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We investigate fixed points of meromorphic solutions 𝑦(𝑧) for the Pielou logistic equation and obtain some estimates of exponents
of convergence of fixed points of 𝑦(𝑧) and its shifts 𝑦(𝑧+𝑛), differencesΔ𝑦(𝑧) = 𝑦(𝑧+1)−𝑦(𝑧), and divided differencesΔ𝑦(𝑧)/𝑦(𝑧).

1. Introduction and Results

In this paper, we assume the reader is familiar with basic
notions of Nevanlinna’s value distribution theory (see [1–3]).
In addition, we use the notation 𝜎(𝑓) to denote the order of
growth of a meromorphic function𝑓 and 𝜆(𝑓) and 𝜆(1/𝑓) to
denote, respectively, the exponents of convergence of zeros
and poles of 𝑓. We also use the notation 𝜏(𝑓) to denote the
exponent of convergence of fixed points of 𝑓 that is defined
as

𝜏 (𝑓) = lim
𝑟→∞

log𝑁(𝑟, 1/ (𝑓 (𝑧) − 𝑧))

log 𝑟
. (1)

Recently, a number of papers (including [4–17]) focus
on complex difference equations and difference analogues of
Nevanlinna’s theory.

The Pielou logistic equation

𝑦 (𝑧 + 1) =
𝑅 (𝑧) 𝑦 (𝑧)

𝑄 (𝑧) + 𝑃 (𝑧) 𝑦 (𝑧)
, (2)

where 𝑃(𝑧), 𝑄(𝑧), and 𝑅(𝑧) are nonzero polynomials, is
an important difference equation, because it is obtained by
transform from the well-known Verhulst Pearl equation (see
[18, page 99])

𝑥


(𝑡) = 𝑥 (𝑡) [𝑎 − 𝑏𝑥 (𝑡)] (𝑎, 𝑏 > 0) , (3)

which is the most popular continuous model of growth of a
population.

Chen [7] obtained the following theorem.

Theorem A. Let 𝑃(𝑧), 𝑄(𝑧), and 𝑅(𝑧) be polynomials with
𝑃(𝑧)𝑄(𝑧)𝑅(𝑧) ̸≡ 0 and let 𝑦(𝑧) be a finite order transcenden-
tal meromorphic solution of (2). Then

𝜆(
1

𝑦
) = 𝜎 (𝑦) ≥ 1. (4)

Example 1. The function 𝑦(𝑧) = 𝑧2
𝑧

/(2
𝑧

− 1) satisfies the
Pielou logistic equation

𝑦 (𝑧 + 1) =
2 (𝑧 + 1) 𝑦 (𝑧)

𝑧 + 𝑦 (𝑧)
, (5)

where 𝑦(𝑧) satisfies

(𝑦) = 0, 𝜆 (
1

𝑦
) = 𝜎 (𝑦) = 1. (6)

This example shows that the result of Theorem A is sharp.

One of the main purposes in this paper is to study
fixed points of meromorphic solutions of the Pielou logistic
equation (2).

The problem of fixed points of meromorphic functions is
an important one in the theory of meromorphic functions.
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Many papers and books (including [18–20]) investigate fixed
points of meromorphic functions.

Now we consider fixed points of meromorphic functions
and their shifts, differences, and divided differences. We see
that there are many examples to show that either 𝑓(𝑧) may
have no fixed point, for example, 𝑓

1
(𝑧) = 𝑒

𝑧

+ 𝑧 or the shift
𝑓(𝑧+𝑐) of 𝑓(𝑧), or the difference Δ

𝑐
𝑓(𝑧) = 𝑓(𝑧+𝑐)−𝑓(𝑧) of

𝑓(𝑧) may have only finitely many fixed points; for example,
for the function 𝑓

2
(𝑧) = 𝑒

𝑧

+𝑧−1, its shift 𝑓
2
(𝑧+1) = 𝑒𝑒

𝑧

+𝑧,
and its difference Δ

2𝜋𝑖
𝑓
2
(𝑧) = 𝑓

2
(𝑧 + 2𝜋𝑖) − 𝑓

2
(𝑧) = 2𝜋𝑖 have

only finitely many fixed points. Even if for a meromorphic
function of small growth, Chen and Shon show that there
exists a meromorphic function 𝑓

0
such that 𝜎(𝑓

0
) < 1 and

Δ
𝑐
𝑓
0
(𝑧) = 𝑓

0
(𝑧+𝑐)−𝑓

0
(𝑧) has only finitelymany fixed points

(see Theorem 6 of [9]).
A divided difference (𝑓(𝑧 + 𝑐) − 𝑓(𝑧))/𝑓(𝑧) may also

have only finitelymany fixed points; for example, the function
𝑓(𝑧) = 𝑧𝑒

𝑧 satisfies that its divided difference (𝑓(𝑧 + 1) −

𝑓(𝑧))/𝑓(𝑧) = ((𝑧 + 1)𝑒 − 𝑧)/𝑧 has only finitely many fixed
points. Chen and Shon obtainedTheorem B.

Theorem B (see [9]). Let 𝑐 ∈ C \ {0} be a constant and let 𝑓
be a transcendental meromorphic function of order of growth
𝜎(𝑓) = 𝜎 < 1 or of the form 𝑓(𝑧) = ℎ(𝑧)𝑒

𝑎𝑧, where 𝑎 ̸= 0 is
a constant and ℎ(𝑧) is a transcendental meromorphic function
with 𝜎(ℎ) < 1. Suppose that 𝑝(𝑧) is a nonconstant polynomial.
Then

𝐺 (𝑧) =
𝑓 (𝑧 + 𝑐) − 𝑓 (𝑧)

𝑓 (𝑧)
− 𝑝 (𝑧) (7)

has infinitely many zeros.

From Theorem B, we easily see that under conditions
of Theorem B, the divided difference 𝐺

1
(𝑧) = (𝑓(𝑧 + 𝑐) −

𝑓(𝑧))/𝑓(𝑧) has infinitely many fixed points. The previous
example 𝑓(𝑧) = 𝑧𝑒𝑧 shows that result of Theorem B is sharp.

However, we discover that the properties on fixed points
of meromorphic solutions of (2) are very good. We prove the
following theorem.

Theorem 2. Let 𝑃(𝑧), 𝑄(𝑧), and 𝑅(𝑧) be nonzero polynomi-
als such that

deg𝑃 (𝑧) ≥ max {deg𝑅 (𝑧) , deg𝑄 (𝑧)} , deg𝑃 (𝑧) ≥ 1.
(8)

Set Δ𝑦(𝑧) = 𝑦(𝑧 + 1) − 𝑦(𝑧). Then every finite order
transcendental meromorphic solution 𝑦(𝑧) of (2) satisfies the
following:

(i) 𝜏(𝑦(𝑧 + 𝑛)) = 𝜎(𝑦(𝑧)) ≥ 1 (𝑛 = 0, 1, . . .);
(ii) if 𝑅(𝑧) − (𝑧 + 1)𝑄(𝑧) ̸≡ 0, then 𝜏(Δ𝑦(𝑧)/𝑦(𝑧)) =

𝜎(𝑦(𝑧));
(iii) if there is a polynomial ℎ(𝑧) satisfying

(−𝑅 (𝑧) + 𝑄 (𝑧) + 𝑧𝑃 (𝑧))
2

− 4𝑧𝑃 (𝑧)𝑄 (𝑧) = ℎ(𝑧)
2

, (9)

then 𝜏(Δ𝑦(𝑧)) = 𝜎(𝑦(𝑧)).

Remark 3. Generally, 𝜏(𝑓(𝑧)) ̸= 𝜏(𝑓(𝑧+𝑐)) for ameromorphic
function 𝑓(𝑧) of finite order. For example, the function
𝑓
1
(𝑧) = 𝑒

𝑧

+ 𝑧 satisfies

𝜏 (𝑓
1
(𝑧)) = 0 ̸= 𝜏 (𝑓

1
(𝑧 + 1)) = 1. (10)

2. Proof of Theorem 2

We need the following lemmas for the proof of Theorem 2.

Lemma 4 (see [12, 17]). Let𝑤(𝑧) be a nonconstant finite order
meromorphic solution of

𝑃 (𝑧, 𝑤) = 0, (11)

where𝑃(𝑧, 𝑤) is a difference polynomial in𝑤(𝑧). If𝑃(𝑧, 𝑎) ̸≡ 0

for a meromorphic function 𝑎(𝑧) satisfying 𝑇(𝑟, 𝑎) = 𝑆(𝑟, 𝑤),
then

𝑚(𝑟,
1

𝑤 − 𝑎
) = 𝑆 (𝑟, 𝑤) (12)

holds for all 𝑟 outside of a possible exceptional set with finite
logarithmic measure.

Remark 5. Using the same method as in the proof of
Lemma 4 (see [12]), we can prove that in Lemma 4, if all
coefficients 𝑏

𝜆
(𝑧) of𝑃(𝑧, 𝑤) satisfy 𝜎(𝑏

𝜆
(𝑧)) = 𝜎

1
< 𝜎(𝑤(𝑧)) =

𝜎 and if 𝑃(𝑧, 𝑎) ̸≡ 0 for a meromorphic function 𝑎(𝑧)

satisfying𝑇(𝑟, 𝑎) = 𝑆(𝑟, 𝑤), then for a given 𝜀 (0 < 𝜀 < 𝜎−𝜎
1
),

𝑚(𝑟,
1

𝑤 (𝑧) − 𝑎 (𝑧)
) = 𝑆 (𝑟, 𝑤 (𝑧)) + 𝑂 (𝑟

𝜎
1
+𝜀

) (13)

holds for all 𝑟 outside of a possible exceptional set with finite
logarithmic measure.

Lemma 6. Suppose that 𝑅(𝑧), 𝑄(𝑧), and 𝑃(𝑧) satisfy the
condition (8) in Theorem 2 and that 𝑦(𝑧) is a nonconstant
meromorphic function. Then

𝑓
1
(𝑧) = (𝑅 (𝑧) − 𝑧𝑃 (𝑧)) 𝑦 (𝑧) − 𝑧𝑄 (𝑧) ,

𝑓
2
(𝑧) = 𝑃 (𝑧) 𝑦 (𝑧) + 𝑄 (𝑧)

(14)

have at most finitely many common zeros.

Proof. Suppose that 𝑧
0
is a common zero of 𝑓

1
(𝑧) and 𝑓

2
(𝑧).

Then 𝑓
2
(𝑧
0
) = 𝑃(𝑧

0
)𝑦(𝑧
0
) + 𝑄(𝑧

0
) = 0. Thus, 𝑦(𝑧

0
) =

−𝑄(𝑧
0
)/𝑃(𝑧
0
). Substituting 𝑦(𝑧

0
) = −𝑄(𝑧

0
)/𝑃(𝑧
0
) into 𝑓

1
(𝑧),

we obtain

𝑓
1
(𝑧
0
) = −

𝑄 (𝑧
0
)

𝑃 (𝑧
0
)
(𝑅 (𝑧
0
) − 𝑧
0
𝑃 (𝑧
0
)) − 𝑧

0
𝑄 (𝑧
0
)

= −
𝑅 (𝑧
0
) 𝑄 (𝑧

0
)

𝑃 (𝑧
0
)

= 0.

(15)

Since 𝑅(𝑧)𝑄(𝑧)/𝑃(𝑧) has only finitely many zeros, we see that
𝑓
1
(𝑧) and 𝑓

2
(𝑧) have at most finitely many common zeros.
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Lemma 7 (see [14]). Let 𝑓(𝑧) be a nonconstant finite order
meromorphic function. Then

𝑇 (𝑟 + 1, 𝑓 (𝑧)) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓 (𝑧)) . (16)

Gol’dberg and Ostrovskii [21, page 66] give that for any
constant 𝑏,

(1 + 𝑜 (1)) 𝑇 (𝑟 − |𝑏| , 𝑓 (𝑧))

≤ 𝑇 (𝑟, 𝑓 (𝑧 + 𝑏)) ≤ (1 + 𝑜 (1)) 𝑇 (𝑟 + |𝑏| , 𝑓 (𝑧)) .

(17)

This and Lemma 7 give the following lemma.

Lemma 8. Let 𝑓(𝑧) be a nonconstant finite order meromor-
phic function. Then

𝑇 (𝑟, 𝑓 (𝑧 + 1)) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓 (𝑧)) . (18)

Using the same method as in the proof of Lemma 6, we
can prove Lemmas 9 and 10.

Lemma 9. Suppose that 𝑅(𝑧), 𝑄(𝑧), and 𝑃(𝑧) satisfy the
condition (8) in Theorem 2 and that 𝑦(𝑧) is a nonconstant
meromorphic function. Then

𝑓
1
(𝑧) = 𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧) − (𝑧 + 1) 𝑃 (𝑧) 𝑦 (𝑧) ,

𝑓
2
(𝑧) = 𝑃 (𝑧) 𝑦 (𝑧) + 𝑄 (𝑧)

(19)

have at most finitely many common zeros.

Lemma 10. Suppose that 𝑅(𝑧), 𝑄(𝑧), and 𝑃(𝑧) satisfy the
condition (8) in Theorem 2 and 𝑦(𝑧) is a nonconstant mero-
morphic function. Then

𝑓
1
(𝑧) = 𝑃 (𝑧) 𝑦(𝑧)

2

+ [−𝑅 (𝑧) + 𝑄 (𝑧) + 𝑧𝑃 (𝑧)] 𝑦 (𝑧)

+ 𝑧𝑄 (𝑧) ,

𝑓
2
(𝑧) = 𝑃 (𝑧) 𝑦 (𝑧) + 𝑄 (𝑧)

(20)

have at most finitely many common zeros.

Proof of Theorem 2. (i)We prove that 𝜏(𝑦(𝑧+𝑛)) = 𝜎(𝑦(𝑧)) ≥
1 (𝑛 = 0, 1, . . .). Suppose that 𝑛 = 0. Set 𝑦(𝑧) − 𝑧 = 𝑔(𝑧). So,
𝑔(𝑧) is transcendental, 𝑇(𝑟, 𝑔(𝑧)) = 𝑇(𝑟, 𝑦(𝑧))+𝑂(log 𝑟), and
𝑆(𝑟, 𝑔) = 𝑆(𝑟, 𝑦). Substituting 𝑦(𝑧) = 𝑔(𝑧) + 𝑧 into (2), we
obtain

𝐾
0
(𝑧, 𝑔) := 𝑃 (𝑧) [𝑔 (𝑧 + 1) + 𝑧 + 1] [𝑔 (𝑧) + 𝑧]

+ 𝑄 (𝑧) [𝑔 (𝑧 + 1) + 𝑧 + 1]

− 𝑅 (𝑧) [𝑔 (𝑧) + 𝑧] = 0.

(21)

Thus,

𝐾
0
(𝑧, 0) = 𝑧 (𝑧 + 1) 𝑃 (𝑧) + (𝑧 + 1)𝑄 (𝑧) − 𝑧𝑅 (𝑧) . (22)

By (8) and (22), we see that 𝐾
0
(𝑧, 0) ̸≡ 0. Thus, by Lemma 4

and𝐾
0
(𝑧, 0) ̸≡ 0, we obtain

𝑁(𝑟,
1

𝑔 (𝑧)
) = 𝑇 (𝑟, 𝑔 (𝑧)) + 𝑆 (𝑟, 𝑔 (𝑧)) (23)

for all 𝑟 outside of a possible exceptional set with finite
logarithmic measure. Thus,

𝑁(𝑟,
1

𝑦 (𝑧) − 𝑧
) = 𝑇 (𝑟, 𝑦 (𝑧)) + 𝑆 (𝑟, 𝑦 (𝑧)) (24)

for all 𝑟 outside of a possible exceptional set with finite
logarithmic measure. So, by Theorem A and (24), we obtain
𝜏(𝑦(𝑧)) = 𝜎(𝑦(𝑧)) ≥ 1.

Now suppose that 𝑛 = 1. By (2), we obtain

𝑦 (𝑧 + 1) − 𝑧

=
(𝑅 (𝑧) − 𝑧𝑃 (𝑧)) 𝑦 (𝑧) − 𝑧𝑄 (𝑧)

𝑄 (𝑧) + 𝑃 (𝑧) 𝑦 (𝑧)

=
(𝑅 (𝑧) − 𝑧𝑃 (𝑧)) [𝑦 (𝑧) − 𝑧𝑄 (𝑧) / (𝑅 (𝑧) − 𝑧𝑃 (𝑧))]

𝑄 (𝑧) + 𝑃 (𝑧) 𝑦 (𝑧)
.

(25)

By (8), we see that 𝑅(𝑧) − 𝑧𝑃(𝑧) ̸≡ 0. Since 𝑃(𝑧), 𝑄(𝑧), and
𝑅(𝑧) are polynomials, by (25), we see that𝑦(𝑧)−𝑧𝑄(𝑧)/(𝑅(𝑧)−
𝑧𝑃(𝑧)) and 𝑄(𝑧) + 𝑃(𝑧)𝑦(𝑧) have the same poles, except
possibly finitely many poles. By Lemma 6, we see that (𝑅(𝑧)−
𝑧𝑃(𝑧))𝑦(𝑧)−𝑧𝑄(𝑧) and𝑄(𝑧)+𝑃(𝑧)𝑦(𝑧) have at most finitely
many common zeros. Hence, by (25), we have that

𝜏 (𝑦 (𝑧 + 1)) = 𝜆 (𝑦 (𝑧 + 1) − 𝑧)

= 𝜆(𝑦 (𝑧) −
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)
) .

(26)

Suppose that 𝜆(𝑦(𝑧)−𝑧𝑄(𝑧)/(𝑅(𝑧)−𝑧𝑃(𝑧))) < 𝜎(𝑦(𝑧)).Thus,
𝑦(𝑧)−𝑧𝑄(𝑧)/(𝑅(𝑧)−𝑧𝑃(𝑧)) can be rewritten as the following
form:

𝑦 (𝑧) −
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)
= 𝑧
𝑠
𝑏
0
(𝑧)

𝐻
0
(𝑧)

𝑒
ℎ(𝑧)

=
𝑏 (𝑧)

𝐻 (𝑧)
, (27)

where ℎ(𝑧) is a polynomial with deg ℎ(𝑧) ≤ 𝜎(𝑦(𝑧)), 𝑏
0
(𝑧)

and 𝐻
0
(𝑧) are canonical products (𝑏

0
(𝑧) may be a poly-

nomial) formed by nonzero zeros and poles of 𝑦(𝑧) −
𝑧𝑄(𝑧)/(𝑅(𝑧)−𝑧𝑃(𝑧)), respectively, and 𝑠 is an integer; if 𝑠 ≥ 0,
then 𝑏(𝑧) = 𝑧

𝑠

𝑏
0
(𝑧), 𝐻(𝑧) = 𝐻

0
(𝑧)𝑒
−ℎ(𝑧); if 𝑠 < 0, then

𝑏(𝑧) = 𝑏
0
(𝑧), 𝐻(𝑧) = 𝑧

−𝑠

𝐻
0
(𝑧)𝑒
−ℎ(𝑧). CombiningTheorem A

with properties of canonical product, we see that

𝜆 (𝑏 (𝑧)) = 𝜎 (𝑏 (𝑧))

= 𝜆(𝑦 (𝑧) −
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)
)

< 𝜎 (𝑦 (𝑧)) ,

𝜆 (𝐻 (𝑧)) = 𝜎 (𝐻 (𝑧)) = 𝜎 (𝑦 (𝑧)) .

(28)

By (27), we obtain

𝑦 (𝑧) =
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)
+ 𝑏 (𝑧) 𝑓 (𝑧) ,

𝑦 (𝑧 + 1) =
(𝑧 + 1)𝑄 (𝑧 + 1)

𝑅 (𝑧 + 1) − (𝑧 + 1) 𝑃 (𝑧 + 1)

+ 𝑏 (𝑧 + 1) 𝑓 (𝑧 + 1) ,

(29)



4 Abstract and Applied Analysis

where 𝑓(𝑧) = 1/𝐻(𝑧). Thus, by (28) and Lemma 8, we have
that

𝜎 (𝑓 (𝑧)) = 𝜎 (𝐻 (𝑧)) = 𝜎 (𝑦 (𝑧)) ,

𝜎 (𝑏 (𝑧 + 1)) = 𝜎 (𝑏 (𝑧)) < 𝜎 (𝑓 (𝑧)) .

(30)

Substituting (29) into (2), we obtain

𝐾
1
(𝑧, 𝑓)

:= {
(𝑧 + 1)𝑄 (𝑧 + 1)

𝑅 (𝑧 + 1) − (𝑧 + 1) 𝑃 (𝑧 + 1)
+ 𝑏 (𝑧 + 1) 𝑓 (𝑧 + 1)}

⋅ {𝑄 (𝑧) + 𝑃 (𝑧) [
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)
+ 𝑏 (𝑧) 𝑓 (𝑧)]}

− 𝑅 (𝑧) [
𝑧𝑄 (𝑧)

𝑅 (𝑧) − 𝑧𝑃 (𝑧)
+ 𝑏 (𝑧) 𝑓 (𝑧)] = 0.

(31)

By (31), we obtain

𝐾
1
(𝑧, 0)

= [(𝑧 + 1)𝑄 (𝑧 + 1)𝑄 (𝑧) 𝑅 (𝑧)

−𝑧𝑄 (𝑧) 𝑅 (𝑧) [𝑅 (𝑧 + 1) − (𝑧 + 1) 𝑃 (𝑧 + 1)]]

× ([𝑅 (𝑧 + 1) − (𝑧 + 1) 𝑃 (𝑧 + 1)] [𝑅(𝑧) − 𝑧𝑃(𝑧)])
−1

.

(32)

By (8), we see that in the numerator of the right side of (32),
there exists only one term 𝑧(𝑧 + 1)𝑄(𝑧)𝑅(𝑧)𝑃(𝑧 + 1) being of
the highest degree. So,

𝐾
1
(𝑧, 0) ̸≡ 0. (33)

Thus, by (28), (33), Lemma 4, and its Remark 5, we obtain that
for any given 𝜀 (0 < 𝜀 < 𝜎(𝑦(𝑧)) − 𝜎(𝑏(𝑧)))

𝑁(𝑟,
1

𝑓 (𝑧)
) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓 (𝑧))

+ 𝑂 (𝑟
𝜎(𝑏(𝑧))+𝜀

)

(34)

holds for all 𝑟 outside of a possible exceptional set with finite
logarithmic measure.

On the other hand, by 𝑓(𝑧) = 1/𝐻(𝑧) and the fact that
𝐻(𝑧) is an entire function, we see that

𝑁(𝑟,
1

𝑓 (𝑧)
) = 0. (35)

Thus, by this and (28), we see that (34) is a contradiction.
Hence, 𝜆(𝑦(𝑧) − 𝑧𝑄(𝑧)/(𝑅(𝑧) − 𝑧𝑃(𝑧))) = 𝜎(𝑦(𝑧)). By (26),
we obtain

𝜏 (𝑦 (𝑧 + 1)) = 𝜎 (𝑦 (𝑧)) . (36)

Now suppose that 𝑛 = 2. By (2), we obtain

𝑔 (𝑧 + 1) =
𝑅 (𝑧 + 1) 𝑔 (𝑧)

𝑄 (𝑧 + 1) + 𝑃 (𝑧 + 1) 𝑔 (𝑧)
, (37)

where 𝑔(𝑧) = 𝑦(𝑧 + 1). By Lemma 8, we have that 𝜎(𝑔(𝑧)) =
𝜎(𝑦(𝑧)). By (8), we have

deg𝑃 (𝑧 + 1) ≥ max {deg𝑅 (𝑧 + 1) , deg𝑄 (𝑧 + 1)} ,

deg𝑃 (𝑧 + 1) ≥ 1.
(38)

Thus, for (37), applying the conclusion of 𝑛 = 1 above, we
obtain

𝜏 (𝑦 (𝑧 + 2)) = 𝜏 (𝑔 (𝑧 + 1)) = 𝜎 (𝑔 (𝑧)) = 𝜎 (𝑦 (𝑧)) . (39)

Continuing to use the same method as above, we can obtain

𝜏 (𝑦 (𝑧 + 𝑛)) = 𝜎 (𝑦 (𝑧)) (𝑛 = 1, 2, . . .) . (40)

(ii) Suppose that 𝑅(𝑧) − (𝑧 + 1)𝑄(𝑧) ̸≡ 0. We prove that
𝜏(Δ𝑦(𝑧)/𝑦(𝑧)) = 𝜎(𝑦(𝑧)). By (2), we obtain

Δ𝑦 (𝑧)

𝑦 (𝑧)
− 𝑧

=
𝑦 (𝑧 + 1) − 𝑦 (𝑧)

𝑦 (𝑧)
− 𝑧

=
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧) − (𝑧 + 1) 𝑃 (𝑧) 𝑦 (𝑧)

𝑄 (𝑧) + 𝑃 (𝑧) 𝑦 (𝑧)

= − (𝑧 + 1) 𝑃 (𝑧)

× (𝑦 (𝑧) − (𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)) / (𝑧 + 1) 𝑃 (𝑧))

× (𝑄(𝑧) + 𝑃(𝑧)𝑦(𝑧))
−1

.

(41)

Since 𝑦(𝑧) − (𝑅(𝑧) − (𝑧 + 1)𝑄(𝑧))/(𝑧 + 1)𝑃(𝑧) and 𝑄(𝑧) +
𝑃(𝑧)𝑦(𝑧) have the same poles, except possibly finitely many
poles, by Lemma 9 and (41), we only need to prove that

𝜆(𝑦 (𝑧) −
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)

(𝑧 + 1) 𝑃 (𝑧)
) = 𝜎 (𝑦 (𝑧)) . (42)

Set

ℎ
1
(𝑧) = 𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧) , ℎ

2
(𝑧) = (𝑧 + 1) 𝑃 (𝑧) .

(43)

Suppose that 𝜆(𝑦(𝑧) − ℎ
1
(𝑧)/ℎ
2
(𝑧)) < 𝜎(𝑦(𝑧)). Using the

same method as in the proof of (i), 𝑦(𝑧) − ℎ
1
(𝑧)/ℎ
2
(𝑧) can

be rewritten as the following form:

𝑦 (𝑧) =
ℎ
1
(𝑧)

ℎ
2
(𝑧)

+ 𝑏
2
(𝑧) 𝑓
2
(𝑧) , (44)

where 𝑓
2
(𝑧) = 1/𝐻

2
(𝑧) and 𝑏

2
(𝑧) and 𝐻

2
(𝑧) are nonzero

entire functions, such that

𝜆 (𝑏
2
(𝑧)) = 𝜎 (𝑏

2
(𝑧)) < 𝜎 (𝑦 (𝑧)) ,

𝜆 (𝐻
2
(𝑧)) = 𝜎 (𝐻

2
(𝑧)) = 𝜎 (𝑦 (𝑧)) .

(45)
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Substituting (44) into (2), we obtain

𝐷
2
(𝑧, 𝑓
2
(𝑧))

:= {
ℎ
1
(𝑧 + 1)

ℎ
2
(𝑧 + 1)

+ 𝑏
2
(𝑧 + 1) 𝑓

2
(𝑧 + 1)}

× {𝑄 (𝑧) + 𝑃 (𝑧)
ℎ
1
(𝑧)

ℎ
2
(𝑧)

+ 𝑃 (𝑧) 𝑏
2
(𝑧) 𝑓
2
(𝑧)}

− 𝑅 (𝑧) {
ℎ
1
(𝑧)

ℎ
2
(𝑧)

+ 𝑏
2
(𝑧) 𝑓
2
(𝑧)} = 0,

𝐷
2
(𝑧, 0)

=
ℎ
1
(𝑧 + 1)

ℎ
2
(𝑧 + 1)

{𝑄 (𝑧) + 𝑃 (𝑧)
ℎ
1
(𝑧)

ℎ
2
(𝑧)

} − 𝑅 (𝑧)
ℎ
1
(𝑧)

ℎ
2
(𝑧)

=
ℎ
1
(𝑧 + 1)

ℎ
2
(𝑧 + 1)

{𝑄 (𝑧) + 𝑃 (𝑧)
𝑅 (𝑧) − (𝑧 + 1)𝑄 (𝑧)

(𝑧 + 1) 𝑃 (𝑧)
}

− 𝑅 (𝑧)
ℎ
1
(𝑧)

ℎ
2
(𝑧)

= 𝑅 (𝑧)
ℎ
1
(𝑧 + 1) ℎ

2
(𝑧) − (𝑧 + 1) ℎ

1
(𝑧) ℎ
2
(𝑧 + 1)

(𝑧 + 1) ℎ
2
(𝑧 + 1) ℎ

2
(𝑧)

.

(46)

Since ℎ
1
(𝑧) and ℎ

2
(𝑧) are polynomials, we see that

ℎ
1
(𝑧 + 1) ℎ

2
(𝑧) − (𝑧 + 1) ℎ

1
(𝑧) ℎ
2
(𝑧 + 1) ̸≡ 0, (47)

that is,

𝐷
2
(𝑧, 0) ̸≡ 0. (48)

Using the same method as in the proof of (i), we obtain a
contradiction. Hence, (42) holds; that is, 𝜏(Δ𝑦(𝑧)/𝑦(𝑧)) =

𝜎(𝑦(𝑧)).
(iii) Suppose that there is a polynomial ℎ(𝑧) satisfying

(−𝑅 (𝑧) + 𝑄 (𝑧) + 𝑧𝑃 (𝑧))
2

− 4𝑧𝑃 (𝑧)𝑄 (𝑧) = ℎ(𝑧)
2

. (49)

Thus, by (8) and (49), we see that

deg ℎ (𝑧) = deg𝑃 (𝑧) + 1. (50)

Now we prove that 𝜏(Δ𝑦(𝑧)) = 𝜎(𝑦(𝑧)). By (2), we obtain

𝑦 (𝑧 + 1) − 𝑦 (𝑧) − 𝑧

= −
𝑃 (𝑧) 𝑦(𝑧)

2

+ [−𝑅 (𝑧) + 𝑄 (𝑧) + 𝑧𝑃 (𝑧)] 𝑦 (𝑧) + 𝑧𝑄 (𝑧)

𝑄 (𝑧) + 𝑃 (𝑧) 𝑦 (𝑧)
.

(51)

By (49) and (51), we obtain

𝑦 (𝑧 + 1) − 𝑦 (𝑧) − 𝑧

= −𝑃 (𝑧) {𝑦 (𝑧) −
− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) + ℎ (𝑧)

2𝑃 (𝑧)
}

× {𝑦 (𝑧) −
− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) − ℎ (𝑧)

2𝑃 (𝑧)
}

× (𝑄(𝑧) + 𝑃 (𝑧) 𝑦 (𝑧))
−1

.

(52)

Since𝑃(𝑧), 𝑄(𝑧), and𝑅(𝑧) are polynomials, we see that poles
of 𝑄(𝑧) + 𝑃(𝑧)𝑦(𝑧) must be poles of 𝑃(𝑧)𝑦(𝑧)2 + [−𝑅(𝑧) +

𝑄(𝑧) + 𝑧𝑃(𝑧)]𝑦(𝑧) + 𝑧𝑄(𝑧). Thus, poles of 𝑄(𝑧) + 𝑃(𝑧)𝑦(𝑧)
are not zeros of 𝑦(𝑧 + 1) − 𝑦(𝑧) − 𝑧. By Lemma 10, we see that
the numerator and the denominator of the right side of (51)
have at most finitely many common zeros. Thus, in order to
prove 𝜏(Δ𝑦(𝑧)) = 𝜎(𝑦(𝑧)), by (52), we only need to prove that

𝜆(𝑦 (𝑧) −
− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) + ℎ (𝑧)

2𝑃 (𝑧)
) = 𝜎 (𝑦 (𝑧))

(53)

or

𝜆(𝑦 (𝑧) −
− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) − ℎ (𝑧)

2𝑃 (𝑧)
) = 𝜎 (𝑦 (𝑧)) .

(54)

By (50), we have deg(−𝑧𝑃(𝑧)) = deg ℎ(𝑧) = deg𝑃(𝑧) + 1.
Combining this with (8), we see that there exists at least one
of

− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) + ℎ (𝑧) ,

− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) − ℎ (𝑧) ,

(55)

such that its degree is equal to deg𝑃(𝑧) + 1. Without loss of
generality, we may suppose that

deg (− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) + ℎ (𝑧)) = deg𝑃 (𝑧) + 1.
(56)

Now we prove that (53) holds. Suppose that

𝜆(𝑦 (𝑧) −
− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) + ℎ (𝑧)

2𝑃 (𝑧)
) < 𝜎 (𝑦 (𝑧)) .

(57)

Using a similarmethod as in the proof of (i), we see that𝑦(𝑧)−
(−(𝑧𝑃(𝑧)+𝑄(𝑧)−𝑅(𝑧))+ℎ(𝑧))/2𝑃(𝑧) can be rewritten as the
following form:

𝑦 (𝑧) =
− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) + ℎ (𝑧)

2𝑃 (𝑧)

+ 𝑏
3
(𝑧) 𝑓
3
(𝑧) ,

(58)

where 𝑓
3
(𝑧) = 1/𝐻

3
(𝑧) and 𝑏

3
(𝑧) and 𝐻

3
(𝑧) are nonzero

entire functions, such that

𝜆 (𝑏
3
(𝑧)) = 𝜎 (𝑏

3
(𝑧)) < 𝜎 (𝑦 (𝑧)) ,

𝜆 (𝐻
3
(𝑧)) = 𝜎 (𝐻

3
(𝑧)) = 𝜎 (𝑦 (𝑧)) .

(59)
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Substituting (58) into (2), we obtain

𝐷
3
(𝑧, 𝑓
3
(𝑧))

:= {
− ((𝑧 + 1) 𝑃 (𝑧 + 1) + 𝑄 (𝑧 + 1) − 𝑅 (𝑧 + 1)) + ℎ (𝑧 + 1)

2𝑃 (𝑧 + 1)

+𝑏
3
(𝑧 + 1) 𝑓

3
(𝑧 + 1) }

⋅ {𝑄 (𝑧) + 𝑃 (𝑧)
− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) + ℎ (𝑧)

2𝑃 (𝑧)

+𝑃 (𝑧) 𝑏
3
(𝑧) 𝑓
3
(𝑧) }

− 𝑅 (𝑧)
− (𝑧𝑃 (𝑧) + 𝑄 (𝑧) − 𝑅 (𝑧)) + ℎ (𝑧)

2𝑃 (𝑧)

− 𝑅 (𝑧) 𝑏
3
(𝑧) 𝑓
3
(𝑧) = 0,

𝐷
3
(𝑧, 0)

:= {
− (𝑧 + 1) 𝑃 (𝑧 + 1) − 𝑄 (𝑧 + 1) + 𝑅 (𝑧 + 1) + ℎ (𝑧 + 1)

2𝑃 (𝑧 + 1)
}

⋅ {
−𝑧𝑃 (𝑧) + 𝑄 (𝑧) + 𝑅 (𝑧) + ℎ (𝑧)

2
}

− 𝑅 (𝑧)
−𝑧𝑃 (𝑧) − 𝑄 (𝑧) + 𝑅 (𝑧) + ℎ (𝑧)

2𝑃 (𝑧)

=
𝑊
1
(𝑧) − 𝑊

2
(𝑧)

4𝑃 (𝑧 + 1) 𝑃 (𝑧)
,

(60)

where
𝑊
1
(𝑧) = [− (𝑧 + 1) 𝑃 (𝑧 + 1) − 𝑄 (𝑧 + 1)

+𝑅 (𝑧 + 1) + ℎ (𝑧 + 1)]

× [−𝑧𝑃 (𝑧) + 𝑄 (𝑧) + 𝑅 (𝑧) + ℎ (𝑧)] 𝑃 (𝑧) ,

𝑊
2
(𝑧) = 2 (−𝑧𝑃 (𝑧) − 𝑄 (𝑧) + 𝑅 (𝑧) + ℎ (𝑧)) 𝑅 (𝑧) 𝑃 (𝑧 + 1) .

(61)

By (8), (50), and (56), we see that

deg (− (𝑧 + 1) 𝑃 (𝑧 + 1) − 𝑄 (𝑧 + 1) + 𝑅 (𝑧 + 1) + ℎ (𝑧 + 1))

= deg𝑃 (𝑧) + 1,

deg (−𝑧𝑃 (𝑧) + 𝑄 (𝑧) + 𝑅 (𝑧) + ℎ (𝑧)) = deg𝑃 (𝑧) + 1.
(62)

Thus, we obtain

deg𝑊
1
(𝑧) = 3 deg𝑃 (𝑧) + 2,

deg𝑊
2
(𝑧) ≤ 3 deg𝑃 (𝑧) + 1.

(63)

So, by (60) and (63), we see that𝐷
3
(𝑧, 0) ̸≡ 0.

Using the same method as in the proof of (i), we see that
(53) holds.

Thus, Theorem 2 is proved.
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