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We study the boundedness of all solutions for the following differential equation X"+ f (x)x" + (B + ee())|x|* 'x = p(t), where
f(x), p(t) are odd functions, e(t) is an even function, e(t), p(t) are smooth 1-periodic functions, B is a nonzero constant, and &
is a small parameter. A sufficient and necessary condition for the boundedness of all solutions of the above equation is established.
Moreover, the existence of Aubry-Mather sets is obtained as well.

1. Introduction

It is well known that the longtime behavior for periodically
forced planar systems can be very intricate. For example,
there are equations having unbounded solutions but with
infinitely many zeros and with nearby unbounded solutions
having randomly prescribed number of zeros and also peri-
odic solutions; see [1]. In contrast to such unbounded phe-
nomenon Littlewood [2] suggested to study the boundedness
of all the solutions of the following differential equation:

X+g(x)=h(t) @
in the following two cases:

(i) superlinear case: g(x)/x — +00asx — +00;

(ii) sublinear case: sgn(x)-g(x) — +ooand g(x)/x — 0
as x — +00. Later, one calls this subject as Littlewood
boundedness problem.

The first result in superlinear case is obtained by Morris
[3], who showed that all solutions of

#+2x =e(t) (2)

are bounded, where e(t) € C°. Later, a series results in super-
linear case were obtained by several authors, see [4-13] and
references therein. However, in general, it is harder to study

the Lagrange stability of sublinear systems since smoothness
of sublinear term is insufficient. There are only a few works
in sublinear case so far. In 1999, Kiipper and You [14] proved
the first result in the study of the equation

i+ x| 'x=p(@), 3)

where 0 < « < 1and p(t) € C*®(T). Later, Liu [15] proved the
same result for more general equation

X+gx)=e(), (4)

where g(x) € CS satisfying the sublinear condition (ii) and
some inequalities, and e(t) € C>(T). In 2004, Ortega and
Verzini [16] studied the boundedness of (4) in a special
case with the variational method. In 2009, Wang [17] gave a
sufficient and necessary condition for the boundedness of all
solutions for sublinear equation

E+e(t)|x"x=p@), (5)

where e(t), p(t) € C°(T).

As is widely known, there is a deep similarity between
reversible and Hamiltonian dynamics. Many fundamental
results of the Hamiltonian systems possess reversible coun-
terparts. On boundedness problem for sublinear reversible
systems, the first results were obtained by Li [18], later, Yang
[19], in the study of a sublinear reversible systems

i+ flo)x+|x“x=e(). (6)
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Recently, Wang [20] gave a sufficient and necessary condition
for the boundedness of all solutions of the differential eq-
uation

&+ f(x) g &) +ylx*x = p(t) )

with0 <& < 1,y #0.

By the discussions about the sublinear Hamiltonian equa-
tion (1.3) in [17] motivations, we will study the boundedness
of all solutions for a sublinear reversible system like

i+ f(x)x+ (B+ee(d) x| 'x=p(t), (8)

where B#0 and 0 < « < 1. Furthermore, we also show that
(8) has solutions of Mather type. The results obtained in [18-
20] can be regarded as corollary of result of this paper.

Remark 1. Using the method of this paper we also can
consider the more general equation

&+ f(x)g (%) + (B+ee(®) x| x = p(r) )

provided of adding suitable conditions for g(x). For conve-
nience, we only consider the case g(x) = x.

Remark 2. Adding the perturbation term ee(t)]x]|* x will
lead to a new difficulty for estimating IS(QTO)I"HC(GTO)
appeared in (86). Fortunately, we can easily verify that
JOI IS(GTO)I“_IC(GTO)dG is bounded by a constant (see in the
proof of Lemma 12).

Throughout this paper, we denote two universal positive
constants without regarding their values by c < 1and C > 1,
and suppose that the following conditions hold:

(A1) f(x) € CX(R), p(t) € C*(T) and e(t) € C*(T), f(x)
and p(t) are odd, e(t) is even, and e(t), p(t) are both
1-periodic functions, T = R/Z;

(A2) there is some positive constant p such that the in-
equalities

|« £D ()| < Clx|*>F (10)

are satisfied for 0 < i < 4 and all [x| > y, where 0 <
B<al2
We decompose e(t) ase(t) = e+e(t), where e is the average

of e(t) and é(t) has zero mean value. Thatise = fol e(s)ds and

Jol é(s)ds = 0. If we write that A = B + ¢e, then it is easy to
see that A and B have the same sign when 0 < ¢ < &* with
0 <e&* < |Bfel.

Now we state the main results of this paper.

Theorem 3. Assume that B#0 and (A1)-(A2) hold. Then
there exists an 0 < €** < € such that for any 0 < ¢ < &7,

every solution of (8) is bounded if and only if B > 0.

Theorem 4. Under the conditions of Theorem 3, there is an
& > 0 such that, for any w € (n,n + &), (8) has a solution
(xw(t),xl'u(t)) of Mather type with rotation number w. More
precisely:
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(i) if w = p/q is rational, the solutions (x,(t + i),x('u(t +
i)), 1 < i < q -1, are periodic solutions of period g;
moreover, in this case

lim min (|xw )] + 'x(’u (t)|) = +00; 1)

w—nteR
(ii) if w is irrational, the solution (xw(t),x(")(t)) is either a
usual quasi-periodic solution or a generalized one.

We recall that a solution is called generalized quasi-periodic
if the closed set

{x@),x' (i),i €z} (12)
is a Denjoys minimal set.
2. Reversible Systems

and Action-Angle Variables

In this section, we will assume that B > 0 and A > 0. Firstly,
we consider (8) which is equivalent to the following system:

x=z+P(t),
(13)
z=-Alx|"'x—ee(t)|x|*'x - f (x) z+ P (1)),

where P(t) = fot p(s)ds. Then we can obtain that (13) is rever-

sible with respect to the transformation (x,z) — (-x,z) by
(Al).

Lemma5. There exists a G-invariant diffeomorphism (x, y) —
(x, 2) such that (13) is transformed into the following system:

x=y+eE®)|x|*x+P(t),

y=-Alx|*'x
~[aE@ 15"+ F )] [y + E@ 15" x+ P ()]
(14)
where E(t) = — _[Ot e(s)ds.
Proof. Introduce a transformation ¥:
X=X, z=y+U(x,t), (15)

where U(x, t) will be determined later. Under this transfor-
mation, the system (13) is transformed into a new system as
follows:

X=y+U(xt)+P(1),
y = —Alx|*x —ee(t) x| x

aU (x,
—<f(x)+#>[y+U(x,t)+P(t)]

oU (x,t)
ot

(16)
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Now, we define the function U(x, t) by

B ou (x,t)
o

—ee (1) |x|* 'x 0. 17)

Since IOI e(t)dt = 0, so we can obtain U(x,t) = eE(f)|x|* ' x.
Then the new system can be expressed as in (14) by direct
computation.

It is easy to know that U(-x, —t) = U(x, t) by (Al), then
we can obtain that the transformation ¥ is a G-invariant
diffeomorphism. O

Let us consider the auxiliary system

xX=y,
3= -Alx|*x, 1

which is a time-independent Hamiltonian system with Ham-
iltonian

2
A
y? L (19)

Ho(x’)’): atl

It is easy to see that Hy(x,y) > 0, (x,y) € R*\ {0},
H,(0,0) = 0. Note that each level line Hy(x,y) = h > 0is
a close orbit of system (18), hence, all the solutions of (18) are
periodic with period tending to zero as 4 tends to infinity.

Assume that (S(t), C(t)) is the solution of (18) with initial
conditions (5(0), C(0)) = (0,1),and let T, > 0 be the minimal
period. We can find that S(¢) and C(¢) satisfy

(i) S(t) € C*(R), C(t) € C'(R);

(i) (S(=t), C(=t)) = (=S(t), C(1)), (S(t + Tp), C(t + Tpy)) =
(8(1), C(#));

(iif) $(t) = C(1), C(t) = —AIS()|*7'S(t);
(iv) (1/2)C*(t) + (A/(e + 1)IS(B)* = 1/2;
(v) C(Tyt) = 0 & t(mod(1/4)) = 0;
(vi) (S(Ty(1/2 = 1)), C(Ty(1/2 = 1)) = (S(Tyt), ~C(Tyt));
(vii) S(Tyt) = 0 & t(mod(1/2)) = 0.

Then we introduce the transformation

O: R"xT — R*\ {0},

(ho) — (n7) (20)

which is
x = p'S(¢Ty),
y=p'"C(gTy),
where b = 2/(3 + ). It is easy to see that 1/2 < b < 2/3
by 0 < a < 1. Since (S(-t),C(-t)) = (=S(t),C(t)), this

transformation is invariant with respect to the involutions
(p,9) — (p,—¢) and (x, y) — (-x, y), and we can find that

(21)

the mapping @ is a generalized canonical transformation by
(iv). In fact,

‘8(& y)
2(p.9)
= |AbT,|S (¢T,)[*"" + (1 - b) T,C* (¢Ty)|
+1
-|a-o1 - Lene (o1) + (1 -0 T (o)
=(1-b)T,,

(2)-(ar %)(3).

where d = (1 -b)T,)".
Under the transformation @, the system (18) is trans-
formed into the simpler form

(22)

Com_ o _am_ 1
T, P

where hy(p) = (2 - 2b)T,) ™" - p?* 70,
The original system (13) is transformed into the system

dp
= =~ (pe)+h(pe.t) el (po.t)

+aTy|S (9Ty)|" ' C(@Ty) el (prprt),  (24)
Z—‘f =hy (p) +hy (p.9) + by (pogot) + s (pogut),
where
L (p9) = =dTopf ('S (9Ty)) C (9T,)
=i —dx, f (x) y,
L (p,¢:t)
= —dTyep” ™ £ (p"S (9T))
x[S (@To)|*'S (9T,) C (9T, E (2)
+ AdTop' ™IS (9To)| 'S (¢To) P ()
—dTyp" f (p°S (¢T,)) C (9Ty) P (1)
=t ~dex, |x|"" xf (x) E(t) - dy, P (t) = dx, f (x) P (1),
L (. 9. t) = AdTop* | (9T, “E (®)
=t ~dy,|xI*xE (1),
Iy (p, 9, t)
~dp* ' C (pTy) E (1)
— dep*™®|S (¢Ty)|*'S (¢T,) E* (1)

—dp”*P(t)E(t),



hy (p,g) = dbf (p"S(¢T,)) C(9T,) S (9Ty) =: dx, f (x) ,
hy (p 1)
= dbep™ f (p"S (¢T;) ) S (9To)|"E (1)
+ adbe’p” IS (9Ty)["E* ()
+d(1-b)p"C(@T,) P (t)
+dbp" £ (p"S(T,)) S (9T,) P (1)
+ adbep' S (9T,)|* 'S (9T,) E (1) P (1)
=: dex,|x|7 xf (x) E (t) + ade’x, |x[**xE’ (¢)
+dy,P (t) +dx, f (x) P () + adex,|x|*'E (t) P (1),
hs (p,9:t)
=d(1-b+ab) p> S (¢Ty)|" 'S (¢T,) C (¢T,) E (t)

= dy,|x|*"'xE (t) + adx,|x|*” yE (t).

(25)
Let
Ly(p.pst) = L (ppot) + el (p, 9, t)
+ T[S (9To)|* C (9Ty) ly (pr 9, ),
H, (p.¢:t) = hy (p. s t) + ehs (pr s t).
(26)

Clearly, x is odd in ¢ and y is even in ¢ by the definitions of
S(t) and C(t). Thus, by the evenness of P(t) and the oddness
of f(x)and E(t) we have

Ly (p:—¢.—t) =Ly (p:p:t),

H, (p,~¢,~t) = Hy (p, ¢, ) .
(27)

L(p—9) =L (p.9),
hy (P’ _‘P) =h (P"P) >

This implies that system (24) is reversible with respect to the
involutions (p, @) — (p, —¢).

Lemma 6. For 0 < k +m < 4, the following inequalities hold:

) 1@ /0", (p, @)| < CpF+2r= /28,
(2) 1@ /3p" 0t ™l . . )] < Cp ™,
(3) 1@ 19p* 0t™) L5 (p, @, 1)| < Cp*37%,
(4) 105" 1p" 3t ™l (p, @, )] < Cp 7%,
(5) 1(0*/0p")h, (p, )| < CpFH171= 0128,
(6) 165" /2p* 3t hy(p, 9, 1)] < Cp ™,
(7) 1@ 3p" 0™y (p. g, 1) < Cp* 7,

wherey = b, a = max(3—-(9/2)b—v,1-b), and T = max(3 -
6b, -b).
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Proof. (1) It is easy to know that (E)k/apk)l1 (p, @) is a sum of
terms of the form

ailx aiz ai3
g2t TS Ty k@9

where 0 < ij,iy,i; < k. Meanwhile, 32 f(x)/dp”> is a sum
terms of the form

(29)

Hence, we obtain
k

ap*

Lpo)|<Clpx-p™f(x)-p "y

<Cp - |x- £ () -yl < Cp x|
< Cp kG

(30)

by the assumptions on f(x) and the definitions of x(p, ¢) and

y(p> p).
(2) From the expression of I, (p, ¢, t), we have

3 (~dex, |x|*" xf (x) E(t))

opkot™
O (—dex, |x|* " xf (x)
<C ( 4 - f ) |E(m) (t)|
dp
< Celp™x-p 2 f (x) - p™ 7
< Cep ™ |x- f (%)
< CepkHarobI2,
I (dy P )] _ |3 (dyy)||d"P e
opFor™ - op* dtm
< Cp—k+1*b
I (~dx, f (x) P (1)) e O (~dx,f ())|1ap ¢
dpkot™ - opk darm
< gpkrirab,
(31
We can find that
ak+m k
——L(p,p,t)| <Cp ", 32
‘apkatmz(pfp )| =Cp (32)

where a = max(3 - 9b/2 - y,1 - b).
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(3) From the expression of I;(p, ¢, t), we have ot (—dpr (t)) <C o (d)’p) d"P (1) < Cp kb
k+m a-1 oprot™ B apk am |=F >
3 (dy, |x|* xE (1))
dpkor 3 (dx, f (x) P (1)) e O (—dx, f ()] 1a"p (¢)
- opkot™ - opk dtm
e O (dy, IxI*'x) |1 4™ (E () (33) P P
< o a < Cp—k—y—3b/2,
< Cpete 3 (adex,|x|*E (t) P (1))
apkorm
(4) From the expression of [,(p, ¢, t), we can obtain that P
k 2 200-2 m
F, (o) o (adex, I *x) || ™ (B (1) P (1)
# apk drm
opkot™
—k+1-3b
" (~dp™C(9Ty)) | |a™ (E () =Cep ™
<C o e (36)
. ok (—dpzf%) 4" (P (1) E (1)) Hence, we can know that
! o de ’ o oot < o 37)
Tk pet)=Cp
[P (e s T s o) | |7 (2 ) oo
opk dem where 7 = max(3 - 6b, -b).
i (7) From the expression of /1;(p, ¢, t), we have
<Cp .
k+m
(34) ‘Wha (pp:t)
(5) From the definition of h, (p, ¢), we have .
. 3 " (d(1-b+ab) p> S (¢T,)|"' S (¢T,) C (9T,) E (1)) ‘
a - ky¢m
a_pkhl (p» G")I oot
; : : 0 (d (1 - b+ ab) P> S (¢T,)|*'S (¢T,) C (9T,
<Clp™ xp T f () p Ty (35) <C [d0-brab)p laf,(f Il 96T oT:)
<Cpt e £ () y] < Cp NPy )
< Cp—k+1—y—(5/2)b‘ ol ‘
(6) From the definition of h,(p, ¢, t), we can obtain < Cp
(38)
9 (dex,|x|*" xf (x) E (1)) N
kAy¢m
op~ot For A, > 0, we define the domain
ak d a—1
<C ( xpl’;l . xf () |E™ (1) ), ={(he.t) : A2 Ay, (pit) € T} (39)
P
i i abei Lemma 7. There exists a G-invariant diffeomorphism ¥,:
SCs|p‘ x-p2f(x)-p 3|
< Cep ! |x - f ()| p=I+Ui(L0), ¢=0 (40
< C8P7k+2*y*9b/2’ such that o+ < ¥\ (o) ¢ o forsomeI_ < I, < I,. Under
o ( ) s o ) this transformation, (24) is transformed into the system
0 (ade”x | x| “xE” (t)
P
pkor % T (1,0)+T, (1,6, 8) + €, (1,6,1)
ak d 2 2002 am E2 t . _
e gplxl o (dtm( ) FaTy|S (0T)* C(0T,) , (1,6,1), (4D
P
< Cep*H o, % =hy (1) + hy (1,0) + h, (1,6,t) + ehy (1,6, 1),
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where
vy (p ) vy (p: )
I) = : > > 5
1, (1,0) dp L (p. o) " hy (p, )
L(1,6,6) =L (p. g, 1)
v, (p.9)
+ == (b (popot) + s (po 1))
p
vy (p: ¢)
+ la—q; ~(hy (P t) + hs (p, 9it))
+e(ls (ppot) =15 (1,6,1))
L (1,6,t) = 1, (1,6,t),
—_~ aV bl
I, (1,0,t) =1, (p, 1) + % 1 (ppit)
El (1,0) = h(’) (p) - h(,) (D) +hy (p,9),
hy (1,6,1) = hy (p, 9, t) + & (hy (p, 9, t) = b3 (1,6, 1)),
hy (1,6,1) = hy (1,6,1),,
(42)
with
21, (p>s)
Vi (ps9) = —J : ds. (43)
1 o H(p)
Proof. Define a transformation @, by
O :I=p+Vi(po), O=¢. (44)
By
L(p—9) =1 (p.9)>
a—kl (p )| < Cp 216 g<k<4 )
apk 1 P’ (P = P > = = 5
we get
Vi(p:=9) = Vi (p:9), (46)
o~ —k+1-y=b/2
—Vi(po)|<Cp : (47)
dp

Let ¥, = CI)I1 :p=1+U,(I,0), ¢ = 0. The system (24) is
transformed into (41). O

Lemma 8. For I large enough, the following conclusions hold:
(i) 10U, (I, 0) /1| < CI*+ 17472,
(ii) U,(1,-0) = U,(1,0).

Proof. In view of

I=p+Vi(p9), p=I1+U(L,0),  (48)
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we obtain

U, (1,6) = -V, (I+U, (1,6),0). (49)
By [(3"/9p")V,(p,9)l < Cp ™' 7V7/2, we have |(3/9p)V; (p,
@)l < Cp "2 < 1/2 for p large enough. Hence, U, is
uniquely determined by the contraction mapping principle.

Moreover, U,(-,0) € Cm(ﬂlo), for some I, > 0, as a
consequence of the implicit function theorem and

2o a,6)<c. (50)
Above all, if k = 1, from (47) and (49), we get

v,
ol

oV, /op I S —1+1-p-b/2\"*1
GNP o ¥(c Y
1+0V,/ap <;)( P )
SC 71+17y7b/2

: (51)

_C. I—1+1—y—b/2<1 N %

>—1+1—y—b/2
<C. bR
We note that

ou, (1,e) 3V, (I+U,(1,6),6)
ork oIx ’

and the right side hand is sum of the term

(52)

ov, M (1+U,) I (I+U)
op° oIk oIk
where 1 < s < k, kj +---+k, = k k; > 1(for1 <

i < s). The highest order term in U, isl the one with
s = 1, namely, (0V,/0p) - I + Ul)/alk). We move the
part (3V,/dp) - (8*U,/0I*) to the left hand side of (52).
Since [(9/9p)V;(p,p)| < 1/2 for p large enough, this also
provides immediately a bound on 9*U,(I,0)/dI*. The rest
part |(3V, /dp) - (9°1/a1%)| < CI*+1-v0/2,

Now, we proceed inductively by assuming that for j < k—
1 the estimates

(53)

>

la]Ul (I’ 6) < CI—j+1—y—b/2 (54)

ol
hold and we wish to conclude that the same estimate holds
for j = k.

Indeed, if s > 2, we have

v, M (I+U) 9N (1+Uy)

o Ak oIk
<C-(1+U,) YR e ke (55)
<. kb
by
W‘S(Hm, 1<j<k-1.  (56)

This proves (i) of Lemma 8.
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Now we check (ii). In fact, since
U, (I,6) = -V, (I + U, (I,6),,6),

(57)

U, (I,-0)=-V,(I1+U, (1,-6),6),

we have

1%
U, (1,6) - U, (I,-0)| < sup || |U, (1,6) - U, (I,-6)|.
1=, aP

(58)

From (47), we have [(0/0p)V;(p,¢)| < 1/2 for I > I suf-
ficiently large and therefore we obtain U, (I,0) = U, (I, -0).
O

By the estimates in Lemma 6, we can prove the following
inequalities.

Lemma 9. For 0 < k + m < 4, the following inequalities hold:

(1) |3 /31MVT, (1,0)] < CI++22r-3%,

(2) 1@ for*at™ (1,6, )| < CI ™",
(3) 1@ [oI*0¢™ L3 (1,6, )| < CT**7%,
(4) 1" for* at™)I,(1,6,0)] < CT**%,
(5) |(8*/oI")h,(I,0)| < CI7*+1-v=(/2)b,
(6) 19"+ [o1*9t™h,(1,6,1)] < CT*T,
(7) 1@ [3I*0¢ ™)y (1,6, )] < CI™F>7,

Proof. (1) From the estimates (1) and (5) of Lemmas 6 and 8,
it follows that

ak
—1,(I,0
S )‘
o (v, (p.9) RERCALY)
l >
: a1k< o) | 415\~ T (pe)
<C ale (P ® H ailpzb—l ai2ll ai3h1
B 11+1z—k aI’lap or® 11+12+13—k oI oI oI
s+1 T 7
<cy < y 9 Vls(f,sv)a (Ile)_”a (I':Ul)>
ip+ip=k \11++75=i) ap orm oI
921,
ol
Pt (14U 9 ( )
+C ) < Y - L2 -
iy tiz=k \T)+-+Tg=ip ap oI oI
921, 9 h,
oIz oI’

< Cp—k+2—2y—3b < ¢k,
(59)

7
(2) Since
L(1,6,t) =1 (p, . t)
V. (p,
- TP (1 (prgut) ey ()
+—§—2@@@wumm%m
+e(ly (ppot) = 15 (1,6,1)),
(60)

we can prove that

o™ oV, (p, )
orkom dp

‘@@wﬂ+%@wﬂ»‘
<C I—k+a ,

o™ oV, (p, )
orkot™ o¢

‘Wﬂﬂ%ﬂ+mﬂﬂﬁmﬂ (@)

<cre,
oktm
arar ™
Their proofs are similar to the proofs in (1).
Next, we check the last part of 1,(I,0,t). We get

I—k+a‘

(ppot)] <

k+m

— I;(1,0,t

(L (pg.t) -

k+m
:‘ g (Jlal (I+sU,(1,0),6,t)-U, (I,6)ds>

oIkt op
1 i +m iy

SJ a- (813(I+SU1,0,t)>’ 0 Ul ds
0 itk orot™ op oI~

1
<sc| Y @y,
0 i +i,=k
< QIR ke
(62)
by the estimate in Lemma 6 and the definition of a.
(3) It is clearly by (3) in Lemma 6.

(4) It is clearly by (4) in Lemmas 6 and 8.
(5) We have that

Ry (1,6) = hy (p) = hy () + 1y (p, 9)
ak+m , ,
‘W (hg (p) = hy (I))‘

ok+m Jl d*hy (1 +sU,)
= |ararm dp?

(63)

U, (1,9) ds)l

< CI*2Hvb/2 _ opkely-sbj2,



From the last inequalities and (5) in Lemma 6, we obtain

ok~ ktleye
S @o)| <cr frloy=(5/20, (64)
(6) Since
hy (1,6,t) = hy (p, @, t) + & (3 (p, @, t) = b5 (1,6, 1)),
akih ( 1) <crke
oIkorm 2 prpt = ’
(65)
we just have to prove that
aki(h (p,p,t) —hy (1,6,1))| < CI**T (66)
arkgem © 3PP Y TR RS '
In fact,
k+m
o (13 (p, 9. t) = hs (1,6,1))
_| <Il s (145U, (1,6),6,6)-U, (I 9)ds>
= aIkatm 0 ap 1 > »Us 1 >
< Jl o™ (ohy (I+sU,,6,t)\||0°U,
“Jo Lk oI otm op or: |
1 , ,
<c| Y vy
0 +iy=k
< CIRrORb ok
(67)
so we have proved (6).
(7) We have
akl’i% (I1,6,1)| < CI ¥4, (68)
oIkot™
by (7) in Lemma 6. ]

3. The Proof of Boundedness

In this section, all the solutions of (8) which are bounded
will be proved via the KAM theory for reversible systems
developed by Sevryuk [21] or Moser [22, 23] if B > 0.

We define the functions #y, #;, 1, 43> &1, &, and &5 as

1
o (1) = M’

B hy (1,6)
hy (1) () (1) + By (1,60))

m (1,0) =

n, (1,0,t)
=—(h, (1,6,1))
x ((hy (D) + 1y (1,6))

x (W, (I)+hy (1,0)+h, (1,6, )+h; (1,6,1)))
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13 (1,0,1)
=—(hy (1,6,1))
x ((hy (D) + 1y (1,6))
x (W, (1)+R, (1,0)+F, (1,6, )+l (1,6,1)))
£ (1,6,0) = (I, (1,0)+L, (1,6,1))
(o (D41, (1,0)+1, (1,6, 8) +en; (1,6, 1)),
& (L6,t) =15 (1,6,1)
(o (D) + 1y (1,6) + 1, (1,6, 8) + en3 (1,6, 1)) ,
£(1,0,t) = 1, (1,6,1t)

(1o (D +1, (1,0)+1; (1,6, t)+en5 (1,6, 1))

(69)
Then system (41) is equivalent to the following system:
dt
a5 "o (I) + 1, (I1,6) + 17, (1,6, t) + en5 (1,6, 1),
% =& (10,1) + €5 (1,6,1) (70)

+ TS (OTy)|*"'C (8T, &5 (1,6,1).

In addition, one can verify that system (70) is reversible
with respect to involution G : (t,I) — (-t,I).

Then some estimates on the functions #; (i = 0,1,2,3)
and &; (i = 1,2,3) are given.
Lemma 10. The following inequalities hold:

1) cI? ' < o (D] < crv!

(2) |3 /a1*)y, (1,0)| < CI*1-1+3/2,

(3) |(ak+m/alkatm)’12(1, 6, t)l < CI*k+T+4b*2)

(4) 185" /ar* 0™ ), (1,6, 1)| < CI ™,

(5) |(ak+m/a[katm)£l(1) 0,t)| < C ka1

(6) 10" OT"0t™)E,(1,6,1)] < CTF272,

(7) 1@+ jo1*0t™)E,(1,6, 1) < CI™** 2, for0 < k+m <
4,

Proof. (1) It is clear.
(2) Note that 1 —2b > 1 -y - 2b/5, and

|}~11 (1, 9)| < CII—Y—(S/Z)b) -
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it follows that
| (D) + Ry (1,6)| > ||y (D)] = [y (1,0)|

> [ (1) = [y (1,6)

s L 1 712 _ oy (/20 (72)
0
> CII—Zh
asl > 1.
Moreover, we also have
' al d -
i (B (D +R (1,0))| < +|5pm (10)
< CI—I+172b + CI*I‘F]*Y*(Z/S)E)
< CI—I+172b'
(73)
So
A S S
oI' \ hjy (I) + hy (I,0)
—1)%¢!
< c ( E) = s+1
Ll | (B (1) + By (1,6))
oh (74)
‘al (o (D) + Ry (1, 9))‘
al
‘aﬂ (o (1) + Ry (1, 9))‘
<C Z JEb-D(s+D) | p-i+(1-20)s < Ccrivt
I+ 4l =i

From (72) and (74), it is easy to see that

ak
ﬁ’h

(I>9)‘

REl < By (1,6) )
ok \ (1) (h(’) (D) +hy (1,0))

<C )

iy +i,+iz=k

ap 2, 9)’

o7 (e o (s
oI \ hy(I) J| oI \ h) (I) + h, (I,6)

<C Z i Imy=(2/5)b iy =142b p—is=142b

iy +iy+iz=k

< ke,
(75)

9
(3) We have
ak+m
T ——— T, (I,6,1) < CI™*"7,
(76)
ak+m k+2— 4b
TG mh3 (L,o,n| <cr™

By (72),1-2b > 7 (7 = max(3 - 6b, b)) and 1 — 2b > 2 — 4b,
we have

| (D) + By (1,6) + iy (1,6, ) + £y (1,6, 1)|
> ||y (1) + By (1,60)] = |y (1,6, 1) + hy (1,6, 1)

> |hy () + y (1,6)| - |y (1,6, 8)| - £|hs (1,6,1)]

Il—2b

>cI" —CI" - Cel”™ > ¢

>

(77)

forI > 1. B B B
Let h('](I) + h(1,0) + hy(1,0,¢t) + ehy(1,0,t) = H(I,0,1).
We find that

ca 1
O\ (W) (1) + iy (1,6) + Fy (1,6,6) + ey (1,6,1))

(=1)'r!
_— H(I,0,t
i1+Zﬂ 2 (H(I 9 t))s+1+r at’ ( ( ))
al
|5 (H 1,6,0)
<C Z I(zb—l)(s+1+r) _8r1(2—4b)r < CI(zb—l)(s+1)

iyt =l
(78)
SO
ak+l

1
orot! < (1) + by (1,6) + hy (1,6, ) + ehs (1,6, 1) )‘

o (-1)%s!
= M<w;kwaem“'w(H”6m
-MAHUGWN
o0 (1!

<C )

iy tetig=k jotji et =l

oth (H (1,0,t))"!

‘mm(Haem

oIhot’

als+15 9

A== (HU,0,t
g HT:0.1)

<C Z I(2b—1)(s+1) . I—(i1+-~~+i5)—(1—2b)s < CI_k+(2b_1).

iy +eetig=k

(79)
When m = 0, the proof of (3) is similar to the proof of (2).
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When m > 0, then
‘ k+m

—n, (1,0,¢

h, (1,6, 1)

0"
or’ <h(,) (I +E1 +7’2 +8713 ))I

0", (1,6, t)

<C

iy +iy+iz=k [ +L,=m

oI’

ak+m
oIkotm ( (hp (D)+hy (1,6)) (Hy (1) +hy +hy +hy)

o o~ 9"
<C e _h .
o™ < L 9rh 2
iy +iy+iz=k

(o)
h (1) +hy

1

oI oth

ai3+lz

1

o"
m”<hMD+EML®>‘

1

)

oI30th

(

h6(1)+f11+712+3713)

<C Z I—i1+11—i2+2b—11—i3+2h—1 < CI—k+‘r+4b—2.

iy +i,+iz=k

(4) The proof of (4) is similar to the proof of (3).
(5) Let o (I) + 1,1, 0) + n,(1,0,t) + 8113(5 0,t) =n(I,0,1).

By using the estimates on the functions ; (i = 1,2) and

1; (j =0,1,2,3), it follows that

ak+m

21,0,
ararn ot 100

(80)

<Cl=—
ot™

ky+kp=k

<C )

ork:

NI, (1,6) %™ (n, (1,0, t) + en, (I, 6, 1))

oIk

ky
kimek| Ol

+CZ

l+ky=k mytmy=m

oIk2gtm

ak1+m172 (I, 6, t) . akz+m2 (,1 (I, 6, t))

oIk1ot™

oIk20t™

am( 5 o (1 (LO)+ L, (1,6.0) 3 (w,e,o))‘

< oI farr=6/2b | ( [Ratrab2 sIﬁkz) s orhira havab-l

< CI—k+a+2b—1

>

when m #0.
When m = 0, then
ok

ﬁgl (I’ 6) t)

<C )

(81)

0" (L (LO) +L (1,6,1)) 3 (5(1,6,1))

ky+e, =k

<C (I—k1+2—y—(5/2)b + I_k1+a) . I—k2+2b—1 < CI—k+a+2b—1

bya >2-y-5b/2.

oIk

oIk

(8’2)
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(6) By using the estimates on the functions I, and #; (i =
0,1,2,3), it follows that

ak+m

—& (1,0,t
|M@m@( )

IEL 5 3 (1,(1,6,0)) 9 (n(1,6,1)
S\ s oIk oIk

I (1,6,8) ok (5(1,6,1))
oIk otm oIkot™

<y ¥

Ltk,=k my+my=m

< CI—kl+3—4b . I—k2+2b—1

< CI—k+2—2b
(83)

(7) By using the estimates on the functions I, and #; (i =
0,1,2,3), it follows that

| ak+m

—& (1,0,t
aIkatmE:i( )

otm oIk ork:

o < " (L(,0.0) 9 (y(1,6,1) >|
ky+ky=k

I (1,6, 9% (n(1,6,1)
oIk ot™ orkot™

ey ¥

L+, =k my+my=m

< CI_k1+3_4b . I—k2+2b—1

< CI_k+2_2h.
(84)
Lett =t,0 =0,r =n,(I) and
FO (r,@) = 7]1 (I (T") >6) >
F (r,0,t) =1, (I(r),0,t) +en; (I(r),0,t),
Ey (0,0) = 1, (1) - (6, (1 (1), 0,0) + €&, (1 (1) ,6,1)),

Ey (r,0,t) = eny (1 (1) - & (I (r),6,1),
(85)

where I(r) is the inverse function of r = #,(I).
Then system (70) is transformed into the following form:

dt
20" +F, (r,0) + F, (r,0,1),
% =F(r,0,1) + ocT0|S (9T0)|DHC (0T,) - F5 (r,6,1).

(86)

Moreover, one can verify that system (86) is reversible with
respect to involution G : (¢, 1) — (—t,r).
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It is easy to see that I > 1 if and only if > 1, and the
solutions of system (86) do exist on 0 < 8 < 1 when 7(0) =
r> 1.

By using the estimates on #; and & (i = 1,2,3) in
Lemma 10, the following inequalities can be proved.

Lemma ll. For 0 < k+m < 4 and r > 1, the following
inequalities hold:

(1) 10" /07" Fy(r, 0)] < Crri-trsrmstiayab,

C(i’_k+ (T+4b-2)/(2b-1)

(2) [@“™ /ar*ot™ F,(r,0,1)] < .
sr‘k),
(3) |2 [orkot™ Ey(r,0,1)] < C(r <@td-3/Cb-1

er® ),

(4) |(@F*™ jorkot™)Fy(r, 0,1)| < Cer™™.

Proof. Above all, we know that r = ,(I) = T,I***, so we can
getl = ((l/To)r)l/(bel). Then we have

d_jl < ¢ @D
dri| ™ ’
i i 1-1/(2b-1)
gy (I (r)) - d’ (r ) < It Eb-DIb-)
drl - drl - ’
(87)
(1) We have that
o*F, (r,0)
ork
§ Oy (LO)| |dor|  |db1
s k k
Py Y orI¢ drk dr*s (38)
< O[S 173/ K (1/2b-1)s
< CpSU/@b=1)=(14y=(3/20b)/(2b-1)  ~k+(1/2b-1)s
< Cy k-G @b-1)
(2) We have that
OF*™E, (r,0,t)
orkorm
cc y [mdondr 1
o= orsorm  drh drks
et (89)
oo 3 [TmGends i
e orot™  drh drh
Jutetiy=k

<C (r—k+((1+4b—2)/(2b*1)) + srik).

1

(3) We have that

oK™ E, (r,0,1)
orkorm

» dhinl (1(r))

drk:

ky+ey =k

(TEUM),00)
ork:opm

LU, 0,0)
orkopm
<C Z r—k1+(2b—2)/(2b—1)
ky+ky=k

i +etig=k, aIsatm drll d?”s

orotm  dri dris

e Y

R

av+mE2 (1,6,1) ﬁ dij >

< Cr—kl+(2b—2)/(2b—1)r(l/(2b—1))(—s+u+2b—1)r—k1+(1/(2b—1))s

+ Csr—k1 +(2b-2)/(2b-1) 7,(1/(217—1))(—v+2—217) r—k1 +(1/(2b-1))v

< Oy kHarab-3)/Qb-1) | ok
(90)

(4) We have that

K™ E, (,0,1)
orkotm

drki ork:otm

y dny (L(r) (akz*”“s3 (I(r),6,0) )‘
ky =k

< Ce Z T_k1+(2b_2)/(2b_1)

ky =k

3y TSLendT 4
orsot™  drh  dris

i +etig=k,

< Cer®.

o1
O

Lemma 12. The time 1 map ®" of the flow ®° of the system
(86) is of the form

Q' i1 =r+Q,(rt), t,=t+a@(r)+Q, (r1),

(92)

where &(r) =r + IOI F,(r,0)d0. And there exists a y, > 0 such
that, for 0 < k+m < 4, sufficiently large r and sufficiently small
&

ak+m

i =1,2 93
arkarm ' ©3)

<Crt 4g

Q; (r,t)
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hold. Moreover, the map @' is reversible with respect to the
involution G : (t,r) — (=t,7r).

Proof. Since
! a-1
JO T[S (6T,)|"  |C (6T,)| 46
1/4 .
- lim j oT,[S (6T,)|* " C (6T,) do
e—0" Je

1/2
- llm J
1/4

13/4 oTo[S (0T,)|""C (6T;) do

1/2

ocT0|S (0T,)|*"'C (6T,) d6

T ——
[s (%) s (%) - mmlster s er)
s((5-¢)m)[ s((5-9)n)
BN ()]
[R5 (F)
s((5+e)m)l (5 +)m)]

+ [ lirrol+|S (1-e)Ty)| 'S ((1-e)T,)

S

—[lim

e—0"

— lim

e—0"

(94)

then we get fol oT,|S(OT,)|* ' |C(OT,)|d0 is bounded.

Let ocTOIS(vTO)I"‘*lC(vTO) = §5,(v). Set (r(0),t(0)) =
@ (r, ) with @° = id for the flow:

t(@) =t+1r0+ D, (r,t0), r(0) =r+ D, (r,t,0).

(95)

Since

0
o =0’ + j X - ®’dv, (96)
0
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where X denotes the vector field of the system (86), we
have

£0) =t
)
+ J [r (V) + F, (r (v),v) + F, (r (v),0,t (v)] dv
0

=t+r0
0
+J [D, (r,t,v) + F, (r + D,,0)
0

+F, (r + Dy,v,t +rv+ D)) dv
=t+r0+ D, (r,t,0),
r@) =r

)
+ J [E, (r (v),v,t ()
0

+S, (V) F5 (r (v),v,t (v))] dv

o
+J [E, (r + Dy,v,t + rv+ D)
0

+S; (V) F; (r + Dy,v,t + rv + D;)] dv

=r+D,(r,t,0),
(97)

which is equivalent to the following equations for D, and
D,:

0
D, (r,t,0) = j [D, (r,t,v) + F, (r + D,,0)
0
+F, (r + Dy,v,t + rv + Dy)] dv,
0
D, (r,t,0) = j [E, (r + Dy,v,t +rv+ D)
0

+S; (V) F; (r + Dy,v,t + rv + Dy)] dv
(98)

Let D(T, tye) = (Dl(r> t,e),DZ(T’, t’ 6)): |D1(r> t’6)| =
supesoe  |Dy(r,t,0)|. Define |D|| =: |D,|/3 + 2|D,|/3, and

(RTxTx(0,1])

T(D) =: (T1(D), T,(D)), where

0

T, (D) = J (D, (r,t,0) + Fy (r + D,,v)
0

+F, (r + Dy,v,t + rv+ Dy)] dv,

0

1,0 = [ B+ Dyt +reD)
0

+S, (V) F; (r + D,,v,t + rv + D, )] dv.
(99)
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Next, we will prove that T is a contraction map. From the
definition of T'(D), we have

|T,D - T,D|

0
L[DZ—52+EKr+Dpv)—EKr+D»

+F, (r+D,,v,t +rv+ D)

-F (r+ D,,v,t + rv+51)] dv

<|D,- D,
1|0F, (1’+S(D2 —52),0)
+J0 or

. 'D2 —52|ds

1|0F, (r+s(D2—52),v,t+rv+Dl)
+J0 or

. |D2 - 52'(15

J'l OF, (r+52,v,t+rv+s(D1 —Dl))‘
+

0 ot

-|D1—51'd5
<2|p,- D+ ;|p - B,
|1,D - T,D|

0
:J [F2 (r + Dy, v, t +rv+ D)
0

—Fz(r+52,v,t+rv+51)
+S, (V) F; (r + Dy,v,t + rv + Dy)
=S, W) F; (r+ Dy, v,t + rv+ Dy )| dv

OF, (r+s(D2—52),v,t+ru+D1)
ar

1
SJ
0

. .Dz - 52| ds

1
+~[
0

OF, (r+52,v,t+rv+s(D1 —51))‘
ot

. |D1 - ﬁl'ds
1
+ J |S1 (v)| dv
0

. JOI

. |D2 - 52| ds

OF, (r+s(D2—52),v,t+rv+D1)
or

13

1

+ J S, (v)| dv
0
1|0F, (r+52,v,t+rv+s(D1 —51))
.Jo ot
: |D1 —51|ds
< 23—0|D2—52'+é|D1 -y,

(100)

by Lemma 11 and the boundedness of _[01 |S; (v)|dv. Then we
have

|r@)-1(D)|
-1 ()] 201, (5)
< % x<g'D2—52|+zll'D1 —51|>
+2x(S =B+ 5 |p-B) o
=D, -By[+5|p:- B
<2x(3Ipi-Bi|+2|p,- B
3
< 1 “D—D",

by the definition of the norm | - |

Using the contraction principle, one verifies easily that
for r > r,, (98) has a unique solution in the space {|D,| <
1,|D,| < 1}. Moreover, D, and D, are smooth.

Next, we will estimate Q, (r, t) and Q,(r, t) as follows:

1

Q. () = D, (1,1) - j Fy (rv) dv

0

= Jl [Dz (r,t,0)
0

J’1 OF, (r + sD5,v)
+ —

-D,d
0 ar Zs

+F, (r + Dy, v,t +rv + Dy) | do,
Q, (r,t) =D, (r,t,1)
1
=J [E, (r + Dy,v,t + rv+ D)
0

+S; (V) F; (r + Dy,v,t + rv + Dy)] dv.
(102)
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In order to prove (93), we just need to prove that

k+m
orkotm

hold for k + m < 4.
(1) When k +m = 0,

|D, (r,t,0)]

<Crt4+Ce i=1,2 (103)

——D; (r,t,0)

0
< J (|F, (r + Dy, v,t + 1o+ Dy)|
0
+[S; )| |F; (r + Dy, vt +rv + Dy)|) du
1
<C (r_l/‘o + s) + J |Sl (v)l dv - (Ce) < C(r—l‘o + 8) ,
0

|D; (r,t,0)|
< |D, (r,1,0)]

6
+ J (|Fy (r + Dy, 0)| + |Fy (r + Dy, 0,t + rv + Dy )|) dv,
0

0
< |D2 (r> t, U)l + J (Cr’ip'o + Cr-ﬂuo + CS) dv
0
< |D2 (i’,t,9)| +C(r*+e)<C(rt+e),
(104)

where y, = min((1 +y - 3b/2)/(2b-1),(2 - 4b - 7)/(2b -
1),3-4b-a)/(2b-1)).

(2) When m = 0 and k # 0, we check the case when k = 1
firstly

aD, (r,t 6) ’

SL

OF, (

22Y

or
.<1 . ‘aD2 (r,t,v)

or
)
g
0

) dv
OF, (r + D,,v,
ot

.(1+’8D1 (r,t,v) >dv

or
Jl |Sl (U)|dv~ Je ‘aF3 (T+D2)U,t + 71U+ Dl)
0

or
'<1+ oD, (r,t,v) )dv

+JI|S1 (v)|dv.r OF, (r + Dy,v,t + rv+ D))

0 0

or
ot
'<1 . laD1 (r,t,v) )dv

)

oD, (r,t,v)

<ort(rt .<1 | 2
r(r't +e) + p

oD, (r,t,v)

~Ho .
+C(r'* +e) (1+’ o
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‘BD L (r 8, 9)‘
. laD2 (r,t,0)
or
0
+j OF, (r + D,,v) '<1+laD2 (r,t,0) )dv
0 or or
N JG OF, (r+D,,v, .<1 IaD2 (r,t,v) )dv
0 or or
+J-9 OF, (r+ D,,v, .<1+IE)D1 (r,t,v) )dv
0 ot or
oD, (r,t,v)

l—aD2 (r.t, 6)I crt(r "°+s)-<1+|
or

)

_ oD, (r,t,v) >
Ho . i SR A A4
+C(r'* +e) (1+’ > .
(105)
Hence,
D) g,
oD, (r,t,0 (106)
|—gr N e,

Now, we proceed inductively by assuming that for j < k — 1
the estimates

C(r*+e),

o'D, (r,t, e)l §
. (107)
0’'D, (r,t,0) -

57 C(r*o+e),

hold and we wish to conclude that the same estimate holds
forj=k

akD2 (r,t 0) ‘
§ J OF, (r + D,, v,
0 or
oD, (r,1,0)
S - va— dv
. je OF, (r + D,,v,t +rv + Dy)
0 ot
ale (r,t,v)
‘ ’a— a
+C(r'* +e)
0" (r+D,) o (r+D,)
ky+ky =k i1+-+is=ky aril aris
Jrtetjv=ky
o' (r+ D)) 0" (r+ D)
X i ... .
orh orl»
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1
+ L lS1 (v)|dv

. J:

1
+ L lS1 (v)]dv

akD2 (r,t,v)
ork

OF, (r + D,,v,
or

dv

Je OF, (r + D,,v, D, (r,t,0)
| ’ dv
0 ot ark
+ C (7’_“40 + 8)
o" (r+D,)| 0" (r+D,)
Fey +hey =k i1 ++is=ky orh Oris
J1tetiv=ky
“ a]l aJV (
a}"jl arjv
L oD, (r,t,v)
<C 1 Ho + 9 ntv)
r(r ¢) ’ o
+C(r_/4° +8) ‘% C(T_M°+g)’
A EEAGIN))
ork
919F, D,, k
+J 0(7'+ ZU) . aDz(T,t,U) B
0 or ork
- 0" (r+D,) o' (r+ D,)
Cr™ ’ 7 B e
+ (T + 8) ) Z _ orh | o
i +etig=k
9|OF D,, v, ‘
+J 1(7’+ 2> U ' aD2(1’,t,U) .
0 or ok
9|0F D,,v, .
+J 1(7’+ 2> U ‘ aDl(T,t,U) .
0 ot 5k
+ C (7’7"40 + g)
ai1 (r+D2) ais (T+D2)
Ky +hy =k i1 +-+is=ky orh Oris
Jr+etiv=ky
o a]l aJV(
orh orh
k
M Cri(rtve)- aDz(rtv)
ork
—H l (ri t) U) -4
O re) | FC(r +e),
ork

(108)
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where s + v < 2. Hence,

akD1 (r,t G)I s e)
(109)
akD2 (r,t G)I 4 e)
(3) We can prove that
0"Dy (r,t,0) ‘ _
—— 1 <C(r'* +e),
ot
(110)

"D, (.t,0) Dglf:;’ L 0)‘ <C(r* +¢)

similarly to (2) when m #0.

(4) we have that

9’D, (r,t,0)
orot

0
SJ
0

OF, (r + D,,v,
or

_ 9D, (r,t,0)
orot

9|0F, (r + Dy, v, 9’D, (r,,0)
i L ot e |V
+C(r'*+e)
| <aD2 (,,6) | 3Dy (£,6) 3D, (1, 1,6)

or ot or
LD, (1,6) 1)
ot

1
+ J |Sl (U)| dv

0
_ J’9 OF, (r + D,, v, . 9*D, (r,t,0)

0 or orot

1
+ L |Sl (U)| dv

. Je OF; (r + D,,v, |0
0 ot orot
_ 0°D, (r,t,0)
Ho =2 "
<C(r*+e) ‘ P ‘
2
Dy (r,t, _
+C(rte +£)-|# +C(r*+e),
9’D, (r,t,0)
drot
0°D, (r,t,0) " 0°D, (,t,0)
: l prraml RASIURR N i ron
2
+C(r'*+e)- %‘ +C(r'* +e).
(111)



16
Hence,
3D, (r,1,0) _
——— 71 <C Ho ,
‘ aror | <CU )
. (112)
0°D, (r,t,0) _
— 2V <C Ho .
‘ aror | =Cre)
(5) We can prove (103) similarly to (4) for the left k + m <
4, O

Proof of Boundedness. From Theorem 1.1in [21] we can see ®'
possesses a sequence of invariant circles tending to infinity.
So, in the original system (13), there exists a corresponding
sequence of invariant tori in phase space (x, x,t) € R* x T.
Then any solution of system (13) is bounded because it must
stay within one of those tori. O

4. The Proof of Unboundedness

In this section, we will prove that all solutions of (8) are
unbounded if B < 0. In this case, A < 0.
Consider (8) which is equivalent to the following system:

X=y,
| 3 (113)
y==Alx|""x— f(x)y—ee(t) x| x+p(t).
Replacing (18) by an “auxiliary” system
xX=y,
(114)
y = Alx|*'x.

Under the transformation (21), the system (113) is trans-
formed into the form

dp _

2(1-b) ~1
dt - g (

) +h (p,o.t),

b
ST
(115)

do b R
=P G0 +a (p o),

where
G(9) = (1 - b)d + 2bdA|S (¢T,)|"",
hy (pog.t) = =Todpf (p"S (9Ty)) S’ (9Ty) C (¢T)
- Todep™ ™ |S (9Ty)|" 'S (9To) S’ (9T;) € (1)
+ Todp"S' (¢T,) p (),
3, (p..t) = bdf (p°S (9Ty)) S (¢T,) C (9Ty)
+bdep|s (o) (1)

—bdp”'S(¢T,) p (8).
(116)
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Thus, the system (115) can be written in the form

dp I 2(1-b) 2(1-b)
- @) ,
A (e2”™)

dr

(117)
d¢
t 1-2b () O( 12b)'

From the equality
1 -A 1
—CPH) + ——ISO* =2, VteR, (118)
2 a+1 2

it follows that

1
0<[S(pry)[*! < -2 119
ST <2 (1)
Hence, the function §(¢) is C', 1-periodic and change the
sign. Since |S(T, — ¢T;)| = |S(¢Ty)| for any ¢ € [0, 1], there
exists ¢, € (0,1/2) such that

a+l a+1 oa+1
|S (T, _9"1To)| = |S (‘PlTo)l T TT4A

(120)

That is, g(¢,) = g(1 — ¢;) = 0. In view of

S(Ty - 9T,) = -S(¢Tp), C (T, - ¢Ty) = C(¢Ty),

(121)
we find
gl (¢1) 'gl (1-¢,)
=—(a+ 1)2(2bdAT0)2|S (‘;PlTo)lzmq)S2 (‘PlTo) c’ (S"lTo)
< 0.
(122)

Hence, we obtain that §'(¢,) or §'(1 — ¢,) is negative. This
proves that there exists a ¢* such that §(¢*) = 0 and §'(¢*) <
0. Therefore, there are v > 0 and §, > 0 such that §'(¢) < —J,
forp € [¢* —v,¢" +v] and g(p) > 0 for ¢ € (9™ —v,9"),
g(p) < 0for¢ € (¢*, 9" + ). Let

Ho=1(p9) eR"xT:p>J0¢€p"~v,¢" +0]}.
(123)

Then, if ] is sufficiently large, on the set %, we have

1 _ 2(1-b) 2(1-b) 8 20w
_ 0) o, ,

(124)
P G(9)+0(ep" ) > 0,
forp>],¢pe¢ [(p*—v,(p*—g],
(125)

P 3(p)+0(ep' ™) <0,

forp>7],¢pe¢ [(p*+g,<p*+v].
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From (117) and (124) we obtain, for t > 0,

p (t. po> $o)
2(1-b) 2(1-b)
( 2(1 b)g Q) p +O(sp ))dt

5
> po + J?O P Vdt = py > .
0

(126)
Moreover, for p(t, py, @) > ] and @(t, py, @) € (9" —v, 9" —v/
2] U [¢" +v/2,¢" + v], we have
P15 (o) +O(5P1 2b)
=p' 7 @) (p-9)+0(p"™) (127

< —% (p-9")p ™.

From (126) and (127), it follows that any solution (p(t, p,»
©0)> @(t, py» 9)) of (115) with the initial condition (p(0, p,,
©0)> (0, po> 99)) = (P> ) € K, always stays in #; , and
satisfies p(t, py, @y) > 6t + p(0) with & = 8872[7/2, forallt > 0.
The proof of Theorem 3 is completed.

5. The Proof of Theorem 4

In this section, we will prove Theorem 4 by using the abstract
result on the existence of quasi-periodic solutions proved
in [24] in the context Aubry-Mather theory for reversible
systems. We only need to show that the Poincaré map (92)
has the monotone property; that is,

M >0, (128)

or

We can get that
OF, (r, 9) C1-(14+y-3b/2)/(2b-1)
129
I or (129)
by Lemma 11, and

‘M <r 4 (130)

or

by Lemma 12. Then we have

1
%(r,t):1+J %d9+@ — ¢, ast — +00,
or o Or or

(131)
where ¢, > 1 — ¢. Therefore, we have
% (r,t) >0 (132)
or

asr > 1 and € < 1. This proves the validity of (128).
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