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A new notion of the ic-cone convexlike set-valued map characterized by the algebraic interior and the vector closure is introduced
in real ordered linear spaces. The relationship between the ic-cone convexlike set-valued map and the nearly cone subconvexlike
set-valued map is established. The results in this paper generalize some known results in the literature from locally convex spaces
to linear spaces.

1. Introduction

In optimization theory, the generalized convexity of set-
valued maps plays an important role. Corley [1] introduced
the cone convexity of set-valued maps. To extend the cone
convexity of set-valued maps, some authors [2–5] introduced
new generalized convexity such as cone convexlikeness,
cone subconvexlikeness, generalized cone subconvexlikeness,
nearly cone subconvexlikeness, and ic-cone-convexlikeness.
The above generalized convexity set-valued maps mentioned
were defined in topological spaces. Recently, Li [6] has
introduced the cone subconvexlike set-valued map based
on the algebraic interior in linear spaces. Very recently,
Hernández et al. [7] have defined the cone subconvexlikeness
of the set-valued map characterized by the relative algebraic
interior. Xu and Song [8] gave the relationship between ic-
cone convexity and nearly cone subconvexlikeness in locally
convex spaces. In this paper, we will extend the results
obtained by Xu and Song [8] from locally convex spaces to
linear spaces.

This paper is organized as follows. In Section 2, we give
some preliminaries, including notations and lemmas. In
Section 3, we obtain the relationship between ic-cone convex-
ity and nearly cone subconvexlikeness in linear spaces. Our
results generalize and improve the ones obtained by Xu and
Song [8].

2. Preliminaries

In this paper, we always suppose that𝐴 is a nonempty set and
𝑌 is a real ordered linear space. Let 0 denote the zero element
for every space. Let 𝐾 be a nonempty subset in 𝑌. The affine
hull of 𝐾 is defined as aff (𝐾) := {𝑘 | 𝑘 = ∑𝑛

𝑖=1
𝜆
𝑖
𝑘
𝑖
,∀𝑖 ∈

{1, 2, . . . , 𝑛}, 𝑘
𝑖
∈ 𝐾, 𝜆

𝑖
∈ R, ∑𝑛

𝑖=1
𝜆
𝑖
= 1}. The generated

cone of 𝐾 is defined as cone(𝐾) := {𝜆𝑘 | 𝑘 ∈ 𝐾, 𝜆 ≥ 0}.
Write cone

+
(𝐾) := {𝜆𝑘 | 𝑘 ∈ 𝐾, 𝜆 > 0}. Clearly, cone(𝐾) =

cone
+
(𝐾) ∪ {0}. 𝐾 is called a cone if and only if 𝜆𝐾 ⊆ 𝐾 for

any 𝜆 ≥ 0. Note that some authors defined the cone in the
following way:𝐾 is called a cone if and only if 𝜆𝐾 ⊆ 𝐾 for any
𝜆 > 0 [5]. It is possible that 0 ∉ 𝐾 if 𝐾 is a cone in the sense
of the latter definition. Moreover, if𝐾 is a cone in the sense of
the latter definition, then𝐾 ∪ {0} is a cone in the sense of the
former definition. In this paper, if not specially specified, we
suppose that all the cones mentioned are defined in the sense
of the former definition.𝐾 is called a convex set if and only if

𝜆𝑘
1
+ (1−𝜆) 𝑘

2
∈ 𝐾, ∀𝜆∈[0, 1] , ∀𝑘

1
, 𝑘
2
∈ 𝐾. (1)

Clearly, a cone𝐾 is convex if and only if𝐾+𝐾 ⊆ 𝐾.𝐾 is said
to be nontrivial if and only if𝐾 ̸= {0} and𝐾 ̸=𝑌.

From now on, we suppose that 𝐶 is a nontrivial convex
cone in 𝑌 and 𝐶

+
satisfies the condition 𝐶 = 𝐶

+
∪ {0}. We

recall the following well-known concepts.

http://dx.doi.org/10.1155/2013/105617


2 Abstract and Applied Analysis

Definition 1 (see [9]). Let 𝐾 be a nonempty subset in 𝑌. The
algebraic interior of𝐾 is the set

cor (𝐾) := {𝑘 ∈ 𝐾 | ∀ℎ ∈ 𝑌, ∃𝜆 > 0, ∀𝜆 ∈ [0, 𝜆] ,

𝑘 + 𝜆ℎ ∈ 𝐾} .

(2)

Definition 2 (see [10]). Let𝐾 be a nonempty subset in 𝑌. The
relative algebraic interior of𝐾 is the set

icr (𝐾) := {𝑘 ∈ 𝐾 | ∀ℎ ∈ aff (𝐾) − 𝑘, ∃𝜆 > 0, ∀𝜆 ∈ [0, 𝜆] ,

𝑘 + 𝜆ℎ ∈ 𝐾} .

(3)

Remark 3. Clearly, cor(𝐾) ⊆ icr(𝐾). Moreover, if cor(𝐾) ̸= 0,
then cor(𝐾) = icr(𝐾).

Definition 4 (see [11]). Let𝐾 be a nonempty subset in 𝑌. The
vector closure of𝐾 is the set

vcl (𝐾) := {𝑘 ∈ 𝑌 | ∃ℎ ∈ 𝑌, ∀𝜆 > 0, ∃𝜆 ∈ ]0, 𝜆] ,

𝑘 + 𝜆ℎ ∈ 𝐾} .

(4)

Let 𝐹 : 𝐴  𝑌 be a set-valued map on 𝐴. 𝐹(𝐴) :=
⋃
𝑥∈𝐴

𝐹(𝑥).

Definition 5 (see [12]). A set-valued map 𝐹 : 𝐴  𝑌 is called
nearly 𝐶-subconvexlike on 𝐴 if and only if vcl(cone(𝐹(𝐴) +
𝐶)) is a convex set in 𝑌.

Remark 6. When the set-valued map 𝐹 : 𝐴  𝑌 becomes
a vector-valued map 𝑓 : 𝐴 → 𝑌, Definition 5 reduces to
Definition 4.1 in [13]. When the linear spaces 𝑌 becomes a
topological space, Definition 5 becomes Definition 2.2 in [4].

In locally convex spaces, Sach [5] introduced the ic-𝐶
+
-

convexlikeness of the set-valued map. Now, we use the vector
closure and the algebraic interior to introduce the ic-𝐶

+
-

convexlikeness of the set-valued map in linear spaces.

Definition 7. A set-valued map 𝐹 : 𝐴  𝑌 is called ic-𝐶
+
-

convexlike on 𝐴 if and only if cor(cone
+
(𝐹(𝐴) + 𝐶

+
)) is a

convex set in𝑌 and cone
+
(𝐹(𝐴)+𝐶

+
) ⊆ vcl(cor(cone

+
(𝐹(𝐴)+

𝐶
+
))).

Lemma 8. Let 𝑈
1
and 𝑈

2
be two nonempty sets in 𝑌. Then,

vcl (𝑈
1
∪ 𝑈
2
) = vcl (𝑈

1
) ∪ vcl (𝑈

2
).

Proof. Since 𝑈
1
⊆ 𝑈
1
∪ 𝑈
2
and 𝑈

2
⊆ 𝑈
1
∪ 𝑈
2
, vcl(𝑈

1
) ∪

vcl(𝑈
2
) ⊆ vcl(𝑈

1
∪ 𝑈
2
). Now, we prove

vcl (𝑈
1
∪ 𝑈
2
) ⊆ vcl (𝑈

1
) ∪ vcl (𝑈

2
) . (5)

Suppose that 𝑦 ∉ vcl(𝑈
1
)∪vcl(𝑈

2
).Then, 𝑦 ∉ vcl(𝑈

1
) and 𝑦 ∉

vcl(𝑈
2
). For any ℎ ∈ 𝑌, there exists 𝜆

1
> 0 such that

𝑦 + 𝜆ℎ ∉ 𝑈
1
, ∀𝜆 ∈ ]0, 𝜆

1
] . (6)

For the above ℎ ∈ 𝑌, there exists 𝜆
2
> 0 such that

𝑦 + 𝜆ℎ ∉ 𝑈
2
, ∀𝜆 ∈ ]0, 𝜆

2
] . (7)

It follows from (6) and (7) that, for the above ℎ ∈ 𝑌, there
exists 𝜆

3
= min{𝜆

1
, 𝜆
2
} > 0 such that

𝑦 + 𝜆ℎ ∉ 𝑈
1
∪ 𝑈
2
, ∀𝜆 ∈ ]0, 𝜆

3
] , (8)

which implies that 𝑦 ∉ vcl(𝑈
1
∪ 𝑈
2
). Therefore, (5) holds.

Thus, we obtain vcl(𝑈
1
∪ 𝑈
2
) = vcl(𝑈

1
) ∪ vcl(𝑈

2
).

Lemma 9 (see [11]). If 𝐾 is a nonempty convex set in 𝑌 and
icr(𝐾) ̸= 0, then

(a) vcl(𝐾) is a convex set in 𝑌;
(b) vcl(vcl(𝐾)) = vcl(𝐾), namely, vcl(𝐾) is vectorially

closed;
(c) vcl(𝐾) = vcl(icr(𝐾)).

Lemma 10 (see [11]). Let 𝐾 be a nonempty subset of 𝑌, and
let 𝐶 be a nontrivial and convex cone with cor(𝐶) ̸= 0. Then,
cor(𝐾+cor(𝐶)) = 𝐾+cor(𝐶) = cor(vcl(𝐾+𝐶)) = cor(𝐾+𝐶).

Remark 11. The conclusions of Lemma 10 are true when 𝐶 is
replaced by 𝐶

+
.

3. The Relationship between Two Kinds of
Generalized Convexity

In this section, we will give the relationship between two
kinds of generalized convexity in real ordered linear spaces.

Theorem 12. Let 𝐹 : 𝐴  𝑌 be a set-valued map on 𝐴 and
𝑖𝑐𝑟(𝑐𝑜𝑟(𝑐𝑜𝑛𝑒

+
(𝐹(𝐴) + 𝐶

+
))) ̸= 0. If 𝐹 is ic-𝐶

+
-convexlike on 𝐴,

then 𝐹 is nearly 𝐶-subconvexlike on 𝐴.

Proof. Since 𝐹 is ic-𝐶
+
-convexlike on 𝐴, cor(cone

+
(𝐹(𝐴) +

𝐶
+
)) is a convex set in 𝑌 and cone

+
(𝐹(𝐴) + 𝐶

+
) ⊆

vcl(cor(cone
+
(𝐹(𝐴) + 𝐶

+
))), which implies that

vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
))

⊆ vcl (vcl (cor (cone
+
(𝐹 (𝐴) + 𝐶

+
)))) .

(9)

Using the convexity of cor(cone
+
(𝐹(𝐴) + 𝐶

+
)) and (b) of

Lemma 9, we have

vcl (vcl (cor (cone
+
(𝐹 (𝐴) + 𝐶

+
))))

= vcl (cor (cone
+
(𝐹 (𝐴) + 𝐶

+
))) .

(10)

It follows from (9) and (10) that

vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
)) ⊆ vcl (cor (cone

+
(𝐹 (𝐴) + 𝐶

+
))) .

(11)

Clearly,

vcl (cor (cone
+
(𝐹 (𝐴) + 𝐶

+
))) ⊆ vcl (cone

+
(𝐹 (𝐴) + 𝐶

+
)) .

(12)
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By (11) and (12), we obtain

vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
)) = vcl (cor (cone

+
(𝐹 (𝐴) + 𝐶

+
))) .

(13)

Since cor(cone
+
(𝐹(𝐴) + 𝐶

+
)) is a convex set in 𝑌, it follows

from (13) and (a) of Lemma 9 that vcl(cone
+
(𝐹(𝐴) +𝐶

+
)) is a

convex set in 𝑌. Using Lemma 8, we have

vcl (cone (𝐹 (𝐴) + 𝐶))

= vcl (cone
+
(𝐹 (𝐴) + 𝐶) ∪ {0})

= vcl (cone
+
(𝐹 (𝐴) + 𝐶)) ∪ vcl {0}

= vcl (cone
+
(𝐹 (𝐴) + 𝐶))

= vcl (cone
+
(𝐹 (𝐴)) + 𝐶)

= vcl (cone
+
(𝐹 (𝐴)) + 𝐶

+
∪ {0})

= vcl ((cone
+
(𝐹 (𝐴)) + 𝐶

+
) ∪ cone

+
(𝐹 (𝐴)))

= vcl (cone
+
(𝐹 (𝐴)) + 𝐶

+
) ∪ vcl (cone

+
(𝐹 (𝐴))) .

(14)

Now, we prove that

vcl (cone
+
(𝐹 (𝐴))) ⊆ vcl (cone

+
(𝐹 (𝐴)) + 𝐶

+
) . (15)

Let 𝑦 ∈ vcl(cone
+
(𝐹(𝐴))). Then, ∃ℎ ∈ 𝑌, for all 𝜆 > 0, ∃𝜆 ∈

]0, 𝜆


], and we have

𝑦 + 𝜆ℎ ∈ cone
+
(𝐹 (𝐴)) . (16)

Take 𝑐 ∈ 𝐶
+
in 𝑌. By (16), ∃ℎ + 𝑐 ∈ 𝑌, for all 𝜆 > 0, ∃𝜆 ∈

]0, 𝜆


], and we have

𝑦 + 𝜆 (ℎ + 𝑐) ∈ cone
+
(𝐹 (𝐴)) + 𝐶

+
, (17)

which implies 𝑦 ∈ vcl(cone
+
(𝐹(𝐴)) + 𝐶

+
). Therefore, (15)

holds. It follows from (14) and (15) that

vcl (cone (𝐹 (𝐴) + 𝐶)) = vcl (cone
+
(𝐹 (𝐴)) + 𝐶

+
)

= vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
)) .

(18)

Since vcl(cone
+
(𝐹(𝐴) + 𝐶

+
)) is a convex set in 𝑌, it follows

from (18) that vcl(cone(𝐹(𝐴) + 𝐶)) is a convex set in 𝑌.
Therefore, 𝐹 is nearly 𝐶-subconvexlike on 𝐴.

Remark 13. If 𝑌 is a locally convex space or a finite dimen-
sional linear space, then the condition icr(cor(cone

+
(𝐹(𝐴) +

𝐶
+
))) ̸= 0 can be dropped. Thus, Theorem 12 generalizes

Theorem3.2 in [8] from locally convex spaces to linear spaces.

The following example shows that the converse of
Theorem 12 is not true.

Example 14. Let 𝑌 = R2, 𝐶 = {(𝑦
1
, 𝑦
2
) | 𝑦
1
≥ 0, 𝑦

2
= 0},

𝐶
+
= {(𝑦
1
, 𝑦
2
) | 𝑦
1
> 0, 𝑦

2
= 0}, and 𝐴 = {(1, 0), (0, 1)}. The

set-valued map 𝐹 : 𝐴  𝑌 is defined as follows:

𝐹 (1, 0) = {(𝑦
1
, 𝑦
2
) | 1 ≤ 𝑦

1
≤ 2 − 𝑦

2
, 𝑦
2
> 0} ,

𝐹 (0, 1) = {(𝑦
1
, 𝑦
2
) | 1 ≤ 𝑦

1
≤ 2 + 𝑦

2
, 𝑦
2
< 0} .

(19)

It is easy to check that icr(cor(cone
+
(𝐹(𝐴) + 𝐶

+
))) ̸= 0. More-

over, vcl(cone(𝐹(𝐴) + 𝐶)) is a convex set in 𝑌. Therefore, 𝐹
is nearly 𝐶-subconvexlike on 𝐴. However, cor(cone

+
(𝐹(𝐴) +

𝐶
+
)) is not a convex set in 𝑌. Therefore, 𝐹 is not ic-𝐶

+
-

convexlike on 𝐴.

In Theorem 12, we do not suppose that cor(𝐶) ̸= 0. If
cor(𝐶) ̸= 0, we have the following result.

Theorem 15. Let 𝐹 : 𝐴  𝑌 be a set-valued map on 𝐴. If
cor (𝐶) ̸= 0, then 𝐹 is ic-𝐶

+
-convexlike on 𝐴 if and only if 𝐹 is

nearly 𝐶-subconvexlike on 𝐴.

Proof. Necessity. Suppose that 𝐹 is ic-𝐶
+
-convexlike on 𝐴.

Clearly,

icr (cor (cone
+
(𝐹 (𝐴) + 𝐶

+
)))

= icr (cor (cone
+
(𝐹 (𝐴)) + 𝐶

+
)) .

(20)

Since cor(𝐶) ̸= 0, cor(𝐶
+
) ̸= 0. It follows from Lemma 10 that

cor (cor (cone
+
(𝐹 (𝐴)) + 𝐶

+
))

= cor (cone
+
(𝐹 (𝐴)) + cor (𝐶

+
))

= cone
+
(𝐹 (𝐴)) + cor (𝐶

+
) ̸= 0,

(21)

which implies that

icr (cor (cone
+
(𝐹 (𝐴)) + 𝐶

+
)) ̸= 0. (22)

By (20) and (22), we have icr(cor(cone
+
(𝐹(𝐴) + 𝐶

+
))) ̸= 0.

Since 𝐹 is ic-𝐶
+
-convexlike on 𝐴, it follows fromTheorem 12

that 𝐹 is nearly 𝐶-subconvexlike on 𝐴.

Sufficiency. We suppose that 𝐹 is nearly 𝐶-subconvexlike on
𝐴. Since cor(𝐶) ̸= 0, it follows from Lemma 10 and (18) that

cor (cone
+
(𝐹 (𝐴) + 𝐶

+
)) = cor (cone

+
(𝐹 (𝐴)) + 𝐶

+
)

= cor (vcl (cone
+
(𝐹 (𝐴)) + 𝐶

+
))

= cor (vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
)))

= cor (vcl (cone (𝐹 (𝐴) + 𝐶))) .
(23)

Since 𝐹 is nearly 𝐶-subconvexlike on 𝐴, cor(vcl(cone(𝐹(𝐴) +
𝐶))) is a convex set in 𝑌. Hence, cor(cone

+
(𝐹(𝐴) + 𝐶

+
)) is a

convex set in 𝑌.
Clearly,

cone
+
(𝐹 (𝐴) + 𝐶

+
) ⊆ vcl (cone

+
(𝐹 (𝐴) + 𝐶

+
))

⊆ vcl (vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
))) .

(24)

Since cor(𝐶) ̸= 0 implies cor(cone
+
(𝐹(𝐴) + 𝐶

+
)) ̸= 0,

cor(vcl(cone
+
(𝐹(𝐴) + 𝐶

+
))) ̸= 0. By the near 𝐶-subconvex-

likeness of 𝐹, it is easy to check that vcl((cone
+
(𝐹(𝐴) + 𝐶

+
))

is a convex set in 𝑌. It follows from (c) of Lemma 9 that

vcl (vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
)))

= vcl (cor (vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
)))) .

(25)
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By Lemma 10, we have

vcl (cor (vcl (cone
+
(𝐹 (𝐴) + 𝐶

+
))))

= vcl (cor (cone
+
(𝐹 (𝐴) + 𝐶

+
))) .

(26)

By (24), (25), and (26), we have cone
+
(𝐹(𝐴) + 𝐶

+
) ⊆

vcl(cor(cone
+
(𝐹(𝐴) +𝐶

+
))). Therefore, 𝐹 is ic-𝐶

+
-convexlike

on 𝐴.

Remark 16. Theorem 15 generalizes Theorem 3.1 in [8] from
locally convex spaces to linear spaces.

Remark 17. Xu and Song used Lemma 2.2 in [8] to prove
Theorems 3.1 and 3.2 in [8]. However, in this paper, our
methods are different from those in [8].
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