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We show the nonexistence of rotationally symmetric harmonic diffeomorphism between the unit disk without the origin and a
punctured disc with hyperbolic metric on the target.

1. Introduction

The existence of harmonic diffeomorphisms between com-
plete Riemannian manifolds has been extensively studied,
please see, for example, [1–34]. In particular, Heinz [17]
proved that there is no harmonic diffeomorphism from the
unit disc onto C with its flat metric. On the other hand,
Schoen [25] mentioned a question about the existence,
or nonexistence, of a harmonic diffeomorphism from the
complex plane onto the hyperbolic 2-space. At the present
time, many beautiful results about the asymptotic behavior of
harmonic embedding from C into the hyperbolic plane have
been obtained, please see, for example, [4, 5, 14, 32] or the
review [33] byWan and the references therein. In 2010, Collin
and Rosenberg [10] constructed harmonic diffeomorphisms
from C onto the hyperbolic plane. In [7, 24, 28, 29], the
authors therein studied the rotational symmetry case. One
of their results is the nonexistence of rotationally symmetric
harmonic diffeomorphism fromC onto the hyperbolic plane.

In this paper, we will study the existence, or nonexistence,
of rotationally symmetric harmonic diffeomorphisms from
the unit disk without the origin onto a punctured disc. For
simplicity, let us denote

D
∗

= D \ {0} , 𝑃 (𝑎) = D \ {|𝑧| ≤ 𝑒

−𝑎

} for 𝑎 > 0, (1)

whereD is the unit disc and 𝑧 is the complex coordinate ofC.
We will prove the following results.

Theorem 1. For any 𝑎 > 0, there is no rotationally symmetric
harmonic diffeomorphism from D∗ onto 𝑃(𝑎) with its hyper-
bolic metric.

And vice versa as shown below.

Theorem 2. For any 𝑎 > 0, there is no rotationally symmetric
harmonic diffeomorphism from 𝑃(𝑎) onto D∗ with its hyper-
bolic metric.

We will also consider the Euclidean case and will prove
the following theorem.

Theorem 3. For any 𝑎 > 0, there is no rotationally symmetric
harmonic diffeomorphism from D∗ onto 𝑃(𝑎) with its Euclid-
ean metric; but on the other hand, there are rotationally
symmetric harmonic diffeomorphisms from 𝑃(𝑎) ontoD∗ with
its Euclidean metric.

This paper is organized as follows. In Section 2, we will
prove Theorems 1 and 2. Theorem 3 will be proved in
Section 3. At the last section, we will give another proof for
the nonexistence of rotationally symmetric harmonic diffeo-
morphism from C onto the hyperbolic disc.
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2. Harmonic Maps from D∗ to 𝑃(𝑎) with
Its Hyperbolic Metric and Vice Versa

For convenience, let us recall the definition about the har-
monic maps between surfaces. Let 𝑀 and𝑁 be two oriented
surfaces withmetrics 𝜏2|𝑑𝑧|2 and 𝜎

2

|𝑑𝑢|

2, respectively, where
𝑧 and 𝑢 are local complex coordinates of 𝑀 and 𝑁, respec-
tively. A 𝐶

2 map 𝑢 from 𝑀 to 𝑁 is harmonic if and only if 𝑢
satisfies

𝑢
𝑧𝑧

+

2𝜎
𝑢

𝜎

𝑢
𝑧
𝑢
𝑧
= 0. (2)

Now let us proveTheorem 1.

Proof of Theorem 1. First of all, let us denote (𝑟, 𝜃) as the polar
coordinates ofD∗ and 𝑢 as the complex coordinates of𝑃(𝑎) in
C; then the hyperbolic metric 𝜎

1
𝑑|𝑢| on 𝑃(𝑎) can be written

as

−𝜋 |𝑑𝑢|

𝑎 |𝑢| sin ((𝜋/𝑎) ln |𝑢|)

. (3)

Here |𝑢| is the norm of 𝑢with respect to the Euclideanmetric.
Wewill prove this theorem by contradiction. Suppose 𝑢 is

a rotationally symmetric harmonic diffeomorphism fromD∗

onto 𝑃(𝑎), with the metric 𝜎
1
𝑑|𝑢|. Because D∗, 𝑃(𝑎) and the

metric 𝜎
1
𝑑|𝑢| are rotationally symmetric, we can assume that

such a map 𝑢 has the form 𝑢 = 𝑓(𝑟)𝑒

𝑖𝜃. Substituting 𝑢, 𝜎
1
to

(2), we can get

𝑓

󸀠󸀠

+

𝑓

󸀠

𝑟

−

𝑓

𝑟

2

−

sin ((𝜋/𝑎) ln𝑓) + (𝜋/𝑎) cos ((𝜋/𝑎) ln𝑓)

𝑓 sin ((𝜋/𝑎) ln𝑓)

× ((𝑓

󸀠

)

2

−

𝑓

2

𝑟

2

) = 0

(4)

for 1 > 𝑟 > 0. Since 𝑢 is a harmonic diffeomorphism fromD∗

onto 𝑃(𝑎), we have

𝑓 (0) = 𝑒

−𝑎

, 𝑓 (1) = 1,

𝑓

󸀠

(𝑟) > 0 for 1 > 𝑟 > 0,

(5)

or

𝑓 (0) = 1, 𝑓 (1) = 𝑒

−𝑎

, (6)

𝑓

󸀠

(𝑟) < 0 for 1 > 𝑟 > 0. (7)

We will just deal with the case that (5) is satisfied; the rest
case is similar. Let 𝐹 = ln𝑓 ∈ (−𝑎, 0), then we have

𝑓

󸀠

=

𝑓

󸀠

𝑓

> 0, 𝐹

󸀠󸀠

=

𝑓

󸀠󸀠

𝑓

− (

𝑓

󸀠

𝑓

)

2

. (8)

Using this fact, we can get from (4) the following equation:

𝐹

󸀠󸀠

+

1

𝑟

𝐹

󸀠

−

𝜋

𝑎

ctg(

𝜋

𝑎

𝐹) (𝐹

󸀠

)

2

+

1

𝑟

2

𝜋

𝑎

ctg(

𝜋

𝑎

𝐹)

= 0 for 1 > 𝑟 > 0,

(9)

with 𝐹(0) = −𝑎, 𝐹(1) = 0, and 𝐹

󸀠

(𝑟) > 0 for 1 > 𝑟 > 0.
Regarding 𝑟 as a function of 𝐹, we have the following

relations:

𝐹
𝑟
= 𝑟

−1

𝐹
, 𝐹

𝑟𝑟
= −𝑟

−3

𝐹
𝑟
𝐹𝐹

. (10)

Using these facts, we can get from (9) the following equation:

𝑟

󸀠󸀠

𝑟

− (

𝑟

󸀠

𝑟

)

2

+

𝜋

𝑎

ctg(

𝜋

𝑎

𝐹)

𝑟

󸀠

𝑟

− (

𝑟

󸀠

𝑟

)

3

𝜋

𝑎

ctg(

𝜋

𝑎

𝐹) = 0

(11)

for 0 > 𝐹 > −𝑎. Let 𝑥 = (ln 𝑟)

󸀠

(𝐹); from (11) we can get the
following equation:

𝑥

󸀠

+

𝜋

𝑎

ctg(

𝜋

𝑎

𝐹) ⋅ 𝑥 −

𝜋

𝑎

ctg(

𝜋

𝑎

𝐹) ⋅ 𝑥

3

= 0. (12)

One can solve this Bernoulli equation to obtain

𝑥

−2

= 1 + 𝑐
0
(sin(

𝜋

𝑎

𝐹))

2

. (13)

Here 𝑐
0
is a constant depending on the choice of the function

𝑓. So

𝑥 =

1

√
1 + 𝑐
0
(sin ((𝜋/𝑎) 𝐹))

2

. (14)

Since 𝑥 = (ln 𝑟)

󸀠

(𝐹), we can get

(ln 𝑟) (𝐹) = ∫

𝐹

0

𝑥 (𝑡) 𝑑𝑡 = ∫

𝐹

0

1

√
1 + 𝑐
0
(sin ((𝜋/𝑎) 𝑡))

2

𝑑𝑡.

(15)

Noting that 𝑥(𝐹) is continuous in (−𝑎, 0) and is equal to 1

as 𝐹 = −𝑎, or 0, one can get 𝑥 is uniformly bounded for
𝐹 ∈ [−𝑎, 0]. So the right-hand side of (15) is uniformly
bounded, but the left-hand side will tend to −∞ as 𝐹 → −𝑎.
Hence, we get a contradiction. Therefore, such 𝑓 does not
exist, Theorem 1 has been proved.

We are going to proveTheorem 2.

Proof of Theorem 2. First of all, let us denote (𝑟, 𝜃) as the polar
coordinates of 𝑃(𝑎) and 𝑢 as the complex coordinates of D∗
in C; then the hyperbolic metric 𝜎

2
𝑑|𝑢| onD∗ can be written

as
|𝑑𝑢|

|𝑢| ln (1/ |𝑢|)

. (16)

Here |𝑢| is the norm with respect to the Euclidean metric.
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We will prove this theorem by contradiction. The idea is
similar to the proof of Theorem 1. Suppose 𝜓 is a rotationally
symmetric harmonic diffeomorphism from 𝑃(𝑎) onto D∗

with the metric 𝜎
2
𝑑|𝑢|, with the form 𝜓 = 𝑔(𝑟)𝑒

𝑖𝜃, then
substituting 𝜓, 𝜎

2
to 𝑢, 𝜎 in (2), respectively, we can get

𝑔

󸀠󸀠

+

𝑔

󸀠

𝑟

−

𝑔

𝑟

2

−

1 + ln𝑔

𝑔 ln𝑔

((𝑔

󸀠

)

2

−

𝑔

2

𝑟

2

) = 0 (17)

for 1 > 𝑟 > 𝑒

−𝑎. Since V is a harmonic diffeomorphism from
𝑃(𝑎) onto D∗, we have

𝑔 (𝑒

−𝑎

) = 0, 𝑔 (1) = 1,

𝑔

󸀠

(𝑟) > 0 for 1 > 𝑟 > 𝑒

−𝑎

,

(18)

or

𝑔 (𝑒

−𝑎

) = 1, 𝑔 (1) = 0, (19)

𝑔

󸀠

(𝑟) < 0 for 1 > 𝑟 > 𝑒

−𝑎

. (20)

We will only deal with the case that (18) is satisfied; the
rest case is similar. Let 𝐺 = ln𝑔, then (17) can be rewritten as

𝐺

󸀠󸀠

+

1

𝑟

𝐺

󸀠

−

1

𝐺

(𝐺

󸀠

)

2

+

1

𝑟

2
𝐺

= 0 (21)

for 1 > 𝑟 > 𝑒

−𝑎, with 𝐺(1) = 0 and lim
𝑟→𝑒
−𝑎𝐺(𝑟) = −∞.

Regarding 𝑟 as a function of 𝐺, using a similar formula of
(10), from (21) we can get

𝑟

󸀠󸀠

𝑟

− (

𝑟

󸀠

𝑟

)

2

+

𝑟

󸀠

𝑟𝐺

−

1

𝐺

(

𝑟

󸀠

𝑟

)

3

= 0, 𝐺 ∈ (−∞, 0) . (22)

Similar to solving (11), we can get the solution to (22) as
follows:

(ln 𝑟)

󸀠

(𝐺) =

1

√1 + 𝑐
1
𝐺

2

, 𝐺 ∈ (−∞, 0) (23)

for some nonnegative constant 𝑐
1
depending on the choice of

𝑔.
If 𝑐
1
is equal to 0, then 𝑔 = 𝑟; this is in contradiction to

(18).
If 𝑐
1
is positive, then taking integration on both sides of

(23), we can get

(ln 𝑟) (𝐺) = ∫

𝐺

0

1

√1 + 𝑐
1
𝑡

2

𝑑𝑡

=

1

√𝑐
1

ln(√𝑐
1
𝐺 + √1 + 𝑐

1
𝐺

2
) .

(24)

So

𝑟 = (√𝑐
1
ln𝑔 +

√
1 + 𝑐
1
ln2𝑔)

1/√𝑐
1

,
(25)

with lim
𝑔→0+

𝑟(𝑔) = 0. On the other hand, from (18), we have
𝑟(0) = 𝑒

−𝑎. Hence, we get a contradiction. Therefore, such 𝑔

does not exist, Theorem 2 has been proved.

3. Harmonic Maps from D∗ to 𝑃(𝑎) with Its
Euclidean Metric and Vice Versa

Now let us consider the case of that the target has the
Euclidean metric.

Proof of Theorem 3. Let us prove the first part of this theorem,
that is, show the nonexistence of rotationally symmetric har-
monic diffeomorphism fromD∗ onto 𝑃(𝑎)with its Euclidean
metric. The idea is similar to the proof of Theorem 1, so we
just sketch the proof here. Suppose there is such a harmonic
diffeomorphism 𝜑 from D∗ onto 𝑃(𝑎) with its Euclidean
metric with the form 𝜑 = ℎ(𝑟)𝑒

𝑖𝜃, and then we can get

ℎ

󸀠󸀠

+

1

𝑟

ℎ

󸀠

−

1

𝑟

2

ℎ = 0 for 1 > 𝑟 > 0, (26)

with
ℎ (0) = 𝑒

−𝑎

, ℎ (1) = 1,

ℎ

󸀠

(𝑟) > 0 for 1 > 𝑟 > 0,

(27)

or
ℎ (0) = 1, ℎ (1) = 𝑒

−𝑎

,

ℎ

󸀠

(𝑟) < 0 for 1 > 𝑟 > 0.

(28)

We will just deal with the case that (27) is satisfied; the
rest case is similar. Let 𝐻 = (ln ℎ)

󸀠; then we can get

𝐻

󸀠

+ 𝐻

2

+

1

𝑟

𝐻 = 0 for 1 > 𝑟 > 0. (29)

Solving this equation, we can get

𝐻 =

1

𝑟

+

1

𝑐
3
𝑟

3
− 𝑟

2

=

1

𝑟

+

𝑐

2

3

𝑐
3
𝑟 − 1

−

𝑐
3

𝑟

−

1

𝑟

2

. (30)

Here 𝑐
3
is a constant depending on the choice of ℎ. So

ln ℎ = ln 𝑟 + 𝑐
3
ln (𝑐
3
𝑟 − 1) − 𝑐

3
ln 𝑟 +

1

𝑟

+ 𝑐
4
. (31)

Here 𝑐
4
is a constant depending on the choice of ℎ. Hence

ℎ = 𝑟(𝑐
3
𝑟 − 1)

𝑐
3

𝑟

−𝑐
3

𝑒

1/𝑟

𝑒

𝑐
4

. (32)

From (32), we can get lim
𝑟→0

ℎ(𝑟) = ∞. On the other hand,
from (27), ℎ(0) = 𝑒

−𝑎. We get a contradiction. Hence such a
function ℎ does not exist; the first part of Theorem 3 holds.

Now let us prove the second part of this theorem, that
is, show the existence of rotationally symmetric harmonic
diffeomorphisms from 𝑃(𝑎) onto D∗ with its Euclidean
metric. It suffices to find a map from 𝑃(𝑎) onto D∗ with the
form 𝑞(𝑟)𝑒

𝑖𝜃 such that

𝑞

󸀠󸀠

+

1

𝑟

𝑞

󸀠

−

1

𝑟

2

𝑞 = 0 for 1 > 𝑟 > 𝑒

−𝑎 (33)

with 𝑞(𝑒

−𝑎

) = 0, 𝑞(1) = 1, and 𝑞

󸀠

> 0 for 1 > 𝑟 > 𝑒

−𝑎. Using
the boundary condition and (32), we can get that

𝑞 = 𝑒

−1

(𝑒

𝑎

− 1)

−𝑒
𝑎

𝑟(𝑒

𝑎

𝑟 − 1)

𝑒
𝑎

𝑟

−𝑒
𝑎

𝑒

1/𝑟 (34)

is a solution to (33).
Therefore, we finished the proof of Theorem 3.
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4. Harmonic Maps from C to
the Hyperbolic Disc

In this section, we will give another proof of the following
result.

Proposition 4. There is no rotationally symmetric harmonic
diffeomorphism from C onto the hyperbolic disc.

Proof. It is well-known that the hyperbolic metric on the
unit disc is (2/(1 − 𝑧|

2

))|𝑑𝑧|. We will also use the idea of
the proof of Theorem 1. Suppose there is such a harmonic
diffeomorphism 𝜙 from C onto D with its hyperbolic metric
with the form 𝜙 = 𝑘(𝑟)𝑒

𝑖𝜃, and then we can get

𝑘

󸀠󸀠

+

1

𝑟

𝑘

󸀠

−

1

𝑟

2

𝑘 +

2𝑘

1 − 𝑘

2

[(𝑘

󸀠

)

2

−

𝑘

2

𝑟

2

]

= 0 for 𝑟 > 0

(35)

with

𝑘 (0) = 0, 𝑘

󸀠

(𝑟) > 0 for 𝑟 > 0. (36)

Regarding 𝑟 as a function of 𝑘, setting V = (ln 𝑟)

󸀠

(𝑘), (35) can
be rewritten as

(1 − 𝑘

2

) V
󸀠

− 2𝑘V + V
3

(𝑘 + 𝑘

3

) = 0. (37)

That is,

(V
−2

)

󸀠

+

4𝑘

1 − 𝑘

2

V
−2

=

2 (𝑘 + 𝑘

3

)

1 − 𝑘

2

.
(38)

One can solve this equation to obtain

V
−2

= 𝑘

2

+ 𝑐
5
(1 − 𝑘

2

)

2 (39)

for some nonnegative constant 𝑐
5
depending on the choice of

the function 𝑘.
If 𝑐
5
= 0, then we can get 𝑟 = 𝑐

6
𝑘 for some constant 𝑐

6
. On

the other hand, 𝜙 is a diffeomorphism, so 𝑘 → 1 as 𝑟 → ∞.
This is a contradiction.

If 𝑐
5
> 0, then 𝑏

1
≥ 𝑘

2

+ 𝑐
5
(1 − 𝑘

2

)

2

≥ 𝑏
2
for some positive

constants 𝑏
1
and 𝑏
2
. So

󵄨
󵄨
󵄨
󵄨
󵄨

(ln 𝑟)

󸀠

(𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

√𝑏
2

. (40)

This is in contradiction to the assumption that 𝑟 → ∞ as
𝑘 → 1.

Therefore, Proposition 4 holds.
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Birkhäuser, Boston, Mass, USA, 1990.
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