choose

1 < 𝑝 <
1

1 − 𝛼
,

1

𝑝
+
1

𝑞
= 1, 𝜆 > 𝜌

𝑞
, (14)

where𝜆 is a positive constant defined in the normof the space
𝐶1−𝛼(𝐽).
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Then, for any 𝑥, 𝑦 ∈ 𝐶1−𝛼(𝐽), we have from (H1), (H2),
and the Hölder inequality

(𝑁𝑥)(𝑡) − (𝑁𝑦)(𝑡)
𝐶
1−𝛼

= max
𝑡∈[0,𝑇]


𝑡
1−𝛼

𝑒
−𝜆𝑡

[(𝑁𝑥) (𝑡) − (𝑁𝑦) (𝑡)]


≤ max
𝑡∈[0,𝑇]

𝑒
−𝜆𝑡 𝑔 (𝑥) − 𝑔 (𝑦)



+ max
𝑡∈[0,𝑇]

1

Γ (𝛼)
𝑡
1−𝛼

𝑒
−𝜆𝑡

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝐹𝑥 (𝑠) − 𝐹𝑦 (𝑠)

 𝑑𝑠

≤ 𝐿3
𝑥 − 𝑦

𝐶
1−𝛼

+ max
𝑡∈[0,𝑇]

𝐿1

Γ (𝛼)
𝑡
1−𝛼

𝑒
−𝜆𝑡

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑥 (𝑠) − 𝑦 (𝑠)

 𝑑𝑠

+ max
𝑡∈[0,𝑇]

𝐿2𝑊

Γ (𝛼)
𝑡
1−𝛼

𝑒
−𝜆𝑡

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

∫

𝑠

0

𝑥 (𝜏) − 𝑦 (𝜏)
 𝑑𝜏 𝑑𝑠

≤ 𝐿3
𝑥 − 𝑦

𝐶
1−𝛼

+ max
𝑡∈[0,𝑇]

𝐿1

Γ (𝛼)
𝑡
1−𝛼

𝑒
−𝜆𝑡

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛼−1

𝑒
𝜆𝑠
𝑑𝑠
𝑥 − 𝑦

𝐶
1−𝛼

+ max
𝑡∈[0,𝑇]

𝐿2𝑊

𝛼Γ (𝛼)
𝑡
1−𝛼

𝑒
−𝜆𝑡

∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑠
𝛼
𝑒
𝜆𝑠
𝑑𝑠
𝑥 − 𝑦

𝐶
1−𝛼

≤ 𝐿3
𝑥 − 𝑦

𝐶
1−𝛼

+ max
𝑡∈[0,𝑇]

𝐿1

Γ (𝛼)
𝑡
1−𝛼

𝑒
−𝜆𝑡

(∫

𝑡

0

((𝑡 − 𝑠)
𝛼−1

𝑠
𝛼−1

)
𝑝

𝑑𝑠)

1/𝑝

× (∫

𝑡

0

𝑒
𝜆𝑠𝑞

𝑑𝑠)

1/𝑞

𝑥 − 𝑦
𝐶
1−𝛼

+ max
𝑡∈[0,𝑇]

𝐿2𝑊

𝛼Γ (𝛼)
𝑡
1−𝛼

𝑒
−𝜆𝑡

(∫

𝑡

0

((𝑡 − 𝑠)
𝛼−1

𝑠
𝛼
)
𝑝

𝑑𝑠)

1/𝑝

× (∫

𝑡

0

𝑒
𝜆𝑠𝑞

𝑑𝑠)

1/𝑞

𝑥 − 𝑦
𝐶
1−𝛼

≤ 𝐿3
𝑥 − 𝑦

𝐶
1−𝛼

+ max
𝑡∈[0,𝑇]

𝐿1

Γ (𝛼)
𝑒
−𝜆𝑡

(𝑡
𝑝𝛼−𝑝+1

∫

1

0

(1 − 𝜂)
𝑝𝛼−𝑝

𝜂
𝑝𝛼−𝑝

𝑑𝜂)

1/𝑝

×
𝑒
𝜆𝑡

(𝜆𝑞)
1/𝑞

𝑥 − 𝑦
𝐶
1−𝛼

+ max
𝑡∈[0,𝑇]

𝐿2𝑊

𝛼Γ (𝛼)
𝑒
−𝜆𝑡

(𝑡
𝑝𝛼+1

∫

1

0

(1 − 𝜂)
𝑝𝛼−𝑝

𝜂
𝑝𝛼
𝑑𝜂)

1/𝑝

×
𝑒
𝜆𝑡

(𝜆𝑞)
1/𝑞

𝑥 − 𝑦
𝐶
1−𝛼

≤ 𝐿3
𝑥 − 𝑦

𝐶
1−𝛼

+
𝐿1

Γ (𝛼)

× [𝑇
𝑝𝛼−𝑝+1

Γ(𝑝𝛼 − 𝑝 + 1)
2

Γ (2𝑝𝛼 − 2𝑝 + 2)
]

1/𝑝

1

(𝜆𝑞)
1/𝑞

𝑥 − 𝑦
𝐶
1−𝛼

+
𝐿2𝑊

𝛼Γ (𝛼)
[𝑇
𝑝𝛼+1

Γ (𝑝𝛼 − 𝑝 + 1) Γ (𝑝𝛼 + 1)

Γ (2𝑝𝛼 − 𝑝 + 2)
]

1/𝑝

×
1

(𝜆𝑞)
1/𝑞

𝑥 − 𝑦
𝐶
1−𝛼

≤

{

{

{

𝐿3 +
𝐿1

Γ (𝛼)
[𝑇
𝑝𝛼−𝑝+1

Γ(𝑝𝛼 − 𝑝 + 1)
2

Γ (2𝑝𝛼 − 2𝑝 + 2)
]

1/𝑝

1

(𝜆𝑞)
1/𝑞

+
𝐿2𝑊

𝛼Γ (𝛼)
[𝑇
𝑝𝛼+1

Γ (𝑝𝛼 − 𝑝 + 1) Γ (𝑝𝛼 + 1)

Γ (2𝑝𝛼 − 𝑝 + 2)
]

1/𝑝

×
1

(𝜆𝑞)
1/𝑞

}

}

}

𝑥 − 𝑦
𝐶
1−𝛼

.

(∗)

According to 𝜆 > 𝜌
𝑞 and the Banach fixed point theorem, the

problem (2) has a unique solution. The proof is completed.

Remark 6. Theorem 5 is an essential improvement of [3,
Theorem 1].

4. The Monotone Iterative Technique for
Problem (2)

In this section, the monotone iterative technique is presented
and constructed for problem (2). This method leads to a
simple and yet efficient linear iterative algorithm. It yields
two sequences of iterations that convergemonotonically from
above and below, respectively, to a solution of the problem.

Let𝑀,𝑁 ∈ 𝐶(𝐽). We may assume |𝑀(𝑡)| ≤ 𝑀1, |𝑁(𝑡)| ≤

𝑁1, for all 𝑡 ∈ 𝐽, 𝜎 ∈ 𝐶1−𝛼(𝐽). Then, according to Lemma 4
andTheorem 5, the following linear problem

𝐷
𝛼
𝑥 (𝑡) − 𝑀 (𝑡) 𝑥 (𝑡) − 𝑁 (𝑡) ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 𝜎 (𝑡) ,

𝑡 ∈ (0, 𝑇] , 0 < 𝛼 < 1,

𝑥 (0) = 𝑡
1−𝛼

𝑥(𝑡)
𝑡=0

= 𝑔 (𝑥)

(15)

has a unique solution which satisfies

𝑥 (𝑡) = 𝑔 (𝑥) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
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× (𝑀(𝑠) 𝑥 (𝑠)

+𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑥 (𝜏) 𝑑𝜏 + 𝜎 (𝑠)) 𝑑𝑠.

(16)

Lemma 7. Let 0 < 𝛼 < 1, 𝑀,𝑁 ∈ 𝐶(𝐽), |𝑀(𝑡)| ≤ 𝑀1,
|𝑁(𝑡)| ≤ 𝑁1. Suppose that

𝑀1𝑇
𝛼
Γ (𝛼)

Γ (2𝛼)
+
𝑁1𝑊𝑇

𝛼+1
Γ (𝛼)

Γ (2𝛼 + 1)
< 1 (17)

and 𝑝 ∈ 𝐶1−𝛼(𝐽) satisfies the problem

𝑝 (𝑡) ≤ 𝑝 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× (𝑀(𝑠) 𝑝 (𝑠)

+ 𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠.

𝑝 (0) ≤ 0,

(18)

Then 𝑝(𝑡) ≤ 0 for all 𝑡 ∈ (0, 𝑇].

Proof. Suppose that the inequality 𝑝(𝑡) ≤ 0, for all 𝑡 ∈ (0, 𝑇],
is not true. Therefore, there exists at least a 𝑡∗ ∈ (0, 𝑇] such
that 𝑒−𝜆𝑡∗𝑡1−𝛼

∗
𝑝(𝑡∗) > 0. Without loss of generality, we assume

𝑒
−𝜆𝑡
∗𝑡
1−𝛼

∗
𝑝(𝑡∗) = max{𝑒−𝜆𝑡𝑡1−𝛼𝑝(𝑡) : 𝑡 ∈ (0, 𝑇]} = 𝜌1 > 0.

We obtain that

𝑒
−𝜆𝑡

𝑡
1−𝛼

𝑝 (𝑡)

≤ 𝑒
−𝜆𝑡

𝑝 (0) +
𝑒
−𝜆𝑡

𝑡
1−𝛼

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× (𝑀(𝑠) 𝑝 (𝑠) + 𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠

≤
𝑒
−𝜆𝑡

𝑡
1−𝛼

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× (𝑀(𝑠) 𝑝 (𝑠)

+ 𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠

≤
𝑒
−𝜆𝑡

𝑀1𝑡
1−𝛼

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× 𝑠
𝛼−1

𝑒
𝜆𝑠
𝑒
−𝜆𝑠

𝑠
1−𝛼 𝑝 (𝑠)

 𝑑𝑠

+
𝑒
−𝜆𝑡

𝑁1𝑊𝑡
1−𝛼

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× (∫

𝑠

0

𝜏
𝛼−1

𝑒
𝜆𝜏
𝑒
−𝜆𝜏

𝜏
1−𝛼 𝑝 (𝜏)

 𝑑𝜏) 𝑑𝑠.

(19)

Let 𝑡 = 𝑡∗; we have

𝑒
−𝜆𝑡
∗𝑡
1−𝛼

∗
𝑝 (𝑡∗)

≤
𝑀1𝑒
−𝜆𝑡
∗𝑡
1−𝛼

∗

Γ (𝛼)

× ∫

𝑡
∗

0

(𝑡∗ − 𝑠)
𝛼−1

𝑠
𝛼−1

𝑒
𝜆𝑠
𝑒
−𝜆𝑠

𝑠
1−𝛼 𝑝 (𝑠)

 𝑑𝑠

+
𝑁1𝑊𝑒

−𝜆𝑡
∗𝑡
1−𝛼

∗

Γ (𝛼)

× ∫

𝑡
∗

0

(𝑡∗ − 𝑠)
𝛼−1

× (∫

𝑠

0

𝜏
𝛼−1

𝑒
𝜆𝜏
𝑒
−𝜆𝜏

𝜏
1−𝛼 𝑝 (𝜏)

 𝑑𝜏) 𝑑𝑠

𝜌1 ≤
𝑀1𝑡
1−𝛼

∗

Γ (𝛼)
∫

𝑡
∗

0

(𝑡∗ − 𝑠)
𝛼−1

𝑠
𝛼−1

𝑑𝑠𝜌1

+
𝑁1𝑊𝑡

1−𝛼

∗

𝛼Γ (𝛼)
∫

𝑡
∗

0

(𝑡∗ − 𝑠)
𝛼−1

𝑠
𝛼
𝑑𝑠𝜌1,

𝜌1 ≤ (
𝑀1𝑇
𝛼
Γ (𝛼)

Γ (2𝛼)
+
𝑁1𝑊𝑇

𝛼+1
Γ (𝛼)

Γ (2𝛼 + 1)
) 𝜌1.

(20)

So

𝑀1𝑇
𝛼
Γ (𝛼)

Γ (2𝛼)
+
𝑁1𝑊𝑇

𝛼+1
Γ (𝛼)

Γ (2𝛼 + 1)
≥ 1. (21)

This is a contradiction. Hence 𝑝(𝑡) ≤ 0 for all 𝑡 ∈ (0, 𝑇]. The
proof is completed.

Definition 8. We say that 𝑥0 ∈ 𝐶1−𝛼(𝐽) is called a lower
solution of problem (2) if

𝑥0 (𝑡) ≤ 𝑥0 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹𝑥0 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑥0 (0) ≤ 𝑔 (𝑥0) .

(22)
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We say that 𝑦0 ∈ 𝐶1−𝛼(𝐽) is called an upper solution of
problem (2) if

𝑦0 (𝑡) ≥ 𝑦0 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹𝑦0 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑦0 (0) ≥ 𝑔 (𝑦0) .

(23)

In the following discussion, we need the following
assumptions.

(H3) Assume that 𝑔 : 𝐶1−𝛼(𝐽) → 𝑅 is a nondecreasing
continuous function, 𝑓(𝑡, 𝛽1, 𝛽2) ∈ 𝐶1−𝛼(𝐽) for all
𝑡 ∈ 𝐽, 𝑥0 ≤ 𝛽1 ≤ 𝑦0, ∫

𝑡

0
𝑘(𝑡, 𝑠)𝑥0(𝑠)𝑑𝑠 ≤

𝛽2 ≤ ∫
𝑡

0
𝑘(𝑡, 𝑠)𝑦0(𝑠)𝑑𝑠. 𝑥0 and 𝑦0 are lower and upper

solutions of problem (2), respectively, and 𝑥0 ≤ 𝑦0.

(H4) Consider

𝑓 (𝑡, V1, V2) − 𝑓 (𝑡, 𝑢1, 𝑢2) ≥ 𝑀 (𝑡) (V1 − 𝑢1)

+ 𝑁 (𝑡) (V2 − 𝑢2) ,

(24)

where 𝑥0 ≤ 𝑢1 ≤ V1 ≤ 𝑦0,∫
𝑡

0
𝑘(𝑡, 𝑠)𝑥0(𝑠)𝑑𝑠 ≤ 𝑢2 ≤

V2 ≤ ∫
𝑡

0
𝑘(𝑡, 𝑠)𝑦0(𝑠)𝑑𝑠.𝑀,𝑁 ∈ 𝐶(𝐽).

Let [𝑥0, 𝑦0] = {𝑧 ∈ 𝐶1−𝛼(𝐽) : 𝑥0(𝑡) ≤ 𝑧(𝑡) ≤ 𝑦0(𝑡), 𝑥0(0) ≤

�̃�(0) ≤ 𝑦0(0)}.

Theorem 9. Let inequality (17), (H2)–(H4) hold. Then there
exist monotone sequences {𝑥𝑛},{𝑦𝑛} ⊂ [𝑥0, 𝑦0] which converge
uniformly to the extremal solutions of (2) in [𝑥0, 𝑦0], respec-
tively.

Proof. This proof consists of the following three steps.

Step 1. Construct the sequences {𝑥𝑛}, {𝑦𝑛}.
For any 𝜂 ∈ [𝑥0, 𝑦0], we consider the following linear

problem:

𝐷
𝛼
𝑥 (𝑡) − 𝑀 (𝑡) 𝑥 (𝑡)

− 𝑁 (𝑡) ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

= 𝑓(𝑡, 𝜂 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝜂 (𝑠) 𝑑𝑠)

−𝑀(𝑡) 𝜂 (𝑡)

− 𝑁 (𝑡) ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝜂 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 𝑇] ,

𝑥 (0) = 𝑔 (𝜂) .

(25)

ByTheorem 5, (25) has a unique solution which satisfies

𝑥 (𝑡) = 𝑥 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝑓(𝑠, 𝜂 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝜂 (𝜏) 𝑑𝜏)

−𝑀(𝑠) (𝜂 (𝑠) − 𝑥 (𝑠))

− 𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏)

× (𝜂 (𝜏) − 𝑥 (𝜏)) 𝑑𝜏] 𝑑𝑠,

𝑥 (0) = 𝑔 (𝜂) .

(26)

Define an operator 𝐴 : [𝑥0, 𝑦0] → [𝑥0, 𝑦0] by 𝑥 = 𝐴𝜂. It is
easy to check that the operator 𝐴 is well defined on [𝑥0, 𝑦0].
Let 𝜂1, 𝜂2 ∈ [𝑥0, 𝑦0] with 𝜂1 ≤ 𝜂2.

Setting 𝑝(𝑡) = 𝑧1(𝑡) − 𝑧2(𝑡), 𝑧1(𝑡) = 𝐴𝜂1(𝑡), and 𝑧2(𝑡) =

𝐴𝜂2(𝑡), by (26), we obtain

𝑝 (𝑡) = 𝑝 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝑓(𝑠, 𝜂1 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝜂1 (𝜏) 𝑑𝜏)

− 𝑓(𝑠, 𝜂2 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝜂2 (𝜏) 𝑑𝜏)

−𝑀(𝑠) (𝜂1 (𝑠) − 𝑧1 (𝑠))

+ 𝑀 (𝑠) (𝜂2 (𝑠) − 𝑧2 (𝑠))

− 𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) (𝜂1 (𝜏) − 𝑧1 (𝜏)) 𝑑𝜏

+ 𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) (𝜂2 (𝜏)−𝑧2 (𝜏)) 𝑑𝜏] 𝑑𝑠

≤ 𝑝 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× (𝑀(𝑠) 𝑝 (𝑠)

+𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠.

(27)



6 Abstract and Applied Analysis

Besides,

𝑝 (0) = �̃�1 (0) − �̃�2 (0)

= 𝑔 (𝜂1) − 𝑔 (𝜂2) ≤ 0.

(28)

By Lemma 7, we know 𝑝(𝑡) ≤ 0, 𝑡 ∈ (0, 𝑇]. It means that
𝐴 is nondecreasing. Obviously, we can easily get that 𝐴 is a
continuous map. Let 𝑥𝑛 = 𝐴𝑥𝑛−1, 𝑦𝑛 = 𝐴𝑦𝑛−1, 𝑛 = 1, 2, . . ..

Step 2. The sequences {𝑡1−𝛼𝑥𝑛}, {𝑡
1−𝛼

𝑦𝑛} converge uniformly
to 𝑡1−𝛼𝑥∗, 𝑡1−𝛼𝑦∗, respectively.

In fact, 𝑥𝑛, 𝑦𝑛 satisfy the following relation:

𝑥0 ≤ 𝑥1 ≤ ⋅ ⋅ ⋅ ≤ 𝑥𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝑦𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝑦1 ≤ 𝑦0. (29)

Setting 𝑝(𝑡) = 𝑥0(𝑡) − 𝑥1(𝑡) and 𝑥0(𝑡) is a lower solution of
problem (2):

𝑝 (𝑡) ≤ 𝑥0 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× 𝑓(𝑠, 𝑥0 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑥0 (𝜏) 𝑑𝜏) 𝑑𝑠

− 𝑥1 (0) 𝑡
𝛼−1

−
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝑓(𝑠, 𝑥0 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑥0 (𝜏) 𝑑𝜏)

−𝑀(𝑠) (𝑥0 (𝑠) − 𝑥1 (𝑠))

− 𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏)

× (𝑥0 (𝜏) − 𝑥1 (𝜏)) 𝑑𝜏] 𝑑𝑠

= 𝑝 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× (𝑀(𝑠) 𝑝 (𝑠)

+𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠.

(30)

Besides,

𝑝 (0) = 𝑥0 (0) − 𝑥1 (0)

≤ 𝑔 (𝑥0) − 𝑔 (𝑥0) = 0.

(31)

By Lemma 7, we can obtain that 𝑥0 ≤ 𝑥1 for all 𝑡 ∈ (0, 𝑇].
Similarly, we can show that 𝑦1 ≤ 𝑦0 for all 𝑡 ∈ (0, 𝑇]. Applying

the operator𝐴 to both sides of 𝑥0 ≤ 𝑥1, 𝑦1 ≤ 𝑦0, and 𝑥0 ≤ 𝑦0,
we can easily get (29). Obviously, the sequences {𝑡

1−𝛼
𝑥𝑛},

{𝑡
1−𝛼

𝑦𝑛} are uniformly bounded and equicontinuous. Then
by using the Ascoli-Arzela criterion, we can conclude that
the sequences {𝑡1−𝛼𝑥𝑛}, {𝑡

1−𝛼
𝑦𝑛} converge uniformly on (0, 𝑇]

with lim𝑛→∞𝑡
1−𝛼

𝑥𝑛 = 𝑡
1−𝛼

𝑥
∗, lim𝑛→∞𝑡

1−𝛼
𝑦𝑛 = 𝑡

1−𝛼
𝑦
∗

uniformly on (0, 𝑇].

Step 3. 𝑥∗, 𝑦∗ are extremal solutions of (1).
𝑥
∗, 𝑦∗ are solutions of (1) on [𝑥0, 𝑦0], because of the

continuity of operator 𝐴. Let 𝑧 ∈ [𝑥0, 𝑦0] be any solution of
(1). That is,

𝑧 (𝑡) = �̃� (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝐹𝑧 (𝑠) 𝑑𝑠,

�̃� (0) = 𝑔 (𝑧) .

(32)

Suppose that there exists a positive integer 𝑛 such that 𝑥𝑛(𝑡) ≤
𝑧(𝑡) ≤ 𝑦𝑛(𝑡) on (0, 𝑇]. Let 𝑝(𝑡) = 𝑥𝑛+1(𝑡) − 𝑧(𝑡); we have

𝑝 (𝑡) = 𝑥𝑛+1 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝑓(𝑠, 𝑥𝑛 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑥𝑛 (𝜏) 𝑑𝜏)

−𝑀(𝑠) (𝑥𝑛 (𝑠) − 𝑥𝑛+1 (𝑠))

− 𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏)

× (𝑥𝑛 (𝜏) − 𝑥𝑛+1 (𝜏)) 𝑑𝜏] 𝑑𝑠

− �̃� (0) 𝑡
𝛼−1

−
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× 𝑓(𝑠, 𝑧 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑧 (𝜏) 𝑑𝜏) 𝑑𝑠

≤ 𝑝 (0) 𝑡
𝛼−1

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× (𝑀(𝑠) 𝑝 (𝑠)

+𝑁 (𝑠) ∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑝 (𝜏) 𝑑𝜏) 𝑑𝑠,

𝑝 (0) = 𝑥𝑛+1 (0) − �̃� (0) = 𝑔 (𝑥𝑛) − 𝑔 (𝑧) ≤ 0.

(33)

By Lemma 7, we know that 𝑝(𝑡) ≤ 0 on (0, 𝑇], which implies
𝑥𝑛+1(𝑡) ≤ 𝑧(𝑡) on (0, 𝑇]. Similarly, we obtain that 𝑧(𝑡) ≤

𝑦𝑛+1(𝑡) on (0, 𝑇]. Since 𝑥0(𝑡) ≤ 𝑧(𝑡) ≤ 𝑦0(𝑡) on (0, 𝑇], by
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induction we get that 𝑥𝑛(𝑡) ≤ 𝑧(𝑡) ≤ 𝑦𝑛(𝑡) on (0, 𝑇] for
every 𝑛. Therefore, 𝑥∗(𝑡) ≤ 𝑧(𝑡) ≤ 𝑦

∗
(𝑡) on (0, 𝑇] by taking

𝑛 → ∞. Thus, we completed this proof.

5. An Example

Example 1. Consider the following problem:

𝐷
1/2

𝑥 (𝑡) = 𝑡 +
1

60
𝑥 (𝑡) +

1

30
∫

𝑡

0

𝑡𝑠𝑥 (𝑠) 𝑑𝑠, 𝑡 ∈ (0, 1] ,

𝑥 (0) = 𝑔 (𝑥) =
𝜂

12
𝑥 (𝜂) , 0 < 𝜂 < 1.

(34)

Obviously, 𝑇 = 1, 𝛼 = 1/2, 𝑘(𝑡, 𝑠) = 𝑡𝑠, and 𝑓(𝑡, V1, V2) =

𝑡 + (1/60)V1 + (1/30)V2.
Let 𝑤 = 1, 𝐿1 = 1/60, 𝐿2 = 1/30, and 𝐿3 = 1/12.
It is easy to check that

|𝑘 (𝑡, 𝑠)| ≤ 1,

𝑓 (𝑡, V1, V2) − 𝑓 (𝑡, 𝑢1, 𝑢2)
 ≤

1

60

V1 − 𝑢1
 +

1

30

V2 − 𝑢2
 ,

𝑔 (𝑥1) − 𝑔 (𝑥2)
 ≤

1

12

𝑥1 − 𝑥2
𝐶
1−𝛼

.

(35)

So, (H1) and (H2) are satisfied. By the choice of 𝑝 =

3/2, 𝑞 = 3, we can get that 𝜆 > 𝜌
3 and 𝜌 ≡ (4/(11×

3
1/3

)){(1/20Γ(1/2))[Γ(1/4)
2
/Γ(1/2)]

2/3
+(1/15Γ(1/2))[Γ(1/4)

Γ(7/4)]
2/3

}. According to Theorem 5, the problem (34) has a
unique solution.

Consider the same equation as (34), taking 𝑥0(𝑡) = 0,
𝑦0(𝑡) = 𝑡

−1/2
+ 6, and then we have 𝑦0(0) = 1.

Moreover,

𝑦0 (𝑡) = 𝑡
−1/2

+ 6

≥ 𝑡
−1/2

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× [𝑠 +
1

60
(𝑠
−1/2

+ 6)

+
1

30
∫

𝑠

0

𝑠𝜏 (𝜏
−1/2

+ 6) 𝑑𝜏] 𝑑𝑠,

𝑦0 (0) = 1 ≥
𝜂
1/2

12
+
𝜂

2
, 0 < 𝜂 < 1.

(36)

On the other hand, it is easy to check that (H3) holds. And let
𝑀(𝑡) = 1/(𝑡 − 1),𝑁(𝑡) = cos 𝑡/30, and then we have

𝑓 (𝑡, V1, V2) − 𝑓 (𝑡, 𝑢1, 𝑢2) ≥
1

𝑡 − 1
(V1 − 𝑢1)

+
cos 𝑡
30

(V2 − 𝑢2) ,

(37)

where 𝑥0 ≤ 𝑢1 ≤ V1 ≤ 𝑦0, ∫
𝑡

0
𝑘(𝑡, 𝑠)𝑥0(𝑠)𝑑𝑠 ≤ 𝑢2 ≤ V2 ≤

∫
𝑡

0
𝑘(𝑡, 𝑠)𝑦0(𝑠)𝑑𝑠 . So (H4) is satisfied. Obviously, 𝑀1 = 1/30,

𝑁1 = 1, and then we can get

𝑀1𝑇
𝛼
Γ (𝛼)

Γ (2𝛼)
+
𝑁1𝑊𝑇

𝛼+1
Γ (𝛼)

Γ (2𝛼 + 1)
=
31𝜋
1/2

60
< 1. (38)

Inequality (17) holds. All conditions of Theorem 9 are sati-
sfied, so problem (34) has extremal solutions.
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