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We present here some sufficient conditions for the regular norm on L𝑟(𝐸, 𝐹) to be order continuous, and for (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
)

to be a KB-space. In particular we deduce a characterization of the order continuity of the regular norm using L- and M-weak
compactness of regular operators. Also we characterize when the space L𝑟(𝐸, 𝐹) is an 𝐿𝑝-space and is lattice isomorphic to an
𝐿
𝑝-space for 1 < 𝑃 < ∞. Some related results are also obtained.

1. Introduction

For Banach lattices 𝐸 and 𝐹, we use L(𝐸, 𝐹) to denote the
space of all continuous linear operators from 𝐸 into 𝐹, and
L𝑟(𝐸, 𝐹) to denote the space of all regular operators from
𝐸 into 𝐹, which is the linear span of the set L

+
(𝐸, 𝐹) of all

positive operators from𝐸 into𝐹.With respect to the operator
norm ‖ ⋅ ‖ the spaceL𝑟(𝐸, 𝐹) is not complete in general (see,
e.g., [1]), but there exists a natural norm on L𝑟(𝐸, 𝐹), the
regular norm ‖ ⋅ ‖

𝑟
, which turnsL𝑟(𝐸, 𝐹) into a Banach space

(see [2] for details). Namely,

‖𝑇‖
𝑟
= inf {‖𝑆‖ : 𝑆 ∈ L

+
(𝐸, 𝐹) , ±𝑇 ≤ 𝑆 } . (1)

In particular, ‖𝑇‖ ≤ ‖𝑇‖
𝑟
. IfL𝑟(𝐸, 𝐹) is a vector lattice; then

(L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is a Banach lattice and ‖𝑇‖

𝑟
= ‖|𝑇|‖ for all

𝑇 ∈ L𝑟(𝐸, 𝐹). For instance, if 𝐹 is Dedekind complete, then
L𝑟(𝐸, 𝐹) is a Dedekind complete Banach lattice under the
regular norm.

The natural and important questions are: ifL𝑟(𝐸, 𝐹) is a
vector lattice (i.e., a Banach lattice), when is the regular norm
‖ ⋅ ‖
𝑟
onL𝑟(𝐸, 𝐹) order continuous?When isL𝑟(𝐸, 𝐹) a KB-

space with respect to the regular norm?
Wickstead showed in [3] some characterizations of the

space (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) being (lattice isomorphic to) anAL- or

AM-space. It is natural to ask that when (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is an

𝐿𝑝-space or lattice isomorphic to an 𝐿𝑝-space for 1 < 𝑝 < ∞.
The purpose of this work is to present some results involv-

ing the order continuity of the regular norm on L𝑟(𝐸, 𝐹)

and (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) being a KB-space. Furthermore we will

also present a complete description for (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) being

(lattice isomorphic to) an 𝐿𝑝-space with 1 < 𝑝 < ∞. Some
related results are included as well.

Recall that an operator 𝑇 : 𝐸 → 𝐹 is called L-weakly
compact if 𝑇ball(𝐸) is an L-weakly compact set in 𝐹; that is,
‖𝑦
𝑛
‖ → 0 for each disjoint sequence (𝑦

𝑛
)
∞

1
contained in the

solid hull of 𝑇ball(𝐸). Also 𝑇 is called M-weakly compact if
‖𝑇𝑥
𝑛
‖ → 0 for each disjoint sequence (𝑥

𝑛
)
∞

1
⊂ ball(𝐸),

where ball(𝐸) denotes the unit ball of 𝐸. See, for example, [2].
We refer to [2, 4] for any unexplained terms from the

theory of Banach lattices and operators.

2. Some General Results

We start with a necessary condition for the order continuity
of the regular norm on spaces of regular operators.

Proposition 1. Let 𝐸 and 𝐹 be Banach lattices. If the regular
norm ‖ ⋅ ‖

𝑟
on L𝑟(𝐸, 𝐹) is order continuous, then the norms

both on 𝐸󸀠 and 𝐹 are order continuous.

Proof. If the regular norm ‖ ⋅ ‖
𝑟
onL𝑟(𝐸, 𝐹) is order continu-

ous, for each increasing sequence (𝑦
𝑛
)
∞

1
⊂ [0, 𝑦] ⊂ 𝐹, taking

𝑥󸀠 ∈ 𝐸󸀠
+
with ‖𝑥󸀠‖ = 1 and defining 𝑆, 𝑆

𝑛
: 𝐸 → 𝐹 by

𝑆
𝑛
𝑥 = 𝑥

󸀠

(𝑥) 𝑦
𝑛
, 𝑆𝑥 = 𝑥

󸀠

(𝑥) 𝑦 for𝑥 ∈ 𝐸 (2)

then 𝑆
𝑛
, 𝑆 ∈ L

+
(𝐸, 𝐹) and 0 ≤ 𝑆

𝑛
↑ ≤ 𝑆.



2 Abstract and Applied Analysis

The order continuity of the regular norm implies that
there is 𝑈 ∈ L𝑟(𝐸, 𝐹) such that ‖𝑆

𝑛
− 𝑈‖
𝑟

→ 0; thus
‖𝑆
𝑛
− 𝑈‖ → 0. Choosing 𝑥

0
∈ 𝐸 with 𝑥󸀠(𝑥

0
) = 1 we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑈𝑥
0

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑆𝑛𝑥0 − 𝑈𝑥

0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑆𝑛 − 𝑈

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 󳨀→ 0. (3)

It follows from Theorem 2.4.2 of [2] that the norm on 𝐹 is
order continuous.

Similarly, for each increasing sequence (𝑥󸀠
𝑛
)
∞

1
⊂ [0, 𝑥󸀠] ⊂

𝐸󸀠, taking 𝑦 ∈ 𝐹
+
with ‖𝑦‖ = 1 and defining 𝑇, 𝑇

𝑛
: 𝐸 → 𝐹

by

𝑇
𝑛
𝑥 = 𝑥

󸀠

𝑛
(𝑥) 𝑦, 𝑇𝑥 = 𝑥

󸀠

(𝑥) 𝑦 for𝑥 ∈ 𝐸 (4)

then 𝑇
𝑛
, 𝑇 ∈ L

+
(𝐸, 𝐹) and 0 ≤ 𝑇

𝑛
↑ ≤ 𝑇.

Again there is 𝑉 ∈ L𝑟(𝐸, 𝐹) such that ‖𝑇
𝑛
− 𝑉‖
𝑟

→ 0;
thus ‖𝑇

𝑛
−𝑉‖ → 0. Choosing𝑦󸀠 ∈ 𝐹󸀠 with𝑦󸀠(𝑦) = 1, it is easy

to verify that

󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠

𝑛
− 𝑉
󸀠

𝑦
󸀠
󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩
𝑇
󸀠

𝑛
𝑦
󸀠

− 𝑉
󸀠

𝑦
󸀠
󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩󵄩
𝑇
󸀠

𝑛
− 𝑉
󸀠
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑦
󸀠
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑇𝑛 − 𝑉

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝑦
󸀠
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0.

(5)

Theorem 2.4.2 of [2] yields that the norm on 𝐸󸀠 is order
continuous.

Next result is a characterization of the order continuity of
the regular norm on spaces of regular operators.

Theorem 2. For Banach lattices 𝐸 and 𝐹, the following state-
ments are equivalent.

(1) L𝑟(𝐸, 𝐹) is a vector lattice and the regular norm ‖ ⋅ ‖
𝑟

onL𝑟(𝐸, 𝐹) is order continuous.
(2) Every positive operator 𝑇 : 𝐸 → 𝐹 is L- andM-weakly

compact.

Proof. (1) ⇒ (2). If the regular norm ‖ ⋅ ‖
𝑟
on L𝑟(𝐸, 𝐹) is

order continuous, then by the proposition above, the norms
both on 𝐸

󸀠 and 𝐹 are order continuous.
For 0 ≤ 𝑇 : 𝐸 → 𝐹, it suffices to show that 𝑇 is M-

weakly compact (seeTheorem 3.6.17 of [2]). Otherwise, there
is a disjoint sequence (𝑥

𝑛
)
∞

1
⊂ ball(𝐸) such that ‖𝑇𝑥

𝑛
‖ ≥ 𝛿 >

0 for all 𝑛 ∈ N. Note that 0 ≤ 𝑇|𝑥
𝑛
| → 0 weakly as |𝑥

𝑛
| → 0

weakly (see Theorem 2.4.14 of [2]).
ByCorollary 2.3.5 of [2] there exists a sequence of naturals

(𝑘
𝑛
) and a disjoint sequence (𝑦

𝑛
) ⊂ 𝐹

+
such that 0 ≤ 𝑦

𝑛
≤

𝑇|𝑥
𝑘
𝑛

| and ‖𝑦
𝑛
‖ ≥ 𝑐, where 𝑐 is any fixed number from (0, 𝛿).

Let 𝑃
𝑛
𝐹 :→ {𝑦

𝑛
}
𝑑𝑑 be the band projection; hereby {𝑦

𝑛
}
𝑑𝑑

denotes the band generated by 𝑦
𝑛
in 𝐹. It is easy to verify that

𝑃
𝑖
⊥ 𝑃
𝑗
and𝑃
𝑖
≤ 𝐼
𝐹
−𝑃
𝑗
(∀ 𝑖 ̸= 𝑗); it follows that𝑃

1
+⋅ ⋅ ⋅+𝑃

𝑛
↑ ≤

𝐼
𝐹
, and (𝑃

1
+ ⋅ ⋅ ⋅ + 𝑃

𝑛
)𝑇 ↑ ≤ 𝑇, where 𝐼

𝐹
is the identity

operator on 𝐹. Now the order continuity of the regular norm
implies that ((𝑃

1
+ ⋅ ⋅ ⋅ + 𝑃

𝑛
)𝑇)
∞

1
is a ‖ ⋅ ‖

𝑟
-Cauchy sequence;

in particular, ‖𝑃
𝑛
𝑇‖ → 0 as 𝑛 → ∞. Therefore

0 < 𝑐 ≤
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑃𝑛𝑦𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑃𝑛𝑇

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑃𝑛𝑇
󵄩󵄩󵄩󵄩 󳨀→ 0 (6)

This is impossible, so (1) ⇒ (2) holds.

(2) ⇒ (1). For any 0 < 𝑦 ∈ 𝐹
+
and 0 < 𝑥󸀠 ∈ 𝐸󸀠

+
, let

𝑇 : 𝐸 → 𝐹 by 𝑇𝑥 = 𝑥
󸀠

(𝑥)𝑦. Clearly 𝑇 ≥ 0 and the L- and M-
weak compactness of𝑇 yield the relatively weak compactness
of both [−𝑦, 𝑦] and [−𝑥

󸀠, 𝑥󸀠]. It follows from Theorem 2.4.2
of [2] that the norms both on 𝐸󸀠 and 𝐹 are order continuous;
L𝑟(𝐸, 𝐹) is certainly a (Dedekind complete) vector lattice.

For any decreasing sequence 𝑇
𝑛
∈ L
+
(𝐸, 𝐹) with inf{𝑇

𝑛
:

𝑛 ∈ N} = 0, Proposition 3.6.19 of [2] yields that the operator
norm, and hence the regular norm, on order interval [0, 𝑇

1
]

is order continuous, which implies that ‖𝑇
𝑛
‖
𝑟
= ‖𝑇
𝑛
‖ → 0.

Now the order continuity of the regular norm is following
fromTheorem 2.4.2 of [2].

It is clear that the identity operator on a Banach lattice𝐸 is
M-weakly compact if and only if 𝐸 is finite dimensional. The
next result should be no surprise.

Corollary 3. Let 𝐸 be a Banach lattice.ThenL𝑟(𝐸) is a vector
lattice and the regular norm ‖ ⋅ ‖

𝑟
onL𝑟(𝐸) is order continuous

if and only if dim𝐸 < ∞.

Theorem 4. For Banach lattices 𝐸 and 𝐹, the following state-
ments are equivalent.

(1) (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is a KB-space.

(2) 𝐹 is a KB-space and ‖ ⋅ ‖
𝑟
on L𝑟(𝐸, 𝐹) is order

continuous.
(3) 𝐹 is a KB-space and every positive operator𝑇 : 𝐸 → 𝐹

is M-weakly compact.

Proof. (1) ⇒ (2). If (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is a KB-space, then

‖ ⋅ ‖
𝑟
on L𝑟(𝐸, 𝐹) certainly is order continuous. For a norm

bounded increasing sequence (𝑦
𝑛
)
∞

1
⊂ 𝐹
+
, taking 𝑥󸀠 ∈ 𝐸󸀠

+

with ‖𝑥󸀠‖ = 1 and defining 𝑆
𝑛
: 𝐸 → 𝐹 by 𝑆

𝑛
𝑥 = 𝑥󸀠(𝑥)𝑦

𝑛
for

𝑥 ∈ 𝐸, then (𝑆
𝑛
)
∞

1
⊂ L
+
(𝐸, 𝐹) also is increasing and ‖ ⋅ ‖

𝑟
-

bounded, so there is 𝑈 ∈ L𝑟(𝐸, 𝐹) such that ‖𝑆
𝑛
− 𝑈‖
𝑟
→ 0;

thus ‖𝑆
𝑛
− 𝑈‖ → 0. Choosing 𝑥

0
∈ 𝐸 with 𝑥󸀠(𝑥

0
) = 1 we

have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑈𝑥

0

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑆𝑛𝑥0 − 𝑈𝑥

0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑆𝑛 − 𝑈

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 󳨀→ 0. (7)

It follows that 𝐹 is a KB-space.
(2) ⇒ (3) is a consequence of Theorem 2. Now we

show that (3) ⇒ (1). Clearly L𝑟(𝐸, 𝐹) is a Banach lattice
under the regular norm as 𝐹 is a KB-space. If (𝑇

𝑛
)
∞

1
⊂

L
+
(𝐸, 𝐹) is a ‖ ⋅ ‖

𝑟
-bounded increasing sequence, then for

each 𝑥 ∈ 𝐸
+
, 𝑇
𝑛
𝑥 is norm convergent as it is a norm bounded

increasing sequence in 𝐹. It is easy to see that there is a
𝑇 ∈ L

+
(𝐸, 𝐹) such that 𝑇

𝑛
→ 𝑇 with respect to the

strong operator topology; it follows that 𝑇
𝑛

↑ 𝑇 and by
hypothesis 𝑇 is M-weakly compact. Proposition 3.6.19 of [2]
yields that ‖𝑇 − 𝑇

𝑛
‖
𝑟
= ‖𝑇 − 𝑇

𝑛
‖ → 0 which implies that

(L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is a KB-space.

It is obvious that if 𝑇 : 𝐸 → 𝐹 is regular then 𝑇󸀠 is
also regular, and the converse is false in general. For example,
let 𝑇 : 𝐿2[0, 1] → 𝑐

0
defined by 𝑇𝑓 = (∫

1

0

𝑓(𝑡)𝑟
𝑛
(𝑡)𝑑𝑡),

where 𝑟
𝑛
(𝑡) = sgn(sin 2𝑛𝜋𝑡) is the 𝑛th Rademacher function

on [0, 1]. Then 𝑇󸀠 : ℓ
1

→ 𝐿2[0, 1], 𝑇󸀠(𝜆
𝑛
) = ∑

∞

𝑛=1
𝜆
𝑛
𝑟
𝑛
,



Abstract and Applied Analysis 3

is regular (as it is order bounded) but 𝑇 is not regular. The
following results will show some relationships between the
order continuity of the regular norms inL𝑟(𝐸, 𝐹),L𝑟(𝐸, 𝐹󸀠󸀠)
andL𝑟(𝐹󸀠, 𝐸󸀠).

Theorem 5. For Banach lattices 𝐸 and 𝐹, the following asser-
tions are equivalent.

(1) The regular norm ‖ ⋅ ‖
𝑟
onL𝑟(𝐸, 𝐹󸀠󸀠) is order continu-

ous.
(2) (L𝑟(𝐸, 𝐹󸀠󸀠), ‖ ⋅ ‖

𝑟
) is a KB-space.

(3) The regular norm ‖ ⋅ ‖
𝑟
onL𝑟(𝐹󸀠, 𝐸󸀠) is order continu-

ous.
(4) (L𝑟(𝐹󸀠, 𝐸󸀠), ‖ ⋅ ‖

𝑟
) is a KB-space.

Proof. Let Φ : L(𝐸, 𝐹󸀠󸀠) → L(𝐹󸀠, 𝐸󸀠) by Φ(𝑇) = 𝑇󸀠𝑗 for
𝑇 ∈ L(𝐸, 𝐹󸀠󸀠), where 𝑗 : 𝐹󸀠 → 𝐹󸀠󸀠󸀠 is the natural embedding.
According to Theorem 5.6 of [5] the operator 𝑇 ∈ L(𝐸, 𝐹󸀠󸀠)

is regular if and only ifΦ(𝑇) is regular and ‖Φ(𝑇)‖
𝑟
= ‖𝑇‖

𝑟
.

Moreover Φ is an order continuous isometric lattice
isomorphism from (L(𝐸, 𝐹

󸀠󸀠), ‖ ⋅ ‖
𝑟
) onto (L(𝐹󸀠, 𝐸󸀠), ‖ ⋅ ‖

𝑟
).

Thus (1) ⇔ (3) is a simple consequence of these facts. Also
the equivalences of (1) and (2), (3) and (4) easily follow from
Theorem 4 and the proof of Theorem 2 (remembering that
the norm on 𝐸

󸀠 is order continuous if and only if 𝐸󸀠 is a KB-
space; compareTheorem 2.4.14 of [2]).

Corollary 6. Let 𝐸 and 𝐹 be Banach lattices such that 𝐹 is
reflexive. Then the following statements are equivalent.

(1) The regular norm ‖ ⋅ ‖
𝑟
on L𝑟(𝐸, 𝐹) is order continu-

ous.
(2) (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is a KB-space.

(3) The regular norm ‖ ⋅ ‖
𝑟
onL𝑟(𝐹󸀠, 𝐸󸀠) is order continu-

ous.
(4) (L𝑟(𝐹󸀠, 𝐸󸀠), ‖ ⋅ ‖

𝑟
) is a KB-space.

Theorem 7. Let 𝐸 and 𝐹 be Banach lattices,𝐻 ⊂ 𝐸 and𝐺 ⊂ 𝐹

closed sublattices. Supposing that there is a positive projection
𝑃 from 𝐸 onto𝐻 then the following statements hold.

(1) If L𝑟(𝐸, 𝐹) is a vector lattice and the regular norm
‖ ⋅ ‖
𝑟
on L𝑟(𝐸, 𝐹) is order continuous, then L𝑟(𝐻, 𝐺)

also is a vector lattice and ‖ ⋅ ‖
𝑟
on L𝑟(𝐻, 𝐺) is order

continuous.
(2) If (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is a KB-space then

(L𝑟(𝐻, 𝐺), ‖ ⋅ ‖
𝑟
) also is a KB-space.

Proof. Suppose that L𝑟(𝐸, 𝐹) is a vector lattice and the
regular norm ‖ ⋅ ‖

𝑟
onL𝑟(𝐸, 𝐹) is order continuous. For 0 ≤

𝑇 : 𝐻 → 𝐺, then 0 ≤ 𝑇𝑃 : 𝐸 → 𝐺 ⊂ 𝐹, Theorem 2
yields that 𝑇𝑃 is L- and M-weakly compact. For any disjoint
sequence (𝑦

𝑛
)
∞

1
contained in the solid hull of 𝑇ball(𝐻) in 𝐺,

then (𝑦
𝑛
)
∞

1
is a disjoint sequence in 𝐹 as 𝐺 is a sublattice

of 𝐹, which is contained in the solid hull of (𝑇𝑃)ball(𝐸) as
𝑇ball(𝐻) ⊂ (𝑇𝑃)ball(𝐸), so that ‖𝑦

𝑛
‖ → 0; that is, 𝑇 is L-

weakly compact. Also for each disjoint sequence (𝑥
𝑛
)
∞

1
⊂

ball(𝐻), (𝑥
𝑛
)
∞

1
⊂ ball(𝐸) is disjoint as 𝐻 is a sublattice of

𝐸; it follows that ‖𝑇𝑥
𝑛
‖ = ‖𝑇𝑃𝑥

𝑛
‖ → 0, which implies that

𝑇 is M-weakly compact. Again by Theorem 2 L𝑟(𝐻, 𝐺) is a
vector lattice and the regular norm ‖ ⋅ ‖

𝑟
onL𝑟(𝐻, 𝐺) is order

continuous; that is, (1) holds.
If (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is a KB-space then it follows from

Theorem 4 and (1) that 𝐹 is a KB-space, and hence 𝐺, as a
closed sublattice of a KB-space, also is a KB-space, and that
(L𝑟(𝐻, 𝐺), ‖ ⋅ ‖

𝑟
) is a Banach lattice with an order continuous

norm. AgainTheorem 4 yields that (L𝑟(𝐻, 𝐺), ‖ ⋅ ‖
𝑟
) is a KB-

space, so (2) holds.

Note that each Banach lattice 𝐹 can be identified with a
closed sublattice of 𝐹󸀠󸀠, and so, as a consequence ofTheorems
4 and 7 we have the following result.

Corollary 8. Let 𝐸 and 𝐹 be Banach lattices. If
(L𝑟(𝐹󸀠, 𝐸󸀠), ‖ ⋅ ‖

𝑟
) is a KB-space (equivalently the regular

norm ‖ ⋅ ‖
𝑟
on L𝑟(𝐹󸀠, 𝐸󸀠) is order continuous), then so is

(L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
).

Remark 9. The regular norm ‖ ⋅ ‖
𝑟
on L𝑟(𝐹󸀠, 𝐸󸀠) may fail to

be order continuous even if (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is a KB-space.

For example, let 𝐸 = 𝑐
0
and 𝐹 = ℓ

1
(ℓ𝑛
∞
) = (𝑐

0
(ℓ𝑛
1
))
󸀠.

Clearly 𝐹 is a KB-space and 𝐹󸀠 = ℓ
∞
(ℓ𝑛
1
). Define 𝑇 : ℓ

1
→ 𝐹󸀠

by

𝑇 (𝜆
𝑛
) = ((𝜆

1
) , (𝜆
1
, 𝜆
2
) , (𝜆
1
, 𝜆
2
, 𝜆
3
) , . . .) , ∀ (𝜆

𝑛
) ∈ ℓ
1
,

(8)

it is easy to see that 𝑇 is an isometric lattice homomorphism;
that is, 𝐹󸀠 contains a closed sublattice isometrically lattice
isomorphic to ℓ

1
. Thus Theorem 2.4.14 of [2] implies that

𝐹󸀠󸀠 fails to be a KB-space (i.e., the norm on 𝐹󸀠󸀠 is not order
continuous).

Now it follows from Theorem 12 (see next) that
(L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is a KB-space, but the regular norm

‖ ⋅ ‖
𝑟
on L𝑟(𝐸, 𝐹󸀠󸀠), and hence on L𝑟(𝐹󸀠, 𝐸󸀠), is not order

continuous as the norm on 𝐹󸀠󸀠 is not order continuous (see
the proof of Theorem 2).

3. Some Concrete Sufficient Conditions

In this section we will present some sufficient conditions on
Banach lattices 𝐸 and 𝐹 such that the regular norm ‖ ⋅ ‖

𝑟
on

L𝑟(𝐸, 𝐹) is order continuous, or (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is a KB-

space.

Proposition 10. Let𝐸 be anAM-spacewith a strong order unit
and 𝐹 a Banach lattice with an order continuous norm. Then
the regular norm ‖ ⋅ ‖

𝑟
onL𝑟(𝐸, 𝐹) is order continuous.

Proof. We may assume that 𝐸 is equipped with the strong
order unit norm and also the norm on 𝐹 is order continuous;
clearly (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is a Banach lattice. For 0 ≤ 𝑇

𝑛
↑ ≤ 𝑇

in L𝑟(𝐸, 𝐹) then 0 ≤ 𝑇
𝑛
𝑥 ↑≤ 𝑇𝑥 for each 𝑥 ∈ 𝐸

+
. It follows

from the order continuity of the norm on 𝐹 that (𝑇
𝑛
𝑥)
∞

1
is

norm convergent. So there is 𝑆 ∈ L
+
(𝐸, 𝐹) such that 𝑇

𝑛
→ 𝑆
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with respect to the strong operator topology and obviously
𝑇
𝑛
↑ 𝑆. In particular

󵄩󵄩󵄩󵄩𝑆 − 𝑇
𝑛

󵄩󵄩󵄩󵄩𝑟 =
󵄩󵄩󵄩󵄩𝑆 − 𝑇

𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑆𝑒 − 𝑇

𝑛
𝑒
󵄩󵄩󵄩󵄩 󳨀→ 0, (9)

where 𝑒 is a strong order unit of 𝐸. Therefore Theorem 2.4.2
of [2] yields that the regular norm ‖ ⋅ ‖

𝑟
onL𝑟(𝐸, 𝐹) is order

continuous.

Remark 11. If 𝐸 fails to possess a strong order unit the above
result is false even if 𝐸 is an AM-space; 𝐸, 𝐸󸀠 and 𝐹 are atomic
with an order continuous norm. For example, let 𝐸 = 𝐹 =

𝑐
0
and then the regular norm ‖ ⋅ ‖

𝑟
on L𝑟(𝐸) is not order

continuous, compare also Corollary 3.
Recall that Banach lattice 𝐸 possesses the positive Schur

property if every weakly null sequence in 𝐸
+
is norm conver-

gent to 0.

Theorem 12. Let 𝐸 be a Banach lattice such that 𝐸󸀠 pos-
sesses the positive Schur property, 𝐹 a Banach lattice. Then
(L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is a KB-space if and only if 𝐹 is a KB-space.

Proof. The part of “only if ” is obvious. If 𝐹 is a KB-space, by
Theorem 4 it suffices to show that each positive operator 𝑇 :

𝐸 → 𝐹 is M-weakly compact. Indeed, if 𝑇 is not M-weakly
compact then there is a disjoint sequence (𝑥

𝑛
)
∞

1
⊂ ball(𝐸)

with 𝑥
𝑛

≥ 0 and ‖𝑇𝑥
𝑛
‖ ≥ 2𝛿 > 0 for 𝑛 ∈ N. Note that

𝑇𝑥
𝑛

→ 0 weakly as 𝑥
𝑛

→ 0 weakly (see Theorem 2.4.14 of
[2]); by Proposition 2.3.4 of [2] there exists a disjoint sequence
(𝑦
󸀠

𝑛
)
∞

1
⊂ ball(𝐹󸀠), 𝑦

𝑛
≥ 0, satisfying

(𝑇
󸀠

𝑦
󸀠

𝑛
) (𝑥
𝑛
) = 𝑦
󸀠

𝑛
(𝑇𝑥
𝑛
) > 𝛿, ∀𝑛. (10)

Also byTheorem 2.5.6 and 3.4.18 of [2], 𝑇 is weakly compact
and so is 𝑇󸀠 by Gantmacher’s theorem (see Theorem 17.2
of [4]), so we may assume that 𝑇󸀠𝑦󸀠

𝑛
is weakly convergent

(replacing by a subsequence if necessary); say 𝑇󸀠𝑦󸀠
𝑛

→ 𝑥󸀠

weakly, then for each 𝑥 ∈ 𝐸

𝑥
󸀠

(𝑥) = lim
𝑛→∞

𝑇
󸀠

𝑦
󸀠

𝑛
(𝑥) = lim

𝑛→∞

𝑦
󸀠

𝑛
(𝑇𝑥) = 0 (11)

as 𝑦󸀠
𝑛

→ 0 in 𝜎(𝐹󸀠, 𝐹) (see Corollary 2.4.3 of [2]); that is,
𝑇󸀠𝑦󸀠
𝑛

→ 0 weakly, so the positive Schur property of 𝐸󸀠

implies that ‖𝑇󸀠𝑦󸀠
𝑛
‖ → 0 and it follows that

0 < 𝛿 < 𝑦
󸀠

𝑛
(𝑇𝑥
𝑛
) = (𝑇

󸀠

𝑦
󸀠

𝑛
) (𝑥
𝑛
) ≤

󵄩󵄩󵄩󵄩󵄩
𝑇
󸀠

𝑦
󸀠

𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0. (12)

This is impossible, thus 𝑇 is M-weakly compact.

The following result is a dual version of Theorem 12.

Theorem 13. Let 𝐹 be a Banach lattice with the positive Schur
property, 𝐸 a Banach lattice. Then (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is a KB-

space if and only if the norm on 𝐸󸀠 is order continuous.

Proof. The part of “only if ” easily follows from the proof of
Theorem 2. If the norm on 𝐸󸀠 is order continuous, for 𝑇 ∈

L
+
(𝐸, 𝐹) and each disjoint sequence (𝑥

𝑛
)
∞

1
⊂ ball(𝐸), then

|𝑥
𝑛
| → 0 weakly, and 𝑇|𝑥

𝑛
| → 0 weakly. It follows from

the positive Schur property of 𝐹 that ‖𝑇𝑥
𝑛
‖ → 0 as |𝑇𝑥

𝑛
| ≤

𝑇|𝑥
𝑛
|; that is, 𝑇 is M-weakly compact; Theorem 4 yields that

(L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is a KB-space.

For a Banach lattice 𝐸 and 1 ≤ 𝑝 ≤ ∞, recall that 𝐸 has
the strong ℓ

𝑝
-decomposition property if there exists a constant

𝑀 such that for all disjoint elements 𝑥
1
, . . . , 𝑥

𝑛
in 𝐸 we have

(∑
𝑛

𝑖=1
‖𝑥
𝑖
‖
𝑝

)
1/𝑝

≤ 𝑀‖∑
𝑛

𝑖=1
𝑥
𝑖
‖ for 𝑝 < ∞ and max{‖𝑥

𝑖
‖ : 𝑖 =

1, . . . , 𝑛} ≤ 𝑀‖∑
𝑛

𝑖=1
𝑥
𝑖
‖ in case 𝑝 = ∞. The number 𝜎(𝐸) =

inf{𝑝 ≥ 1 : 𝐸 has the strong ℓ
𝑝
-decomposition property} is

call the upper index of 𝐸.
Similarly 𝐸 has the strong ℓ

𝑝
-composition property if

there exists a constant 𝑀 such that for all disjoint elements
𝑥
1
, . . . , 𝑥

𝑛
in 𝐸 we have ‖∑

𝑛

𝑖=1
𝑥
𝑖
‖ ≤ 𝑀(∑

𝑛

𝑖=1
‖𝑥
𝑖
‖
𝑝

)
1/𝑝 for

𝑝 < ∞ and ‖∑
𝑛

𝑖=1
𝑥
𝑖
‖ ≤ 𝑀max{‖𝑥

𝑖
‖ : 𝑖 = 1, . . . , 𝑛} in case

𝑝 = ∞. The number 𝑠(𝐸) = sup{𝑝 ≥ 1 : 𝐸 has the strong
ℓ
𝑝
-composition property} is called lower index of 𝐸.
It is known that 1 ≤ 𝑠(𝐸) ≤ 𝜎(𝐸) ≤ ∞ for any Banach

lattice 𝐸. If 𝜎(𝐸) < ∞ then 𝐸 has an order continuous norm.
If 𝑠(𝐸) > 1 then the norm on 𝐸

󸀠 is order continuous. See [6]
for details

Also recall that if the norm on a Banach lattice 𝐸 is 𝑝-
superadditive then 𝜎(𝐸) ≤ 𝑝; and if 𝐸 has a 𝑝-subadditive
norm then 𝑠(𝐸) ≥ 𝑝; see Proposition 2.8.2 of [2].

Theorem 14. Let 𝐸 and 𝐹 be Banach lattices. If 𝑠(𝐸) > 𝜎(𝐹)

then (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
) is a KB-space.

Proof. The norm on 𝐸󸀠 clearly is order continuous. Note that
if 𝜎(𝐹) < ∞ then 𝐹 is a KB-space. Indeed, if 𝐹 is not a KB-
space, then 𝐹 contains a sublattice𝐻 lattice isomorphic to 𝑐

0
,

which implies that 𝜎(𝐹) = ∞ as 𝜎(𝑐
0
) = ∞. Now the rest is

a simple consequence of Theorem 4, Theorem 6.7 of [6], and
Theorem 3.6.17 of [2].

Corollary 15. Let 𝐸 and 𝐹 be Banach lattices. If the norm of 𝐸
is 𝑝-subadditive, the norm of 𝐹 is 𝑞-superadditive and 1 ≤ 𝑞 <

𝑝 ≤ ∞, then (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖
𝑟
)is a KB-space.

Remark 16. It is worth to point out that 𝑠(𝐸) > 𝜎(𝐹) fails to be
true in general even ifL𝑟(𝐸, 𝐹) is a KB-space, see [7, Example
3.6].

For𝐸 and𝐹being𝐿𝑝- and𝐿𝑞-spaces, respectively, we have
the following characterization.

Theorem 17. Let 𝐸 and 𝐹 be infinite dimensional 𝐿𝑝-space,
and 𝐿𝑞-space respectively, then (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is a KB-space

if and only if 𝑞 < 𝑝.

Proof. The part of “if ” is a simple consequence of
Corollary 15. To see the part of “only if ”, we may first
assume that

𝐻
𝑛
= {

ℓ
𝑝

if 𝑝 < ∞

𝑐
0

if 𝑝 = ∞
𝐺
𝑞
= {

ℓ
𝑞

if 𝑞 < ∞

𝑐
0

if 𝑞 = ∞
(13)

are sublattices of 𝐸 and 𝐹, respectively. Suppose that 𝑝 ≤ 𝑞

then𝐻
𝑝
⊂ 𝐺
𝑞
.

If 𝑝 < ∞ there is a positive projection 𝑃 from 𝐸 onto𝐻
𝑝

(the existence of 𝑃 is following from Theorem 2.7.11 of [2]),
then 𝑃 : 𝐸 → 𝐻

𝑝
⊂ 𝐺
𝑞

⊂ 𝐹 is not M-weakly compact,
which, by Theorem 4, implies that (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is not a

KB-space.
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Also if 𝑝 = ∞, then 𝑞 = ∞ and 𝐹 is not a KB-space,
Theorem 4 again yields that (L𝑟(𝐸, 𝐹), ‖ ⋅ ‖

𝑟
) is not a KB-

space.

The next result shows that under the regular norm the
spacesL𝑟(𝐸, 𝐹) are rather rare to be 𝐿𝑝-spaces.

Theorem 18. Let 𝐸 and 𝐹 be non-zero Banach lattices and 1 <

𝑝, 𝑞 < ∞with (1/𝑝)+(1/𝑞) = 1.Then the following assertions
are equivalent.

(1) The regular norm ‖ ⋅ ‖
𝑟
is 𝑝-additive onL

+
(𝐸, 𝐹).

(2) One of following two conditions holds.

(a) dim𝐸 = 1 and the norm on 𝐹 is 𝑝-additive (i.e.,
𝐹 is an 𝐿𝑝-space).

(b) dim𝐹 = 1 and the norm on 𝐸 is 𝑞-additive (i.e.,
𝐸 is an 𝐿

𝑞-space).

Proof. (2) ⇒ (1) is obvious. To see that (1) ⇒ (2), we assume
that ‖ ⋅ ‖

𝑟
is 𝑝-additive onL

+
(𝐸, 𝐹). For any 𝑦

1
, 𝑦
2
∈ 𝐹
+
, pick

𝑥󸀠 ∈ 𝐸󸀠
+
with ‖𝑥󸀠‖ = 1; thus the 𝑝-additivity of the regular

norm yields that

󵄩󵄩󵄩󵄩𝑦1 + 𝑦
2

󵄩󵄩󵄩󵄩
𝑝

=
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠

⨂(𝑦
1
+ 𝑦
2
)
󵄩󵄩󵄩󵄩󵄩

𝑝

=
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠

⨂𝑦
1

󵄩󵄩󵄩󵄩󵄩

𝑝

+
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠

⨂𝑦
2

󵄩󵄩󵄩󵄩󵄩

𝑝

=
󵄩󵄩󵄩󵄩𝑦1

󵄩󵄩󵄩󵄩
𝑝

+
󵄩󵄩󵄩󵄩𝑦2

󵄩󵄩󵄩󵄩
𝑝

(14)

which means that 𝐹 is an 𝐿𝑝-space. A similar argument
involving a fixed element of 𝐹

+
and two elements of 𝐸󸀠

+
shows

that 𝐸󸀠 is an 𝐿𝑝-space; hence 𝐸 is an 𝐿𝑞-space (compare with
Theorem 2.7.1 of [2]), where 𝑝−1 + 𝑞−1 = 1.

Now if both dim(𝐸) ≥ 2 and dim(𝐹) ≥ 2 hold we will
obtain a contradiction. In fact, we may assume that ℓ𝑞

2
and ℓ
𝑝

2

are 2-dimensional sublattices of 𝐸 and 𝐹, respectively; define
𝑇
1
, 𝑇
2
: ℓ
𝑞

2
→ ℓ
𝑝

2
by

𝑇
1
(𝜆
1
, 𝜆
2
) = (𝜆

1
, 0) ,

𝑇
2
(𝜆
1
, 𝜆
2
) = (0, 𝜆

2
) for (𝜆

1
, 𝜆
2
) ∈ ℓ
𝑞

2
;

(15)

then ‖𝑇
1
‖ = ‖𝑇

2
‖ = 1. Let 𝑃 be a positive contractive

projection from𝐸onto ℓ2
𝑞
(seeTheorem2.7.11 of [2]); it follows

that

󵄩󵄩󵄩󵄩𝑇1 + 𝑇
2

󵄩󵄩󵄩󵄩
𝑝

=
󵄩󵄩󵄩󵄩𝑃𝑇1 + 𝑃𝑇

2

󵄩󵄩󵄩󵄩
𝑝

=
󵄩󵄩󵄩󵄩𝑃𝑇1

󵄩󵄩󵄩󵄩
𝑝

+
󵄩󵄩󵄩󵄩𝑃𝑇2

󵄩󵄩󵄩󵄩
𝑝

= 2. (16)

Also it is easy to calculate that ‖𝑇
1
+ 𝑇
2
‖ = 21/𝑝−1/𝑞; this is

impossible. (1) ⇒ (2) holds.

Theorem 19. Let 𝐸 and 𝐹 be non-zero Banach lattices and 1 <

𝑝, 𝑞 < ∞with (1/𝑝)+(1/𝑞) = 1.Then the following assertions
are equivalent.

(1) The regular norm ‖ ⋅ ‖
𝑟
on L𝑟(𝐸, 𝐹) is equivalent to a

𝑝-additive norm.
(2) One of following two conditions holds.

(a) dim𝐸 < ∞ and the norm on 𝐹 is equivalent to a
𝑝-additive norm.

(b) dim𝐹 < ∞ and the norm on 𝐸 is equivalent to a
𝑞-additive norm.

Proof. (1) ⇒ (2). Suppose that the regular norm ‖ ⋅ ‖
𝑟
on

L𝑟(𝐸, 𝐹) is equivalent to a 𝑝-additive norm. We first show
that the norms both on 𝐸󸀠 and 𝐹 are equivalent to 𝑞-additive
and 𝑝-additive norms, respectively, where 𝑝−1 + 𝑞−1 = 1.

For each disjoint sequence (𝑦
𝑛
)
∞

1
⊂ 𝐹
+
with ‖𝑦

𝑛
‖ = 1, fix

𝑥
󸀠

∈ 𝐸
󸀠

+
with ‖𝑥

󸀠

‖ = 1. It is easy to verify that (𝑥󸀠 ⨂𝑦
𝑛
)
∞

1
⊂

L
+
(𝐸, 𝐹) is a disjoint sequence with ‖𝑥󸀠⨂𝑦

𝑛
‖ = 1 for all 𝑛 ∈

N. Corollary 2.8.12 of [2] yields that (𝑥󸀠⨂𝑦
𝑛
)
∞

1
is equivalent

to the natural basis of ℓ𝑝. Note that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑖=1

𝜆
𝑖
(𝑥
󸀠

⨂𝑦
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
󸀠

⨂(

𝑛

∑
𝑖=1

𝜆
𝑖
𝑦
𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑖=1

𝜆
𝑖
𝑦
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(17)

for all 𝑛 ∈ N and 𝜆
𝑖
∈ R. It follows that (𝑦

𝑛
)
∞

1
is equivalent to

the natural basis of ℓ𝑝, which byCorollary 2.8.12 of [2] implies
that the norm on 𝐹 is equivalent to a 𝑝-additive norm.

A similar argument involving a fixed element of 𝐹
+
and a

disjoint sequence of elements of 𝐸󸀠
+
shows that the norm on

𝐸
󸀠 is equivalent to a 𝑝-additive norm; hence the norm on 𝐸 is

equivalent to a 𝑞-additive norm.
Now we show that either dim𝐸 < ∞ or dim𝐹 < ∞.

Otherwise, both𝐸 and𝐹 are infinite dimensional. Renorming
𝐸 and 𝐹 with equivalent 𝑞-additive and 𝑝-additive norms,
respectively, the regular norm on L𝑟(𝐸, 𝐹) is still equivalent
to a 𝑝-additive norm.Thus wemay assume that the norms on
𝐸 and 𝐹 are 𝑞- and 𝑝-additive, and that ℓ𝑞 ⊂ 𝐸 and ℓ𝑝 ⊂ 𝐹

are sublattices, respectively. By Theorem 2.7.11 of [2] there is
a positive contractive projection 𝑃 from 𝐸 onto ℓ

𝑞. Consider
the operators 𝑇

𝑛
: ℓ𝑞 → ℓ𝑝 by 𝑇

𝑛
(𝜆
𝑘
) = 𝜆

𝑛
𝑒
𝑛
, where 𝑒

𝑛
is

the element in ℓ𝑞 and ℓ𝑝 with 𝑛th entry equals to 1 and all
others are 0. Then it is easy to verify that (𝑇

𝑛
𝑃)
∞

1
is a disjoint

sequence inL
+
(𝐸, 𝐹) with ‖𝑇

𝑛
𝑃‖ = 1. Corollary 2.8.12 of [2]

yields that (𝑇
𝑛
𝑃)
∞

1
is equivalent to the natural basis of ℓ𝑝. In

particular, we have

𝐵𝑛
1/𝑝

≤
󵄩󵄩󵄩󵄩𝑇1 + 𝑇

2
+ ⋅ ⋅ ⋅ + 𝑇

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑇1𝑃 + 𝑇

2
𝑃 + ⋅ ⋅ ⋅ + 𝑇

𝑛
𝑃
󵄩󵄩󵄩󵄩 ≤ 𝐴𝑛

1/𝑝

(18)

for all 𝑛 ∈ N, where 𝐴 > 0 and 𝐵 > 0 are constants. But
󵄩󵄩󵄩󵄩𝑇1 + 𝑇

2
+ ⋅ ⋅ ⋅ + 𝑇

𝑛

󵄩󵄩󵄩󵄩 = sup {
󵄩󵄩󵄩󵄩󵄩
(𝜆
𝑖
)
𝑛

1

󵄩󵄩󵄩󵄩󵄩𝑝
:
󵄩󵄩󵄩󵄩󵄩
(𝜆
𝑖
)
𝑛

1

󵄩󵄩󵄩󵄩󵄩𝑞
≤ 1} (19)

which easily shows that ‖𝑇
1
+ 𝑇
2
+ ⋅ ⋅ ⋅ + 𝑇

𝑛
‖ ≤ 1 if 𝑞 ≤ 𝑝 and

‖𝑇
1
+𝑇
2
+ ⋅ ⋅ ⋅ +𝑇

𝑛
‖ ≤ 𝑛1/𝑝−1/𝑞 for 𝑞 > 𝑝. This is impossible for

either 𝑞 ≤ 𝑝 or 𝑞 > 𝑝. So (1) ⇒ (2) holds.
(2)(a) ⇒ (1). Let 𝐸 = span{𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑚
} with

{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
} ⊂ 𝐸

+
pairwise disjoint and ‖𝑒

𝑖
‖ = 1. Then

each 𝑇 ∈ L𝑟(𝐸, 𝐹) corresponds to unique (𝑥
1
(𝑇), 𝑥

2
(𝑇), . . .,

𝑥
𝑚
(𝑇)); moreover, 𝑥

𝑖
(𝑇) = 𝑇𝑒

𝑖
∈ 𝐹, satisfying the following

conditions.

(i) 𝑇 ≥ 0 ⇔ 𝑥
𝑖
(𝑇) ≥ 0 for 1 ≤ 𝑖 ≤ 𝑚.

(ii) 𝑥
𝑖
(|𝑇|) = |𝑥

𝑖
(𝑇)| for all 𝑇 ∈ L𝑟(𝐸, 𝐹) and 1 ≤ 𝑖 ≤ 𝑚.
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(iii) 𝑥
𝑖
(𝜆𝑇 + 𝜇𝑆) = 𝜆𝑥

𝑖
(𝑇) + 𝜇𝑥

𝑖
(𝑆) for all 𝑇, 𝑆 ∈ L𝑟(𝐸, 𝐹),

𝜆, 𝜇 ∈ R and 1 ≤ 𝑖 ≤ 𝑚.
(iv) max{‖𝑥

𝑖
(𝑇)‖ : 1 ≤ 𝑖 ≤ 𝑚} ≤ ‖𝑇‖

𝑟
= ‖|𝑇|‖ ≤

∑
𝑚

𝑖=1
‖𝑥
𝑖
(𝑇)‖.

Since the norm on 𝐹 is equivalent to a 𝑝-additive norm,
for each disjoint sequence (𝑦

𝑘
)
∞

1
⊂ 𝐹
+
, by Corollary 2.8.12 of

[2] there exist constants 𝐴 > 0, 𝐵 > 0 such that

𝐵
󵄩󵄩󵄩󵄩(𝜆𝑘

󵄩󵄩󵄩󵄩𝑦𝑘
󵄩󵄩󵄩󵄩 )
𝑛

1

󵄩󵄩󵄩󵄩𝑝 ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑘=1

𝜆
𝑘
𝑦
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐴
󵄩󵄩󵄩󵄩(𝜆𝑘

󵄩󵄩󵄩󵄩𝑦𝑘
󵄩󵄩󵄩󵄩 )
𝑛

1

󵄩󵄩󵄩󵄩𝑝 (∗)

for all 𝜆
𝑘

∈ R and 𝑛 ∈ N. Now for any disjoint sequence
(𝑇
𝑛
)
∞

1
⊂ L
+
(𝐸, 𝐹) with ‖𝑇

𝑛
‖ = 1, note that the disjointness

of (𝑥
𝑖
(𝑇
𝑛
))
∞

𝑛=1
⊂ 𝐹
+
for each 1 ≤ 𝑖 ≤ 𝑚; it follows from (iii),

(iv), and (∗) that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑘=1

𝜆
𝑘
𝑇
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

𝑚

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑘=1

𝜆
𝑘
𝑥
𝑖
(𝑇
𝑘
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐴

𝑚

∑
𝑖=1

(

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨
𝑝󵄩󵄩󵄩󵄩𝑥𝑖 (𝑇𝑘)

󵄩󵄩󵄩󵄩
𝑝

)

1/𝑝

≤ 𝑚𝐴
󵄩󵄩󵄩󵄩󵄩
(𝜆
𝑘
)
𝑛

1

󵄩󵄩󵄩󵄩󵄩𝑝

(20)

as ‖𝑥
𝑖
(𝑇
𝑘
)‖ ≤ ‖𝑇

𝑘
‖ = 1. Also

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑘=1

𝜆
𝑘
𝑇
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≥ max{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑘=1

𝜆
𝑘
𝑥
𝑖
(𝑇
𝑘
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

: 1 ≤ 𝑖 ≤ 𝑚}

≥ 𝐵max
{

{

{

(

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨
𝑝󵄩󵄩󵄩󵄩𝑥𝑖 (𝑇𝑘)

󵄩󵄩󵄩󵄩
𝑝

)

1/𝑝

: 1 ≤ 𝑖 ≤ 𝑚
}

}

}

≥ 𝐵𝑚
−1/𝑝

(

𝑚

∑
𝑖=1

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨
𝑝󵄩󵄩󵄩󵄩𝑥𝑖 (𝑇𝑘)

󵄩󵄩󵄩󵄩
𝑝

)

1/𝑝

= 𝐵𝑚
−1/𝑝

(

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨
𝑝

(

𝑚

∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑇𝑘)
󵄩󵄩󵄩󵄩
𝑝

))

1/𝑝

≥ 𝐵𝑚
−1
󵄩󵄩󵄩󵄩󵄩
(𝜆
𝑘
)
𝑛

1

󵄩󵄩󵄩󵄩󵄩𝑝
(21)

as 1 ≤ ∑
𝑚

=1
‖𝑥
𝑖
(𝑇
𝑘
)‖ ≤ (∑

𝑚

𝑖=1
‖𝑥
𝑖
(𝑇
𝑘
)‖
𝑝

)
1/𝑝

𝑚1/𝑞.
Therefore

𝐵𝑚
−1
󵄩󵄩󵄩󵄩󵄩
(𝜆
𝑘
)
𝑛

1

󵄩󵄩󵄩󵄩󵄩𝑝
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑
𝑘=1

𝜆
𝑘
𝑇
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑚𝐴
󵄩󵄩󵄩󵄩󵄩
(𝜆
𝑘
)
𝑛

1

󵄩󵄩󵄩󵄩󵄩𝑝 (22)

for all 𝜆
𝑘
∈ R and 𝑛 ∈ N; that is, (𝑇

𝑛
)
∞

1
is equivalent to the

natural basis of ℓ𝑝. Corollary 2.8.12 of [2] again shows that the
regular norm ‖ ⋅ ‖

𝑟
on L𝑟(𝐸, 𝐹) is equivalent to a 𝑝-additive

norm, so (2) (a) ⇒ (1) holds.
The proof of (2) (b) ⇒ (1) is similar with (2) (a) ⇒ (1).

This completes the proof.
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