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Wepresent several new sharp bounds forNeuman-Sándormean in terms of arithmetic, centroidal, quadratic, harmonic root square,
and contraharmonic means.

1. Introduction

A binary map 𝑚 : R
+

× R
+

→ R (where R
+

:= (0, +∞)

is the set of positive numbers) is said to be a bivariate
mean if the following statements are satisfied for all 𝑎, 𝑏, 𝜆 >

0: (i) 𝑚(𝑎, 𝑎) = 𝑎 (reflexivity property); (ii) 𝑚(𝑎, 𝑏) =

𝑚(𝑏, 𝑎) (symmetry property); (iii) 𝑚(𝜆𝑎, 𝜆𝑏) = 𝜆𝑚(𝑎, 𝑏)

(homogeneous of order one); (iv) 𝑚(𝑎, 𝑏) is continuous and
strictly increasing with respect to 𝑎 and 𝑏.

Let 𝑢, V, and 𝑤 be the bivariate means such that 𝑢(𝑎, 𝑏) <

𝑤(𝑎, 𝑏) < V(𝑎, 𝑏) for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. The problems
to find the best possible parameters 𝛼 and 𝛽 such that the
inequalities𝛼𝑢(𝑎, 𝑏)+(1−𝛼)V(𝑎, 𝑏) < 𝑤(𝑎, 𝑏) < 𝛽𝑢(𝑎, 𝑏)+(1−

𝛽)V(𝑎, 𝑏) and 𝑢
𝛼
(𝑎, 𝑏)V1−𝛼(𝑎, 𝑏) < 𝑤(𝑎, 𝑏) < 𝑢

𝛽
(𝑎, 𝑏)V1−𝛽(𝑎, 𝑏)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 have attracted the interest of
many mathematicians.

For 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏, theNeuman-Sándormean𝑀(𝑎, 𝑏)

[1] is defined by

𝑀(𝑎, 𝑏) =

𝑎 − 𝑏

2 arcsinh [(𝑎 − 𝑏) / (𝑎 + 𝑏)]

, (1)

where arcsinh(𝑥) = log(𝑥+√1 + 𝑥
2
) is the inverse hyperbolic

sine function.
Recently, the bounds for the Neuman-Sándor mean in

terms of other bivariate means have been the subject of
intensive research.

Let 𝐻(𝑎, 𝑏) = √2𝑎𝑏/√𝑎
2
+ 𝑏
2, 𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏),

𝐺(𝑎, 𝑏) = √𝑎𝑏, 𝐿(𝑎, 𝑏) = (𝑎 − 𝑏)/(log 𝑎 − log 𝑏), 𝑃(𝑎, 𝑏) =

(𝑎 − 𝑏)/(4 arctan√𝑎/𝑏 − 𝜋), 𝐼(𝑎, 𝑏) = 1/𝑒(𝑏
𝑏
/𝑎
𝑎
)
1/(𝑏−𝑎),

𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2, 𝑇(𝑎, 𝑏) = (𝑎 − 𝑏)/[2 arctan((𝑎 −

𝑏)/(𝑎 + 𝑏))], 𝐸(𝑎, 𝑏) = 2(𝑎
2
+ 𝑎𝑏 + 𝑏

2
)/[3(𝑎 + 𝑏)], 𝑄(𝑎, 𝑏) =

√(𝑎
2
+ 𝑏
2
)/2, and𝐶(𝑎, 𝑏) = (𝑎

2
+𝑏
2
)/(𝑎+𝑏) be the harmonic

root square, harmonic, geometric, logarithmic, first Seiffert,
identric, arithmetic, second Seiffert, centroidal, quadratic,
and contraharmonic means of two distinct positive real
numbers 𝑎 and 𝑏, respectively. Then, it is well known that the
inequalities

𝐻(𝑎, 𝑏) < 𝐻 (𝑎, 𝑏) < 𝐺 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏)

< 𝑃 (𝑎, 𝑏) < 𝐼 (𝑎, 𝑏)

< 𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏)

< 𝐸 (𝑎, 𝑏) < 𝑄 (𝑎, 𝑏) < 𝐶 (𝑎, 𝑏)

(2)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Neuman and Sándor [1, 2] proved that the inequalities

𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <

𝐴 (𝑎, 𝑏)

log (1 + √2)

,

𝜋

4

𝑇 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) ,

𝑀 (𝑎, 𝑏) <

2𝐴 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

3

,

𝑀 (𝑎, 𝑏) <

𝐴
2

(𝑎, 𝑏)

𝑃 (𝑎, 𝑏)

,
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√𝐴 (𝑎, 𝑏) 𝑇 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <
√

𝐴
2

(𝑎, 𝑏) + 𝑇
2

(𝑎, 𝑏)

2

(3)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Let 0 < 𝑎, 𝑏 < 1/2 with 𝑎 ̸= 𝑏, 𝑎 = 1 − 𝑎, and 𝑏


= 1 − 𝑏.

Then, the Ky Fan inequalities

𝐺 (𝑎, 𝑏)

𝐺 (𝑎

, 𝑏

)

<

𝐿 (𝑎, 𝑏)

𝐿 (𝑎

, 𝑏

)

<

𝑃 (𝑎, 𝑏)

𝑃 (𝑎

, 𝑏

)

<

𝐴 (𝑎, 𝑏)

𝐴 (𝑎

, 𝑏

)

<

𝑀 (𝑎, 𝑏)

𝑀 (𝑎

, 𝑏

)

<

𝑇 (𝑎, 𝑏)

𝑇 (𝑎

, 𝑏

)

(4)

can be found in [1].
Li et al. [3] proved that 𝐿

𝑝0
(𝑎, 𝑏) < 𝑀(𝑎, 𝑏) < 𝐿

2
(𝑎, 𝑏) for

all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where 𝐿
𝑝
(𝑎, 𝑏) = [(𝑏

𝑝+1
− 𝑎
𝑝+1

)/((𝑝 +

1)(𝑏 − 𝑎))]
1/𝑝

(𝑝 ̸= − 1, 0), 𝐿
0
(𝑎, 𝑏) = 𝐼(𝑎, 𝑏) and 𝐿

−1
(𝑎, 𝑏) =

𝐿(𝑎, 𝑏), is the 𝑝th generalized logarithmic mean of 𝑎 and 𝑏,
and 𝑝

0
= 1.843 ⋅ ⋅ ⋅ is the unique solution of the equation (𝑝+

1)
1/𝑝

= 2 log(1 + √2).
In [4], the author proved that the double inequalities

𝛼𝑄 (𝑎, 𝑏) + (1 − 𝛼)𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽𝑄 (𝑎, 𝑏) + (1 − 𝛽)𝐴 (𝑎, 𝑏) ,

𝜆𝐶 (𝑎, 𝑏) + (1 − 𝜆)𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝜇𝐶 (𝑎, 𝑏) + (1 − 𝜇)𝐴 (𝑎, 𝑏)

(5)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ [1 − log(1 +

√2)]/[(√2 − 1) log(1 + √2)] = 0.3249 ⋅ ⋅ ⋅ , 𝛽 ≥ 1/3, 𝜆 ≤ [1 −

log(1 + √2)]/ log(1 + √2) = 0.1345 ⋅ ⋅ ⋅ , and 𝜇 ≥ 1/6.
In [5, 6], the authors proved that 𝛼 = 4, 𝛽 =

log 2/[2 log(1+√2)], 𝜆 = 1, and 𝜇 = 𝑒/[2 log(1+√2)] are the
best possible constants such that the inequalities 𝑀(𝑎, 𝑏) >

𝐿
𝛼
(𝑎, 𝑏), 𝑀(𝑎, 𝑏) > 𝑀

𝛽
(𝑎, 𝑏), and 𝜆𝐼(𝑎, 𝑏) < 𝑀(𝑎, 𝑏) <

𝜇𝐼(𝑎, 𝑏) hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. In here, 𝐿
𝑟
(𝑎, 𝑏) =

[(𝑏
𝑟
−𝑎
𝑟
)/(𝑟(log 𝑏− log 𝑎))]

1/𝑟 and𝑀
𝑝
(𝑎, 𝑏) = [(𝑎

𝑝
+𝑏
𝑝
)/2]
1/𝑝

are the 𝑟th generalized logarithmic and 𝑝th power means of
𝑎 and 𝑏, respectively.

Zhao et al. [7, 8] found the least values 𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛼
4
, 𝛼
5

and the greatest values 𝛽
1
, 𝛽
2
, 𝛽
3
, 𝛽
4
, 𝛽
5
such that the double

inequalities

𝛼
1
𝐻(𝑎, 𝑏) + (1 − 𝛼

1
) 𝑄 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽
1
𝐻(𝑎, 𝑏) + (1 − 𝛽

1
) 𝑄 (𝑎, 𝑏) ,

𝛼
2
𝐺 (𝑎, 𝑏) + (1 − 𝛼

2
) 𝑄 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽
2
𝐺 (𝑎, 𝑏) + (1 − 𝛽

2
) 𝑄 (𝑎, 𝑏) ,

𝛼
3
𝐻(𝑎, 𝑏) + (1 − 𝛼

3
) 𝐶 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽
3
𝐻(𝑎, 𝑏) + (1 − 𝛽

3
) 𝐶 (𝑎, 𝑏) ,

𝐼
𝛼4

(𝑎, 𝑏) 𝑄
1−𝛼4

(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝐼
𝛽4

(𝑎, 𝑏) 𝑄
1−𝛽4

(𝑎, 𝑏) ,

𝐼
𝛼5

(𝑎, 𝑏) 𝐶
1−𝛼5

(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝐼
𝛽5

(𝑎, 𝑏) 𝐶
1−𝛽5

(𝑎, 𝑏)

(6)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
In [9], the authors proved that if 𝜆, 𝜇 ∈ (1/2, 1), then the

double inequality 𝐶(𝜆𝑎+ (1 − 𝜆)𝑏, 𝜆𝑏 + (1 − 𝜆)𝑎) < 𝑀(𝑎, 𝑏) <

𝐶(𝜇𝑎 + (1 − 𝜇)𝑏, 𝜇𝑏 + (1 − 𝜇)𝑎) holds for all 𝑎, 𝑏 > 0 with
𝑎 ̸= 𝑏 if and only if 𝜆 ≤ [1 + √1/ log(1 + √2) − 1]/2 and 𝜇 ≥

(6 + √6)/12.
The aim of this paper is to present the sharp bounds

for Neuman-Sándor mean in terms of the combinations of
either arithmetic and centroidal means, or quadratic and
harmonic root square means, contraharmonic and harmonic
root square means. Our main results are shown inTheorems
1–4.

Theorem 1. The double inequality

𝛼
1
𝐸 (𝑎, 𝑏) + (1 − 𝛼

1
) 𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽
1
𝐸 (𝑎, 𝑏) + (1 − 𝛽

1
) 𝐴 (𝑎, 𝑏)

(7)

holds for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏 if and only if 𝛼
1
≤ (3−3 log(1+

√2))/ log(1 + √2) = 0.4037 and 𝛽
1
≥ 1/2.

Theorem 2. The double inequality

𝐸
𝜆1

(𝑎, 𝑏) 𝐴
1−𝜆1

(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝐸
𝜇1

(𝑎, 𝑏) 𝐴
1−𝜇1

(𝑎, 𝑏)

(8)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝜆
1
≤ log[log(1 +

√2)]/(log 3 − 2 log 2) = 0.4389 ⋅ ⋅ ⋅ and 𝜇
1
≥ 1/2.

Theorem 3. The double inequality

𝛼
2
𝑄 (𝑎, 𝑏) + (1 − 𝛼

2
)𝐻 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽
2
𝑄 (𝑎, 𝑏) + (1 − 𝛽

2
)𝐻 (𝑎, 𝑏)

(9)

holds for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏 if and only if𝛼
2
≤ √2/[2 log(1+

√2)] = 0.8022 ⋅ ⋅ ⋅ and 𝛽
2
≥ 5/6.

Theorem 4. The double inequality

𝜆
2
𝐶 (𝑎, 𝑏) + (1 − 𝜆

2
)𝐻 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝜇
2
𝐶 (𝑎, 𝑏) + (1 − 𝜇

2
)𝐻 (𝑎, 𝑏)

(10)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝜆
2
≤ 1/[2 log(1 +

√2)] = 0.5672 ⋅ ⋅ ⋅ and 𝜇
2
≥ 2/3.

2. Lemmas

In order to establish ourmain results we need several lemmas,
which we present in this section.

Lemma 5 (see [10, Theorem 1.25]). For −∞ < 𝑎 < 𝑏 < ∞, let
𝑓, 𝑔 : [𝑎, 𝑏] → R be continuous on [𝑎, 𝑏] and differentiable on
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(𝑎, 𝑏), and let 𝑔(𝑥) ̸= 0 on (𝑎, 𝑏). If 𝑓(𝑥)/𝑔(𝑥) is increasing
(decreasing) on (𝑎, 𝑏), then so are

𝑓 (𝑥) − 𝑓 (𝑎)

𝑔 (𝑥) − 𝑔 (𝑎)

,

𝑓 (𝑥) − 𝑓 (𝑏)

𝑔 (𝑥) − 𝑔 (𝑏)

. (11)

If 𝑓(𝑥)/𝑔(𝑥) is strictly monotone, then the monotonicity in
the conclusion is also strict.

Lemma 6 (see [11, Lemma 1.1]). Suppose that the power series
𝑓(𝑥) = ∑

∞

𝑛=0
𝑎
𝑛
𝑥
𝑛 and 𝑔(𝑥) = ∑

∞

𝑛=0
𝑏
𝑛
𝑥
𝑛 have the radius of

convergence 𝑟 > 0 and 𝑏
𝑛

> 0 for all 𝑛 ∈ {0, 1, 2, . . .}. Let
ℎ(𝑥) = 𝑓(𝑥)/𝑔(𝑥). Then,

(1) if the sequence {𝑎
𝑛
/𝑏
𝑛
}
∞

𝑛=0
is (strictly) increasing

(decreasing), then ℎ(𝑥) is also (strictly) increasing
(decreasing) on (0, 𝑟);

(2) if the sequence {𝑎
𝑛
/𝑏
𝑛
} is (strictly) increasing (decreas-

ing) for 0 < 𝑛 ≤ 𝑛
0
and (strictly) decreasing

(increasing) for 𝑛 > 𝑛
0
, then there exists𝑥

0
∈ (0, 𝑟) such

that ℎ(𝑥) is (strictly) increasing (decreasing) on (0, 𝑥
0
)

and (strictly) decreasing (increasing) on (𝑥
0
, 𝑟).

Lemma 7. The function

ℎ (𝑡) =

𝑡 cosh (3𝑡) + 11𝑡 cosh (𝑡) − sinh (3𝑡) − 9 sinh (𝑡)

2𝑡 [cosh (3𝑡) − cosh (𝑡)]

(12)

is strictly decreasing on (0, log(1 + √2)), where sinh(𝑡) = (𝑒
𝑡
−

𝑒
−𝑡
)/2 and cosh(𝑡) = (𝑒

𝑡
+ 𝑒
−𝑡
)/2 are the hyperbolic sine and

cosine functions, respectively.

Proof. Let

ℎ
1
(𝑡) = 𝑡 cosh (3𝑡) + 11𝑡 cosh (𝑡) − sinh (3𝑡) − 9 sinh (𝑡) ,

ℎ
2
(𝑡) = 2𝑡 [cosh (3𝑡) − cosh (𝑡)] .

(13)

Then, making use of power series formulas, we have

ℎ
1
(𝑡) = 𝑡

∞

∑

𝑛=0

(3𝑡)
2𝑛

(2𝑛)!

+ 11𝑡

∞

∑

𝑛=0

(𝑡)
2𝑛

(2𝑛)!

−

∞

∑

𝑛=0

(3𝑡)
2𝑛+1

(2𝑛 + 1)!

− 9

∞

∑

𝑛=0

(𝑡)
2𝑛+1

(2𝑛 + 1)!

=

∞

∑

𝑛=0

(2𝑛 + 3) (3
2𝑛+2

+ 11) − (3
2𝑛+3

+ 9)

(2𝑛 + 3)!

𝑡
2𝑛+3

,

ℎ
2
(𝑡) =

∞

∑

𝑛=0

2 (3
2𝑛+2

− 1)

(2𝑛 + 2)!

𝑡
2𝑛+3

.

(14)

It follows from (12)–(14) that

ℎ (𝑡) =

∑
∞

𝑛=0
𝑎
𝑛
𝑡
2𝑛

∑
∞

𝑛=0
𝑏
𝑛
𝑡
2𝑛

, (15)

where

𝑎
𝑛
=

(2𝑛 + 3) (3
2𝑛+2

+ 11) − (3
2𝑛+3

+ 9)

(2𝑛 + 3)!

,

𝑏
𝑛
=

2 (3
2𝑛+2

− 1)

(2𝑛 + 2)!

.

(16)

Equation (16) leads to

𝑎
𝑛+1

𝑏
𝑛+1

−

𝑎
𝑛

𝑏
𝑛

=

18𝑐
𝑛

2 (2𝑛 + 3) (2𝑛 + 5) (3
2𝑛+2

− 1) (3
2𝑛+4

− 1)

,

(17)

where

𝑐
𝑛
= 3 ⋅ 9

𝑛

(81 ⋅ 9
𝑛

− 64𝑛
2

− 224𝑛 − 166) − 1. (18)

It is not difficult to verify that 𝑥 → 81⋅9
𝑥
−64𝑥
2
−224𝑥−

166 is positive and strictly increasing in [1,∞). Then, from
(18), we get that

𝑐
𝑛
> 0 (19)

for 𝑛 ≥ 1. Note that

𝑐
0
= −256, 𝑐

1
= 7424. (20)

Equations (17) and (20) together with inequality (19)
lead to the conclusion that the sequence {𝑎

𝑛
/𝑏
𝑛
} is strictly

decreasing for 0 ≤ 𝑛 ≤ 1 and strictly increasing for 𝑛 ≥ 2.
Then, from Lemma 6(2) and (15), we clearly see that there
exists 𝑡

0
∈ (0,∞) such that ℎ(𝑡) is strictly decreasing on (0, 𝑡

0
)

and strictly increasing on (𝑡
0
,∞).

Let 𝑡∗ = log(1 + √2). Then, simple computations lead to

sinh (𝑡
∗

) = 1, cosh (𝑡
∗

) = √2,

sinh (3𝑡
∗

) = 7, cosh (3𝑡
∗

) = 5√2.

(21)

Differentiating (12) yields

ℎ


(𝑡)

=

3𝑡 sinh (3𝑡) + 11𝑡 sinh (𝑡) − 2 cosh (3𝑡) + 2 cosh (𝑡)

ℎ
2
(𝑡)

−

2𝑡 [3 sinh (3𝑡)−sinh (𝑡)]+2 [cosh (3𝑡)−cosh (𝑡)]

ℎ
2
(𝑡)
2

ℎ
1
(𝑡) .

(22)

From (13) together with (21) and (22), we get

ℎ


(𝑡
∗

) =

−3√2𝑡
∗2

+ 2𝑡
∗
+ √2

𝑡
∗2

= −0.1529 ⋅ ⋅ ⋅ < 0. (23)

From the piecewise monotonicity of ℎ(𝑡) and inequality
(23) we clearly see that 𝑡

0
> 𝑡
∗

= log(1 + √2), and the proof
of Lemma 7 is completed.
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Lemma 8. The function

𝑔 (𝑡) =

𝑡 cosh (3𝑡) + 3𝑡 cosh (𝑡) − 2 sinh (2𝑡)

𝑡 [cosh (3𝑡) + 2 cosh (2𝑡) + 3 cosh (𝑡) − 6]

(24)

is strictly increasing from (0, log(1 + √2)) onto (1/3, 1 −

1/[2 log(1 + √2)]).

Proof. Let

𝑔
1
(𝑡) = 𝑡 cosh (3𝑡) + 3𝑡 cosh (𝑡) − 2 sinh (2𝑡) ,

𝑔
2
(𝑡) = 𝑡 [cosh (3𝑡) + 2 cosh (2𝑡) + 3 cosh (𝑡) − 6] .

(25)

Then, making use of power series formulas, we have

𝑔
1
(𝑡) = 𝑡

∞

∑

𝑛=0

(3𝑡)
2𝑛

(2𝑛)!

+ 3𝑡

∞

∑

𝑛=0

(𝑡)
2𝑛

(2𝑛)!

− 2

∞

∑

𝑛=0

(2𝑡)
2𝑛+1

(2𝑛 + 1)!

=

∞

∑

𝑛=0

(2𝑛 + 3) (3
2𝑛+2

+ 3) − 2
2𝑛+4

(2𝑛 + 3)!

𝑡
2𝑛+3

,

𝑔
2
(𝑡) =

∞

∑

𝑛=0

3
2𝑛+2

+ 2
2𝑛+3

+ 3

(2𝑛 + 2)!

𝑡
2𝑛+3

.

(26)

It follows from (24)–(26) that

ℎ (𝑡) =

∑
∞

𝑛=0
𝑑
𝑛
𝑡
2𝑛

∑
∞

𝑛=0
𝑒
𝑛
𝑡
2𝑛

, (27)

where

𝑑
𝑛
=

(2𝑛 + 3) (3
2𝑛+2

+ 3) − 2
2𝑛+4

(2𝑛 + 3)!

,

𝑒
𝑛
=

3
2𝑛+2

+ 2
2𝑛+3

+ 3

(2𝑛 + 2)!

.

(28)

Note that

𝑑
𝑛

𝑒
𝑛

=

(2𝑛 + 3) (3
2𝑛+2

+ 3) − 2
2𝑛+4

(2𝑛 + 3) [3
2𝑛+2

+ 2
2𝑛+3

+ 3]

=

1 − (16 ⋅ 4
𝑛
/ (2𝑛 + 3) (9

𝑛+1
+ 3))

1 + (8 ⋅ 4
𝑛
/ (9
𝑛+1

+ 3))

.

(29)

It is not difficult to verify that the function 𝑥 →

4
𝑥
/(9
𝑥+1

+ 3) is strictly decreasing in (0,∞). Then from (29),
we know that the sequence {𝑑

𝑛
/𝑒
𝑛
} is strictly increasing for

𝑛 = 0, 1, 2, . . .. Hence, from Lemma 6(1), (24), and (27) the
monotonicity of 𝑔(𝑡) follows. Moreover, 𝑔(log(1 + √2)) =

1 − 1/[2 log(1 + √2)] = 0.4327 ⋅ ⋅ ⋅ and

lim
𝑡→0

𝑔 (𝑡) =

𝑑
0

𝑒
0

=

1

3

. (30)

3. Proofs of Theorems 1–4

Proof of Theorem 1. Since 𝑀(𝑎, 𝑏), 𝐸(𝑎, 𝑏), and 𝐴(𝑎, 𝑏) are
symmetric and homogeneous of degree 1, without loss of
generality, we assume that 𝑎 > 𝑏. Let 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏)

and 𝑡 = arcsinh(𝑥). Then, 𝑥 ∈ (0, 1), 𝑡 ∈ (0, log(1 + √2)), and

𝑀(𝑎, 𝑏) − 𝐴 (𝑎, 𝑏)

𝐸 (𝑎, 𝑏) − 𝐴 (𝑎, 𝑏)

=

𝑥/arcsinh (𝑥) − 1

(3 + 𝑥
2
) /3 − 1

=

3 [sinh (𝑡) − 𝑡]

𝑡 sinh2 (𝑡)
=

6 [sinh (𝑡) − 𝑡]

𝑡 [cosh (2𝑡) − 1]

.

(31)

Let

𝐹 (𝑡) =

6 [sinh (𝑡) − 𝑡]

𝑡 [cosh (2𝑡) − 1]

. (32)

Then, simple computations lead to

𝐹 (𝑡) =

∑
∞

𝑛=0
𝑎
∗

𝑛
𝑡
2𝑛

∑
∞

𝑛=0
𝑏
∗

𝑛
𝑡
2𝑛

, (33)

where 𝑎
∗

𝑛
= 6/(2𝑛 + 3)! and 𝑏

∗

𝑛
= 2
2𝑛+2

/(2𝑛 + 2)!. Note
that 𝑎∗

𝑛
/𝑏
∗

𝑛
= 6/[(2𝑛 + 3)2

2𝑛+2
] is strictly decreasing for 𝑛 =

0, 1, 2, . . .. Hence, from Lemma 6(1) and (33), we know that
𝐹(𝑡) is strictly decreasing in (0, log(1 + √2)). Moreover,

lim
𝑡→0

𝐹 (𝑡) =

𝑎
∗

0

𝑏
∗

0

=

1

2

,

lim
𝑡→ log(1+√2)

𝐹 (𝑡) =

3 − 3 log (1 + √2)

log (1 + √2)

= 0.4037 ⋅ ⋅ ⋅ .

(34)

Therefore, Theorem 1 follows from (31), (32), and (34)
together with the monotonicity of 𝐹(𝑡).

Proof of Theorem 2. Without loss of generality, we assume
that 𝑎 > 𝑏. Let 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏) and 𝑡 = arcsinh(𝑥). Then,
𝑥 ∈ (0, 1), 𝑡 ∈ (0, log(1 + √2)), and

log [𝑀 (𝑎, 𝑏)] − log [𝐴 (𝑎, 𝑏)]

log [𝐸 (𝑎, 𝑏)] − log [𝐴 (𝑎, 𝑏)]

=

log [𝑥/arcsinh (𝑥)]

log (1 + (𝑥
2
/3))

=

log [sinh (𝑡) /𝑡]

log [1 + sinh2 (𝑡) /3]
.

(35)

Let 𝐺
1
(𝑡) = log[sinh(𝑡)/𝑡], 𝐺

2
(𝑡) = log[1 + sinh2(𝑡)/3],

and

𝐺 (𝑡) =

log [sinh (𝑡) /𝑡]

log [1 + sinh2 (𝑡) /3]
. (36)
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Then, 𝐺
1
(0
+
) = 𝐺
2
(0) = 0, 𝐺(𝑡) = 𝐺

1
(𝑡)/𝐺
2
(𝑡), and

𝐺


1
(𝑡)

𝐺


2
(𝑡)

=

[𝑡 cosh (𝑡) − sinh (𝑡)] [sinh2 (𝑡) + 3]

2𝑡 sinh2 (𝑡) cosh (𝑡)

=

[𝑡 cosh (𝑡) − sinh (𝑡)] [cosh (2𝑡) + 5]

2𝑡 sinh (2𝑡) sinh (𝑡)

= ℎ (𝑡) ,

(37)

where ℎ(𝑡) is defined as in Lemma 7.
It follows from Lemmas 5 and 7, (36), and (37) that 𝐺(𝑡)

is strictly decreasing in (0, log(1 + √2)). Moreover,

lim
𝑡→0

𝐺 (𝑡) = lim
𝑡→0

𝐺


1
(𝑡)

𝐺


2
(𝑡)

=

1

2

,

lim
𝑡→ log(1+√2)

𝐺 (𝑡) =

log [log (1 + √2)]

log 3 − 2 log 2

= 0.4389 ⋅ ⋅ ⋅ .

(38)

Therefore, Theorem 2 follows easily from (35), (36), and
(38) together with the monotonicity of 𝐺(𝑡).

Proof of Theorem 3. Since 𝑀(𝑎, 𝑏), 𝑄(𝑎, 𝑏), and 𝐻(𝑎, 𝑏) are
symmetric and homogeneous of degree 1, without loss of
generality, we assume that 𝑎 > 𝑏. Let 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏)

and 𝑡 = arcsinh(𝑥). Then, 𝑥 ∈ (0, 1), 𝑡 ∈ (0, log(1 + √2)), and

𝑀(𝑎, 𝑏) − 𝑄 (𝑎, 𝑏)

𝐻 (𝑎, 𝑏) − 𝑄 (𝑎, 𝑏)

=

𝑥/arcsinh (𝑥) − √1 + 𝑥
2

(1 − 𝑥
2
) /√1 + 𝑥

2
− √1 + 𝑥

2

=

sinh (𝑡) /𝑡 − cosh (𝑡)

[1 − sinh2 (𝑡)] / cosh (𝑡) − cosh (𝑡)

=

𝑡 cosh (2𝑡) + 𝑡 − sinh (2𝑡)

2𝑡 [cosh (2𝑡) − 1]

.

(39)

Let

𝜑 (𝑡) =

𝑡 cosh (2𝑡) + 𝑡 − sinh (2𝑡)

2𝑡 [cosh (2𝑡) − 1]

. (40)

Then, simple computations lead to

𝜑 (𝑡) =

∑
∞

𝑛=0
𝑑
∗

𝑛
𝑡
2𝑛

∑
∞

𝑛=0
𝑒
∗

𝑛
𝑡
2𝑛

, (41)

where 𝑑
∗

𝑛
= (2𝑛+1) ⋅ 2

2𝑛+2
/(2𝑛+3)!, and 𝑒

∗

𝑛
= 2
2𝑛+3

/(2𝑛+2)!.
Note that 𝑑∗

𝑛
/𝑒
∗

𝑛
= [1 − 2/(2𝑛 + 3)]/2 is strictly increasing for

𝑛 = 0, 1, 2, . . .. Hence, from Lemma 6(1) and (41), we know
that 𝜑(𝑡) is strictly increasing in (0, log(1 + √2)). Moreover,

lim
𝑡→0

𝜑 (𝑡) =

𝑑
∗

0

𝑒
∗

0

=

1

6

,

lim
𝑡→ log(1+√2)

𝜑 (𝑡) = 1 −

√2

2 log (1 + √2)

= 0.1977 ⋅ ⋅ ⋅ .

(42)

Therefore, Theorem 3 follows from (39), (40), and (42)
together with the monotonicity of 𝜑(𝑡).

Proof of Theorem 4. Since 𝑀(𝑎, 𝑏), 𝐶(𝑎, 𝑏), and 𝐻(𝑎, 𝑏) are
symmetric and homogeneous of degree 1, without loss of
generality, we assume that 𝑎 > 𝑏. Let 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏)

and 𝑡 = arcsinh(𝑥). Then, 𝑥 ∈ (0, 1), 𝑡 ∈ (0, log(1 + √2)), and

𝑀(𝑎, 𝑏) − 𝐶 (𝑎, 𝑏)

𝐻 (𝑎, 𝑏) − 𝐶 (𝑎, 𝑏)

=

𝑥/arcsinh (𝑥) − (1 + 𝑥
2
)

(1 − 𝑥
2
) /√1 + 𝑥

2
− (1 + 𝑥

2
)

=

sinh (𝑡) /𝑡 − cosh2 (𝑡)
[1 − sinh2 (𝑡)] / cosh (𝑡) − cosh2 (𝑡)

=

𝑡cosh3 (𝑡) − sinh (𝑡) cosh (𝑡)

𝑡 [cosh3 (𝑡) + sinh2 (𝑡) − 1]

= 𝑔 (𝑡) ,

(43)

where 𝑔(𝑡) is defined as in Lemma 8.
Therefore, Theorem 4 follows from (43) and Lemma 8.
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