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Iterative regularization methods are efficient regularization tools for image restoration problems. The IDR(𝑠) and LSMR methods
are state-of-the-arts iterative methods for solving large linear systems. Recently, they have attracted considerable attention. Little
is known of them as iterative regularization methods for image restoration. In this paper, we study the regularization properties of
the IDR(𝑠) and LSMR methods for image restoration problems. Comparative numerical experiments show that IDR(𝑠) can give a
satisfactory solution with much less computational cost in some situations than the classic method LSQR when the discrepancy
principle is used as a stopping criterion. Compared to LSQR, LSMR usually produces a more accurate solution by using the 𝐿-curve
method to choose the regularization parameter.

1. Introduction

Image deblurring is one of the most classic linear inverse
problems. Blurring in images can arise from many sources,
such as limitations of the optical system, camera and object
motion, astigmatism, and environmental effects.The blurring
process of an image can be formulated as a Fredholm integral
equation of the first kindwhich has the following classic form:

∫

R
2

𝐾(𝑠 − 𝑠
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2
,

(1)

where 𝑓 and 𝑔 are the original image and the blurred image,
respectively. 𝐾 is a given point spread function (PSF). PSF
describes the blurring and the resulting image of the point
source.The degree of blurring of the point object is ameasure
for the quality of an imaging system.More information about
different PSFs can be found in [1].

Equation (1) can be discretized to form a linear system

𝐴𝑥true = 𝑏true, 𝐴 ∈ R
𝑚
2
×𝑚
2

, 𝑥, 𝑏 ∈ R
𝑚
2

, (2)

where the matrix 𝐴 is ill-conditioned since it has many sin-
gular values close to zero [1]. For simplicity, we assume that
𝐴 in this paper is nonsingular.

However, the right-hand side 𝑏 is not available in many
practical applications of image restoration because of the con-
tamination of noise, so the linear system (2) can be reformu-
lated as

𝐴𝑥 = 𝑏, 𝑏 = 𝑏true + 𝑒, 𝑒 ∈ R
𝑚
2

, (3)

where 𝑒 represents the noise.
Our goal is to obtain a good approximation of the original

image 𝑥true by solving the system (3) instead of the system (2)
since 𝑏true is not known. However, the solution of (3) is not
a good approximation of the solution of (2) because of ill-
conditioned 𝐴. In fact, there is a quite remarkable disparity
among the corresponding solutions of (3) and (2) even if the
norm of 𝑒 is small.

The singular value decomposition (SVD) is a powerful
tool for the analysis of discrete ill-posed problems. The SVD
takes the form

𝐴 = 𝑈Σ𝑉
𝑇
=

𝑚
2

∑

𝑖=1

𝑢
𝑖
𝜎
𝑖
V𝑇
𝑖
, (4)
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where Σ is a diagonal matrix with the singular values 𝜎
1

≥

𝜎
2
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑚
2 ≥ 0. For most image deblurring problems, the

discrete Picard condition is satisfied: for all singular values
larger than the norm of noise, the corresponding coefficients
|𝑢
𝑇

𝑖
𝑏| decay faster than the 𝜎

𝑖
.

Regularization methods are used to produce better solu-
tion. One of the most famous regularization methods is
truncated SVD (TSVD) [2], which yields solution 𝑥

𝑘
=

∑
𝑘

𝑖=1
𝜎
−1

𝑖
(𝑢
𝑇

𝑖
𝑏)V
𝑖
. Another regularization method is Tikhonov

regularization which consists of solving the minimization
problem

min
𝑥∈𝑅
𝑚
2

{‖𝐴𝑥 − 𝑏‖
2

2
+ 𝜆‖𝐿𝑥‖

2

2
} , (5)

where 𝐿 is a regularization operator, which is often chosen
to be the identity matrix ([3, Chapter 5]) and 𝜆 is the regu-
larization parameter that controls the weighting between the
two terms.However, the previouslymentioned techniques are
usually computationally expensive for large-scale problems
like image deblurring. Iterative methods, especially Krylov
subspace iterative methods, are used to solve these problems
due to their inexpensive computational cost and easy imple-
mentation (see [4] for more details about Krylov subspace
methods).

Whenwe apply aKrylov subspacemethod to solve (3), the
semiconvergence property is observed. Iterative methods can
produce a sequence of iterates {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
, . . .} that initially

tends to get closer to the exact solution but diverges again
from the exact solution in later stages because the influence
of the noise starts to dominate the solution. In this situation,
the iteration number 𝑘 can be considered as a regularization
parameter. We also introduce different methods for choosing
an effective 𝑘 in this paper.

The conjugate gradient (CG) method is a classical Krylov
subspace iterative method for solving the linear systems with
symmetric positive definite (SPD)matrix, and its regularizing
effects are well known (see [5] and [3, Chapter 6] for more
details).When𝐴 is not SPD, themethod can be applied to the
normal equations𝐴𝑇𝐴𝑥 = 𝐴

𝑇
𝑏. CGLS is the most stable way

to implementation of CG algorithm for the normal equations
([3, Chapter 6], [6, Chapter 6]). Other Krylov subspace
methods also have been used to solve image restoration
problems. The regularizing properties of GMRES have been
studied in [7].The regularizing properties of BiCG and QMR
have been tested in [8], which shows that BiCG and QMR are
much faster than CGLS. The comparison of the regularizing
properties of Krylov subspacemethods CGLS, GMRES, CGS,
BiCG, QMR, and BiCGSTAB has been investigated in [9]:
CGS, BiCG, and BiCGSTAB are not sufficiently consistent
with the discrepancy principle (we say that a method is
consistent with the discrepancy principle if the residual norm
with discrepancy principle as the stopping rule is linear
dependence to the noise norm [9]. See Section 3.1 for details
of the discrepancy principle); CGLS method is both efficient
and consistent with the discrepancy principle, but it needs a
large number of iterations; GMRES and QMR show interme-
diate features.

Recently, IDR(𝑠) [10] and LSMR [11] iterative methods
have been proposed for solving large linear system. IDR(𝑠)
is a new family of iterative methods which is fast and requires
lowmemory. IDR(𝑠) has attracted considerable attention, and
different variants have been proposed in [12, 13]. LSMR is
similar to LSQR by applying the MINERS method to the
normal equation. The regularizing effects of MINERS have
been analysed in [14, 15]. It has been proved that both ‖𝐴𝑟

𝑘
‖

and ‖𝑟
𝑘
‖ decrease monotonically for LSMR, while only ‖𝑟

𝑘
‖ is

monotonic for LSQR. So, it is safer to terminate LSMR early.
Many methods have been proposed for choosing the

regularization parameter. But a robust method appropriate
for different situations is to be found. Two methods are used
in this paper: the discrepancy principle (DP) and the discrete
𝐿-curve criterion. DP is themost famous and frequently used
method. It has distinct advantages and disadvantages: it is
simple and easy to be utilized, but it needs to know the norm
of the noise in advance.The discrete 𝐿-curve criterion is used
to choose the regularization parameter by using the curve
of (log ‖𝑟

𝑘
‖, log ‖𝑥

𝑘
‖). For more information about methods

for choosing the regularization parameter, we suggest [6,
Chapter 5] and references therein.

Inspired by the advantages of IDR(𝑠) and LSMR, we apply
them to solve the image restoration problems. We compare
the performance of the IDR(𝑠) method with that of the LSQR
method for solving (3) with the iteration terminated by the
DP method. We also make the comparison between the
LSMR method and the LSQR method when the discrete 𝐿-
curve criterion is used to choose the regularization parame-
ter.

The paper is organized as follows. In Section 2, we review
the IDR(𝑠) and LSMR algorithms briefly and present analysis
of the regularizing properties of the IDR(𝑠) and LSMR algo-
rithms. In Section 3, methods for choosing the regularization
parameter especially the DP method and the discrete 𝐿-
curve criterion are introduced. IDR(𝑠) and LSMR methods
are applied to solve image restoration problems and com-
pared with with LSQR in Section 4. Section 5 summarizes
conclusions.

2. IDR(𝑠) and LSMR

2.1.The IDR(𝑠)Method. TheIDR(𝑠)methods are a new family
of iterative methods based on the induced dimension reduc-
tion (IDR) method proposed by Sonneveld in 1980. IDR(𝑠)
algorithm can generate a sequence of nested subspaces that
corresponding residuals are forced to be in. The dimension
of these nested subspaces is monotonically decreasing, and
so in exact arithmetic, the solution can be obtained within a
not very large number of iterations.

The nested subspaces are defined by

G
𝑗
= (𝐼 − 𝜔

𝑗
𝐴) (G

𝑗−1
∩S) , (6)

whereS is a fixed proper subspace ofR𝑁 and 𝜔
𝑗
are nonzero

scalars. The space S is usually assumed as the left null space
of 𝑃 ∈ R𝑁×𝑠:

𝑃 = (𝑝
1
𝑝
2
. . . 𝑝
𝑠
) , S = N (𝑃

𝐻
) . (7)
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The columns of 𝑃 are chosen as orthogonalization of a set of
random vectors.

Suppose that after 𝑛 iterations we have 𝑠 vectors 𝑔
𝑖
∈ G
𝑗
,

𝑖 = 𝑛 − 1, . . . , 𝑛 − 𝑠 and 𝑠 corresponding vectors 𝑢
𝑖
with 𝑔

𝑖
=

𝐴𝑢
𝑖
. Define the matrices

𝐺
𝑛
= (𝑔
𝑛−𝑠

𝑔
𝑛−𝑠+1

⋅ ⋅ ⋅ 𝑔
𝑛−1

) ,

𝑈
𝑛
= (𝑢
𝑛−𝑠

𝑢
𝑛−𝑠+1

⋅ ⋅ ⋅ 𝑢
𝑛−1

) .

(8)

The algorithmproduces 𝑠+1 residuals inG
𝑗
; then the next

residual can be found inG
𝑗+1

. Two steps are needed to obtain
the 𝑠 + 1 residuals.

Step 1

Compute the first residual inG
𝑗+1

.

Calculate 𝑐 from (𝑃
𝐻
𝐺
𝑛
)𝑐 = 𝑃

𝐻
𝑟
𝑛

V
𝑛
= 𝑟
𝑛
− 𝐺
𝑛
𝑐

𝑟
𝑛+1

= 𝑟
𝑛
− 𝜔
𝑗+1

V
𝑛
− 𝐺
𝑛
𝑐

𝑥
𝑛+1

= 𝑥
𝑛
+ 𝜔
𝑗+1

𝐴V
𝑛
+ 𝑈
𝑛
𝑐.

Step 2

Compute the remaining residuals in G
𝑗+1

, for 𝑘 =

1, . . . 𝑠.
Calculate 𝑐 from (𝑃

𝐻
𝐺
𝑛+𝑘−1

)𝑐 = 𝑃
𝐻
𝑟
𝑛+𝑘

V
𝑛+𝑘

= 𝑟
𝑛+𝑘

− 𝐺
𝑛+𝑘−1

𝑐

𝑢
𝑛+𝑘

= 𝜔
𝑗+1

V
𝑛+𝑘

+ 𝑈
𝑛+𝑘−1

𝑐

𝑔
𝑛+𝑘

= 𝐴𝑢
𝑛+𝑘

select 𝛼
𝑖
and 𝛽

𝑖

𝑔
𝑛+𝑘

= 𝑔
𝑛+𝑘

− ∑
𝑘−1

𝑖=1
𝛼
𝑖
𝑔
𝑛+𝑖

; 𝑢
𝑛+𝑘

= 𝑢
𝑛+𝑘

− ∑
𝑘−1

𝑖=1
𝛼
𝑖
𝑢
𝑛+𝑖

;

𝑟
𝑛+𝑘+1

= 𝑟
𝑛+𝑘

−∑
𝑘

𝑖=1
𝛽
𝑖
𝑔
𝑛+𝑖

; 𝑥
𝑛+𝑘+1

= 𝑥
𝑛+𝑘

+∑
𝑘

𝑖=1
𝛽
𝑖
𝑢
𝑛+𝑖

;

update 𝐺
:,𝑘

= 𝑔
𝑛+𝑘

to get 𝐺
𝑛+𝑘+1

; 𝑈
:,𝑘

= 𝑢
𝑛+𝑘

to get
𝑈
𝑛+𝑘+1

.

Different choices of 𝛼
𝑖
and 𝛽

𝑖
would result in different

variants of IDR(𝑠). Take the same notations as in [12]: IDR(𝑠)-
proto represents the algorithm in [10] and IDR(𝑠)-biortho
represents the variant of the IDR(𝑠) in [12]. IDR(𝑠)-proto just
computes

𝑟
𝑛+𝑘+1

= 𝑟
𝑛+𝑘

− 𝑔
𝑛+𝑘

, 𝑥
𝑛+𝑘+1

= 𝑥
𝑛+𝑘

+ 𝑢
𝑢+𝑘

, (9)

that is, 𝛼
𝑖
= 0 (𝑖 = 1, . . . , 𝑘 − 1), 𝛽

𝑖
= 0 (𝑖 = 1, . . . , 𝑘 − 1), and

𝛽
𝑖
= 1 (𝑖 = 𝑘).
IDR(𝑠)-biortho selects 𝛼

𝑖
and 𝛽

𝑖
to construct vectors that

satisfy the biorthogonality conditions:

𝑔
𝑛+𝑘

⊥ 𝑝
𝑖
, 𝑖 = 1, . . . , 𝑘 − 1, 𝑘 = 2, . . . , 𝑠,

𝑟
𝑛+𝑘+1

⊥ 𝑝
𝑖
, 𝑖 = 1, . . . , 𝑘, 𝑘 = 1, . . . , 𝑠.

(10)

The IDR(𝑠)-biortho algorithm is more stable and more
accurate than the IDR(𝑠)-proto algorithm, so we apply the
IDR(𝑠)-biortho algorithm to solve the problems in this paper.

As described in [10, 16], we have the following expression
after 𝑛 iterations:

𝑟
𝑛
= Φ
𝑛
(𝐴) 𝑟
0
, (11)

Φ
𝑛
(𝐴) is a polynomial of degree 𝑛. Φ

𝑛
(𝐴) can be explicitly

written as a product of two polynomials

Φ
𝑛
(𝐴) = Ω

𝑖
(𝐴)Ψ
𝑛−𝑖

(𝐴) , (12)

where Ω
𝑖
(𝑡) = ∏

𝑖

𝑘=1
(1 − 𝜔

𝑘
𝑡), Ψ
𝑛−𝑖

(𝑡) = ∏
𝑛−𝑖

𝑗=0
𝑐
𝑗
𝑡
𝑗. The factor

Ω
𝑖
(𝐴) is called damping factor and Ψ

𝑛−𝑖
(𝐴) is called Lanczos

factor. The damping factor is the residual polynomial of
damped Richardson iterative method. Damped Richardson
iterative method is used as an iterative regularizing method
in [17] and sometimes referred to as Van Citter method in the
literature; compare [18]. According to the conclusion of [16],
the Lanczos factor is determined completely by the choice of
𝑃, whereas the damping factor depends on the choice of the
parameters 𝜔

𝑖
. Actually, in our experiments, different choices

of parameter 𝑠 (which controls the dimension of 𝑃) did not
show notable influence to the performance in solving image
restoration problems. So, the damping factor plays a role of
iterative regularizing method.

2.2.The LSMRMethod. TheLSMR algorithm is equivalent to
the MINRES applied to the normal equation. The algorithm
is implemented by the Lanczos bidiagonalization algorithm.
One form of the bidiagonalization procedure is the Golub-
Kahan process:

𝛽
1
𝑢
1
= 𝑏, 𝛼

1
V
1
= 𝐴
𝑇
𝑢
1

for 𝑘 = 1, 2, . . . ,

𝛽
𝑘+1

𝑢
𝑘+1

= 𝐴V
𝑘
− 𝛼
𝑘
𝑢
𝑘
, 𝛼

𝑘+1
V
𝑘+1

= 𝐴
𝑇
𝑢
𝑘
− 𝛽
𝑘+1

V
𝑘
.

(13)

The scalars 𝛼
𝑘
≥ 0 and 𝛽

𝑘
≥ 0 are chosen so that the norms

of 𝑢
𝑘
and V
𝑘
are both equal to one.

We define that 𝑉
𝑘

= (V
1
V
2
⋅ ⋅ ⋅ V
𝑘
), 𝑈
𝑘

= (𝑢
1
𝑢
2
⋅ ⋅ ⋅ 𝑢
𝑘
),

and

𝐵
𝑘
= (

𝛼
1

𝛽
2

𝛼
2

d d
𝛽
𝑘

𝛼
𝑘

𝛽
𝑘+1

). (14)

Then, the following relations hold:

𝑈
𝑘+1

(𝛽
1
𝑒
1
) = 𝑏,

𝐴𝑉
𝑘
= 𝑈
𝑘+1

𝐵
𝑘
,

𝐴
𝑇
𝑈
𝑘+1

= 𝑉
𝑘+1

(

𝐵
𝑇

𝑘

𝛼
𝑘+1

𝑒
𝑇

𝑘+1

),
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𝐴
𝑇
𝐴𝑉
𝑘
= 𝐴
𝑇
𝑈
𝑘+1

𝐵
𝑘
= 𝑉
𝑘+1

(

𝐵
𝑇

𝑘

𝛼
𝑘+1

𝑒
𝑇

𝑘+1

)𝐵
𝑘

= 𝑉
𝑘+1

(

𝐵
𝑇

𝑘
𝐵
𝑘

𝛼
𝑘+1

𝛽
𝑘+1

𝑒
𝑇

𝑘+1

).

(15)

While LSQR computes at each iteration the vector 𝑦
𝑘

which minimizes ‖𝑟
𝑘
‖, LSMR chooses 𝑦

𝑘
differently, trying

to minimize ‖𝐴𝑇𝑟
𝑘
‖. Since

𝑟
𝑘
= 𝑏 − 𝐴𝑉

𝑘
𝑦
𝑘
= 𝛽
1
𝑢
1
− 𝑈
𝑘+1

𝐵
𝑘
𝑦
𝑘
= 𝑈
𝑘+1

(𝛽
1
𝑒
1
− 𝐵
𝑘
𝑦
𝑘
) ,

𝐴
𝑇
𝑟
𝑘
= 𝐴
𝑇
𝑏 − 𝐴
𝑇
𝐴𝑥
𝑘
= 𝛽
1
𝛼
1
V
1
− 𝐴
𝑇
𝐴𝑉
𝑘
𝑦
𝑘

= 𝛽
1
𝛼
1
V
1
− 𝑉
𝑘+1

(

𝐵
𝑇

𝑘
𝐵
𝑘

𝛼
𝑘+1

𝛽
𝑘+1

𝑒
𝑇

𝑘+1

)𝑦
𝑘

= 𝑉
𝑘+1

(𝛽
1
𝛼
1
𝑒
1
− (

𝐵
𝑇

𝑘
𝐵
𝑘

𝛼
𝑘+1

𝛽
𝑘+1

𝑒
𝑇

𝑘+1

)𝑦
𝑘
).

(16)

So, we have the following two least squares problems:

min
𝑦
𝑘





𝛽
1
𝑒
1
− 𝐵
𝑘
𝑦
𝑘





, for LSQR

min
𝑦
𝑘
















(𝛽
1
𝛼
1
𝑒
1
− (

𝐵
𝑇

𝑘
𝐵
𝑘

𝛼
𝑘+1

𝛽
𝑘+1

𝑒
𝑇

𝑘+1

)𝑦
𝑘
)
















, for LSMR.

(17)

Both ‖𝑟
𝑘
‖ and ‖𝐴

𝑇
𝑟
𝑘
‖ decrease monotonically for LSMR

algorithm, while only ‖𝑟
𝑘
‖ is monotonic for LSQR algorithm.

So, compared to LSQR, it is safer to terminate LSMR early.
LSMRworks on the normal equation, so a simple analysis

for the regularizing properties of the LSMR algorithm can be
done, which is similar to the analysis of the CGLS method
in [15]. Indeed LSMR and LSQR share the same Krylov
subspace:

K

= span{𝐴𝑇𝑏, (𝐴𝑇𝐴)𝐴
𝑇
𝑏, (𝐴
𝑇
𝐴)

2

𝐴
𝑇
𝑏, . . . , (𝐴

𝑇
𝐴)

𝑘−1

𝐴
𝑇
𝑏}.

(18)

We insert the SVD of 𝐴 into the expansion

K = span {𝑉Σ𝑈
𝑇
𝑏, 𝑉Σ
3
𝑈
𝑇
𝑏, . . . , 𝑉Σ

2𝑘−1
𝑈
𝑇
𝑏} . (19)

The Krylov vectors for LSMR are 𝑉Σ
2𝑖−1

𝑈
𝑇
𝑏, 𝑖 = 1, 2, . . . , 𝑘.

The diagonal elements of Σ and the coefficients in𝑈
𝑇
𝑏 decay,

due to the discrete Picard condition. So, the Krylov subspace

K can be considered as an approximation to the subspace
spanned by the first right singular vectors. Hence, 𝑥

𝑘
can be

considered as an approximation to the TSVD solution.
From another perspective, LSMR is equivalent to the

MINRES method applied to the normal equation. The regu-
larizing properties of MINRES have been analysed in [14, 15].
So, LSMR has the regularizing properties apparently.

3. Choosing the Regularization Parameter

A reliable, efficient, and robust method for choosing the reg-
ularization parameter has not yet been found. Many tech-
niques have been proposed to choose a suitable regulariza-
tion parameter that workswell under certain conditions. New
methods are being developed too.

Several well-known methods, including the DP [19], the
𝐿-curve [20], the generalized cross validation (GCV) [21], and
the NCP method, are described in Hansen’s book [6], and a
comparison of these methods is involved. DP is often used
to choose the regularization parameter of Krylov subspace
methods. When ‖𝑥

𝑘
‖ and ‖𝑟

𝑘
‖ showmonotonic behavior, the

discrete 𝐿-curve criterion can be utilized. Hnětynková et al.
recently proposed to use the information from the Golub-
Kahan iterative bidiagonalization to estimate the norm of
the noise, which can be used to construct efficient stopping
criteria [22]. For more information about choosing the regu-
larization parameter, we suggest [23] and references therein.

Two frequently used methods are utilized to choose the
regularization parameter in this paper: the DP and the dis-
crete 𝐿-curve criterion.

3.1. The Discrepancy Principle. One simple and frequently
usedmethod for choosing the regularization parameter is the
DP ([14, Chapter 3.3], [6, Chapter 5.2]). It suggests that we
should choose parameter 𝑘 such that the residual norm equals
the discrepancy, which is the norm of the noise 𝑒. Generally,
we terminate the iteration as soon as we have a solution 𝑥

𝑘
,

such that





𝑏 − 𝐴𝑥

𝑘





≤ 𝜂,





𝑏 − 𝐴𝑥

𝑘−1





> 𝜂, (20)

where 𝜂 is the norm of 𝑒.
Themain disadvantage of the DPmethod is that 𝜂 is often

not available in advance. Because the choice of regularization
parameter is sensitive to the accuracy of the estimate for 𝜂, it
is not easy to get a good parameter 𝑘 if we use an estimate of
the 𝜂.

3.2. The Discrete 𝐿-Curve Criterion. The discrete 𝐿-curve
criterion is more complicated than DP. The 𝐿-curve tries to
get the regularization parameter by the analysis of the normof
regularized solution ‖𝑥

𝑘
‖ and corresponding residual norm

‖𝑏 − 𝐴𝑥
𝑘
‖. The 𝐿-curve is a log-log plot of ‖𝑥

𝑘
‖ versus

‖𝑏 − 𝐴𝑥
𝑘
‖, and it has two different parts, an approximately

horizontal part and an approximately vertical part.
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(1) When 𝑘 is small,





𝑥
𝑘





≈





𝑥true





approximates a constant,





𝑏 − 𝐴𝑥

𝑘





decreases as 𝑘 increases.

(21)

(2) When 𝑘 is large enough, the solution is dominated by
the error caused by noise,





𝑥
𝑘





increases as 𝑘 increases,





𝑏 − 𝐴𝑥

𝑘





≈ ‖𝑒‖ approximates a constant.

(22)

This also gives an explanation why DP is effective to choose
the regularization parameter.

The effective regularization parameter can be determined
by the “corner” that separates the two parts. The corner is
the point with maximum curvature for continuous 𝐿-curves.
It is similar to determine the corner for discrete 𝐿-curves.
However, it is not straightforward to find the corner, because
the discrete 𝐿-curve may have many local corners. In this
paper, we adopt the adaptive pruning algorithm in [24] for the
discrete 𝐿-curve criterion, which uses a sequence of pruned
𝐿-curves at different scales to get the global corner. The
MATLAB implementations of this algorithm are available
at the website (http://www.mathworks.com/matlabcentral/
fileexchange/52-regtools/content/regu/corner.m).

The discrete 𝐿-curve criterion does not need information
of the norm of noise, which is an advantage in comparison
with the DP. The 𝐿-curve also has its limitations [25–27]: it
will fail when the solution is very smooth; the regularization
parameter computed by the 𝐿-curve may not behave consis-
tently with the problem size increasing.

The discrete 𝐿-curve criterion has a requirement that
the norm of 𝑥

𝑘
increases monotonically as 𝑘 increases and

the norm of 𝑟
𝑘
decreases monotonically as 𝑘 increases.

CGLS and LSQR are mathematically equivalent, and both
of them can use the 𝐿-curve criterion as a stopping rule.
The monotonicities of ‖𝑟

𝑘
‖ in CGLS and LSQR are apparent.

Starting with the zero vector, the monotonicities of ‖𝑥
𝑘
‖ in

CGLS and LSQR have been proved in [3, Theorem 6.3.1]
and [28, Theorem 3.3.1]. The monotonicities of ‖𝑟

𝑘
‖ and

‖𝑥
𝑘
‖ in LSMR have been proved in [28, Theorem 3.3.11

and Theorem 3.3.6] accordingly. So, 𝐿-curve is allowed to
choose the regularization parameter when LSMR is used as
an iterative regularization method.

In practical implementations, we need stopping criterions
to terminate the iteration (after the corner appears).Then, we
can get the regularization parameter using the information
we have.The iteration for choosing the regularization param-
eter needs effective stopping criterion. The frequently-used
stopping criterion ‖𝑟

𝑘
‖ < tol (0 < tol < 1) is not a good one.

The iteration may be terminated before the “corner” of 𝐿-
curve appears for a bigger tol, while the number of iterations
may be very large for a smaller tol because of the ill-condition
of 𝐴. We choose





𝑥
𝑘





> 2 ‖𝑏‖ ,





𝑥
𝑘−1





≤ 2 ‖𝑏‖ (23)

as a stopping criterion thanks to the monotonicity of ‖𝑥
𝑘
‖.

This stopping criterion is used with other stopping criterions
together:





𝑟
𝑘





< tol (0 < tol < 1) , for a small tol, (24)

and 𝑘 ≥ Maxitn, where Maxitn is an explicit limit on the
iteration number.

4. Numerical Experiments

In this section we present some numerical examples to com-
pare the IDR(𝑠) and LSMR methods with the LSQR method.
All examples are problems of the restoration of blurred and
noisy images. The blurring operator 𝐴 is constructed by
𝑏𝑙𝑢𝑟.𝑚 in regularization tools package by Hansen [29], which
is a block Toeplitz with Toeplitz block matrix that models the
blurring of an image by a Gaussian PSF.This section includes
two subsections: the first part is the numerical examples for
comparison of the IDR(𝑠) method and LSQR method where
the DP is used to terminate the iteration; the second part is
the numerical examples for comparison of the LSMRmethod
and the LSQR method where the regularization parameters
are chosen by the discrete 𝐿-curve criterion.The relative error
norm (REN) is defined by

REN =





𝑥true − 𝑥

𝑘




2





𝑥true




2

. (25)

All experiments presented in this section are imple-
mented on a computer with an Intel(R) Pentium(R) D CPU
(3.00GHz) and 1GB of RAM using MATLAB R2010a.

4.1. The Comparison of IDR(𝑠) and LSQR. In this section,
the IDR(𝑠)-biortho method is used due to its stability and
accuracy.

Example 1. The example is the restoration of a noisy and
blurred image “Lena.”The true image is shown in Figure 1(a).
The image has 128 × 128 pixels. The parameters of 𝑏𝑙𝑢𝑟.𝑚
are set as the bandwidth band = 10, 𝜎 = 1. The parameter 𝜎
controls the width of the Gaussian PSF, and the larger the 𝜎 is,
the more ill-conditioned the problem is. Different Gaussian
white noises with noise levels 𝛿 = 𝜂/‖𝑏‖ = 10

−2
, 10
−3
, 10
−4

are added to the noise-free image in our experiments.

The IDR(𝑠) method is applied to solve this problem, while
the popular iterative regularization method LSQR is used for
comparison. The parameter 𝑠 in IDR(𝑠) is chosen as 𝑠 = 1, 2,
4, and 8. The DP method is used to terminate the iteration.

The cost for each IDR(𝑠) step is dominated by onematrix-
vector product, while LSQR needs two matrix-vector prod-
ucts. Actually, IDS(𝑠) need more memory and computation
as 𝑠 increases. More information about the cost of IDR(𝑠) can
be found in [12].

The data in Table 1 indicates that IDR(𝑠) can produce
a satisfying solution with much less iterations than LSQR
(“Iter” is the number of iterations and “MV” is the number
of matrix-vector products). Moreover, the parameter 𝑠 has
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Table 1: Image deblurring using LSQR and IDR(𝑠) for “Lena” (𝜎 = 1).

Method LSQR IDR(1) IDR(2) IDR(4) IDR(8)

𝛿 = 10
−2

Iter 8 4 6 5 9
MV 16 4 6 5 9
REN 0.0625 0.0705 0.1352 0.0799 0.1832

𝛿 = 10
−3

Iter 32 10 10 9 13
MV 64 10 10 9 13
REN 0.0347 0.0323 0.0314 0.0313 0.0319

𝛿 = 10
−4

Iter 145 32 33 30 35
MV 290 32 33 30 35
REN 0.0170 0.0135 0.0175 0.0140 0.0177

Table 2: Image deblurring using LSQR and IDR(𝑠) for “Lena” (𝜎 = 1.5).

𝛿 = 10
−2

𝛿 = 10
−3

𝛿 = 10
−4

Iter MV REN Iter MV REN Iter MV REN
LSQR 12 24 0.0919 58 116 0.0670 329 658 0.0486
IDR(𝑠) 6 6 0.1344 36 36 0.7551 40 40 0.0488

a small influence on the convergence and the number of
iterations. This suggests that we should use IDR(1) to solve
the problem rather than IDR(𝑠) (𝑠 > 1) for saving storage and
computational load.

However, IDR(𝑠) does not give a desirable solution when
the noise level is high. Observing the relative error norm
when 𝛿 = 10

−2, IDR(𝑠) cannot give a good enough solution
compared to LSQR.The performance of IDR(s) is worse if the
noise level is higher. Another shortcoming of IDR(𝑠) is that it
cannot obtain a desirable solution or even cannot converge
for very ill-condition problems which can be obtained with
a larger 𝜎. The data in Table 2 shows the performance of
LSQR and IDR(1) for Example 1 with 𝜎 = 1.5 (the condition
number of 𝐴 is about 10

9). Although IDR(𝑠) can obtain
the solution much faster than LSQR, we should use these
methods carefully. In our experiments, IDR(𝑠) can always
give a satisfactory solution when𝐴 is not very ill-conditioned
and the noise level is low.

Figure 1 shows the true image and blurred and noisy
image with 𝛿 = 10

−3, 𝜎 = 1 and corresponding images
restored by LSQR and IDR(1).

4.2. The Comparison of LSMR and LSQR

Example 2. The true image is constructed by MATLAB
command phantom(𝑚) which can create a head phantom
image with 𝑚 × 𝑚 pixels. In this experiment, we set the size
𝑚 = 64 and the bandwidth band = 5, 𝜎 = 2. 𝐿-curve is fit for
choosing the regularization parameter in this situation. The
Gaussian white noise is added to the true image with noise
level 𝛿 = 𝜂/‖𝑏‖ = 10

−2. The true image is Figure 3(a), and the
blurred and noisy image is Figure 3(b).

Example 3. The true image is obtained from regularization
tools package by Hansen [29]. The remaining parameters are
the same as the parameters of Example 2.The true image and

the blurred and noisy image are shown in Figures 5(a) and
5(b).

The LSMRmethod is applied to solve this problem, while
the LSQR method is used for comparison. The discrete 𝐿-
curve criterion is employed to choose the regularization
parameter.We generate 100 instances of Gaussian white noise
with noise level 𝛿 = 10

−2. For each instance, we use the
discrete𝐿-curve criterion to get the regularization parameters
of LSMRand LSQR.Then, we obtain the solutions by running
corresponding LSMR algorithm and LSQR algorithm. The
comparison of the relative error norm is shown in Figure 2
(Example 2) and Figure 4 (Example 3). It is evident that
LSMR more likely produces a better solution than LSQR.
Figure 3 shows one instance of Example 2 including the true
image, blurred and noisy image, and images restored by
LSQR and LSMR. Similarly, Figure 5 shows one instance of
Example 3. Furthermore, if we compare the optimal solution
produced by LSMR and LSQR, the corresponding REN of the
solution produced by LSMR is usually the smaller one.

The 𝐿-curve works well for large noise level. Actually, we
found that the regularization parameter obtained from the 𝐿-
curve is almost optimal when the level of noise is 5 × 10

−2.
But the 𝐿-curve may fail or need a large number of iterations
to find the corner for small noise level.

Besides, we have done the comparison of LSMR and
LSQRwith the regularization parameter chosen byDP. LSMR
method can get nearly the same REN as LSQRmethod, while
LSQR method could be terminated somewhat sooner. The
memory and computational costs of every step in LSMR are
also slightly more expensive than that in LSQR [11].

5. Conclusion

In this paper, we briefly introduced the IDR(𝑠) method and
the LSMR method, and then we applied the IDR(𝑠) and



Abstract and Applied Analysis 7

(a) (b)

(c) (d)

Figure 1: (a) True image, (b) blurred and noisy image with 𝜎 = 1, (c) restored image with LSQR, and (d) restored image with IDR(1).
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Figure 2: Comparison of the REN produced by LSQR and LSMR.
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(a) (b) (c) (d)

Figure 3: (a) True image, (b) blurred and noisy image, (c) restored image with LSQR, Iter = 104, and REN = 0.5004, and (d) restored image
with LSMR, Iter = 128, and REN = 0.4919.

0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Number of instances

RE
N

LSQR
LSMR

Figure 4: Comparison of the REN produced by LSQR and LSMR.

(a) (b) (c) (d)

Figure 5: (a) True image, (b) blurred and noisy image, (c) restored image with LSQR, Iter = 95, and REN = 0.3519, and (d) restored image
with LSMR, Iter = 129, and REN = 0.3417.

LSMR methods to solve image deblurring problems. These
methods show some superiorities when compared to the
classic iterative regularization method LSQR.

When DP is used to terminate the iteration, IDR(𝑠) can
give a satisfactory solution with a low computational cost
when𝐴 is not very ill-condition and the noise level is low.The
parameter 𝑠 has little influence on the performance of IDR(𝑠),

so we can use IDR(1) for saving storage and computational
cost.

LSMR performs as well as LSQR but needs more com-
putational cost when DP is used to terminate the iteration.
When the 𝐿-curve method is utilized to choose the regu-
larization parameter, LSMR more likely produces a more
accurate solution than LSQR.
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