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The aim of this paper is to use the homotopy analysis method (HAM), an approximating technique for solving linear and nonlinear
higher order boundary value problems. Using HAM, approximate solutions of seventh-, eighth-, and tenth-order boundary value
problems are developed. This approach provides the solution in terms of a convergent series. Approximate results are given for
several examples to illustrate the implementation and accuracy of themethod.The results obtained from this method are compared
with the exact solutions and othermethods (Akram andRehman (2013), Farajeyan andMaleki (2012), Geng and Li (2009), Golbabai
and Javidi (2007), He (2007), Inc and Evans (2004), Lamnii et al. (2008), Siddiqi and Akram (2007), Siddiqi et al. (2012), Siddiqi
et al. (2009), Siddiqi and Iftikhar (2013), Siddiqi and Twizell (1996), Siddiqi and Twizell (1998), Torvattanabun and Koonprasert
(2010), and Kasi Viswanadham and Raju (2012)) revealing that the present method is more accurate.

1. Introduction

Higher order boundary value problems occur in the study of
fluid dynamics, astrophysics, hydrodynamic, hydromagnetic
stability, astronomy, beam and long wave theory, induction
motors, engineering, and applied physics. The boundary
value problems of higher order have been examined due to
their mathematical importance and applications in diversi-
fied applied sciences.

The seventh-order boundary value problems generally
arise in modeling induction motors with two rotor circuits.
The induction motor behavior is represented by a fifth-order
differential equation model. This model contains two stator
state variables, two rotor state variables, and one shaft speed.
Normally, two more variables must be added to account
for the effects of a second rotor circuit representing deep
bars, a starting cage, or rotor distributed parameters. To
avoid the computational burden of additional state variables
when additional rotor circuits are required, model is often
limited to the fifth-order and rotor impedance is algebraically
altered as function of rotor speed under the assumption
that the frequency of rotor currents depends on rotor speed.
This approach is efficient for the steady state response with
sinusoidal voltage, but it does not hold up during the transient

conditions, when rotor frequency is not a single value. So, the
behavior of such models shows up in the seventh order [1].

Chandrasekhar [2] investigated that when an infinite
horizontal layer of fluid is heated from below and is subject
to rotation, the instability sets in.When this instability sets in
as overstability, it is represented by an eighth-order ordinary
differential equation. If an infinite horizontal layer of fluid
is heated from below, with the assumption that a uniform
magnetic field is applied as well across the fluid in the same
direction as gravity and the fluid is subject to the action of
rotation, the instability sets in.When this instability sets in as
ordinary convection, it is modeled by tenth-order boundary
value problem.

Siddiqi and Iftikhar used the variation of parameter
method for solving the seventh-order boundary value prob-
lems in [3]. Liu and Wu [4] give the general differential
quadrature rule (GDQR) for the solution of eighth-order
differential equation. Explicit weighting coefficients are for-
mulated to implement the GDQR for eighth-order differen-
tial equations. Siddiqi and Akram [5] used nonic spline and
nonpolynomial spline technique for the numerical solution
of eighth-order linear special case boundary value problems.
These have also been proven to be second order convergent.



2 Abstract and Applied Analysis

Siddiqi and Twizell [6] presented the solution of eighth-order
boundary value problem using octic spline. Inc and Evans
[7] presented the solutions of eighth-order boundary value
problems using Adomian decomposition method. Golbabai
and Javidi [8] used homotopy perturbation method (HPM)
to solve eighth-order boundary value problems. Recently,
Akram and Rehman presented the numerical solution of
eighth-order boundary value problems using the reproducing
Kernel space method [9]. Geng and Li [10] construct a repro-
ducing Kernel space and solve a class of linear tenth-order
boundary value problems using reproducing Kernel method.
Siddiqi et al. [11] used the variational iteration technique
for the solution of tenth-order boundary value problem.
Siddiqi and Akram [12] presented the numerical solutions of
the tenth-order linear special case boundary value problems
using eleventh degree spline. Siddiqi and Twizell [13] pre-
sented the solutions of tenth-order boundary value problems
using tenth degree spline, where some unexpected results, for
the solution and higher order derivatives, were obtained near
the boundaries of the interval. Lamnii et al. [14] developed
a spline collocation method using spline interpolants and
analyzed the approximating solutions of some general linear
boundary value problems. Domairry and Nadim in [15]
compared the HAM and HPM in solving nonlinear heat
transfer equation.HAM is employed to compute approximate
solution of the system of differential equations governing the
problem [16] and also used to detect the fin excellency of
convective straight fins with temperature-dependent thermal
conductivity in [17]. Moghimi et al. applied HAM to solve
MHD Jeffery-Hamel flows in nonparallel walls [18]. Farajeyan
andMaleki [19] used nonpolynomial spline in off-step points
to solve special tenth order linear boundary value problems.
Khan and Hussain in 2011 applied Laplace decomposition
method (LDM) to nonlinear Blasius flow equation to obtain
series solutions [20]. Khan and Gondal [21] constructed a
new method for the solution of Abel’s type singular integral
equations. The two-step Laplace decomposition algorithm
(TSLDA) makes the calculation much simpler.

Khan et al. [22] proposed a method which efficiently
finds exact solution and is used to solve nonlinear Volterra
integral equations. Khan et al. [23] proposed the coupling
of homotopy perturbation and Laplace transformation for
solving system of partial differential equations. Nadeem et
al. [24] described the stagnation point flow of a viscous fluid
towards a stretching sheet and obtained an analytical solution
of the boundary layer equation by HAM.

Recently, Shaban et al. [25] presented modification of the
HAM for solving nonlinear boundary value problems. Arqub
and El-Ajou [26] investigated the accuracy of the HAM for
solving the fractional order problem of the spread of a disease
in a population. In [27], Russo and Van Gorder discussed the
application of HAM to general nonlinear Klein-Gordon type
equations.

In the present paper, the seventh-, eighth-, and tenth-
order boundary value problems are solved using the homo-
topy analysis method (HAM). The following seventh-,
eighth-, and tenth-order boundary value problems are con-
sidered:

𝑢
(𝑚)

(𝑥) = 𝑓 (𝑥, 𝑢 (𝑥)) , 𝑎 ≤ 𝑥 ≤ 𝑏,

𝑢
(𝑖)
(𝑎) = 𝐴 𝑖,

𝑢
(𝑗)
(𝑏) = 𝐵𝑗,

(1)

where for𝑚 = 7, 𝑖 = 0, 1, 2, . . . , 𝑚−4 and 𝑗 = 0, 1, . . . , 𝑚−5;
for𝑚 = 8, 𝑖 = 𝑗 = 0, 1, 2, . . . , 𝑚 − 5, and for𝑚 = 10, 𝑖 = 𝑗 =

0, 1, 2, . . . , 𝑚 − 6. 𝐴 𝑖’s and 𝐵𝑗’s are finite real constants. Also,
𝑓(𝑥, 𝑢(𝑥)) is a continuous function on [𝑎, 𝑏].

2. Homotopy Analysis Method

Liao was the first to apply homotopy analysis method (HAM)
[28–31]. This is a general analytic approach to get series solu-
tions of nonlinear equations, including algebraic equations,
ordinary differential equations, partial differential equations,
differential-integral equations, differential-difference equa-
tion, and coupled equations of them. For a given nonlinear
differential equation

𝑁[𝑢 (𝑥)] = 0, 𝑥 ∈ Θ, (2)

where 𝑁 is a nonlinear operator and 𝑢(𝑥) is an unknown
function, Liao constructed a one parameter family of equa-
tions in the embedding parameter 𝑞 ∈ [0, 1], called the ze-
roth-order deformation equation

(1 − 𝑞) 𝐿 [𝑈 (𝑥, 𝑞) − 𝑢0 (𝑥)] − 𝑞ℎ𝐻 (𝑥)𝑁 [𝑈 (𝑥, 𝑞)] = 0,

𝑥 ∈ Θ, 𝑞 ∈ [0, 1] ,

(3)

where ℎ is a nonzero auxiliary parameter,𝐻(𝑥) is an auxiliary
function, 𝐿 is an auxiliary linear operator, 𝑢0(𝑥) is an initial
guess, and 𝑈(𝑥, 𝑞) is an unknown function. The homotopy
provides us larger freedom to choose both the auxiliary
linear operator 𝐿 and the initial guess than the traditional
nonperturbation methods, as pointed out by Liao [29, 31]. At
𝑞 = 0 and 𝑞 = 1, we have𝑈(𝑥, 0) = 𝑢0(𝑥) and𝑈(𝑥, 1) = 𝑢(𝑥),
respectively. Thus, as 𝑞 increases from 0 to 1, the solution
𝑈(𝑥, 𝑞) varies from the initial guess 𝑢0(𝑥) to the solution
𝑢(𝑥). Expanding 𝑈(𝑥, 𝑞) by Taylor series with respect to 𝑞,
(2) becomes

𝑈(𝑥, 𝑞) = 𝑢0 (𝑥) +

∞

∑

𝑚=1

𝑢𝑚 (𝑥) 𝑞
𝑚
, (4)

where

𝑢𝑚 (𝑥) =
1

𝑚!

𝜕
𝑚
𝑈(𝑥, 𝑞)

𝜕𝑞
𝑚









𝑞=0

. (5)

If the auxiliary linear operator, the initial guess, the auxiliary
parameter ℎ, and the auxiliary function are properly chosen,
series (4) converges at 𝑞 = 1, and then the homotopy series
solution

𝑢 (𝑥) = 𝑢0 +

∞

∑

𝑚=1

𝑢𝑚 (𝑥) (6)
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must be one of solutions of original equations 𝑁[𝑢(𝑥)] =

0 [29]. Here, 𝑢𝑚(𝑥) is governed by a linear differential
equation related to the auxiliary linear operator 𝐿. According
to definition (6), the governing equation can be deduced from
the zeroth-order deformation (4). Define the vector

�⃗�𝑁 (𝑥) = {𝑢0 (𝑥) , 𝑢1 (𝑥) , . . . , 𝑢𝑁 (𝑥)} . (7)

Differentiating equation (3) 𝑚 times with respect to the
embedded homotopy parameter 𝑞, then setting 𝑞 = 0, and
then finally dividing them by𝑚!, the𝑚th-order deformation
equation is obtained as

𝐿 [𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)] − ℎ𝐻 (𝑥) 𝑅𝑚 (�⃗�𝑚−1) = 0,

𝑥 ∈ Θ, 𝑞 ∈ [0, 1] ,

(8)

where

𝑅𝑚 (�⃗�𝑚−1) =
1

(𝑚 − 1)!

𝜕
𝑚−1

𝑁(𝑈 (𝑥, 𝑞))

𝜕𝑞
𝑚−1









𝑞=0

,

𝜒𝑚 = {
0, 𝑚 ≤ 1,

1, 𝑚 ≥ 1.

(9)

Finally, an𝑁-th order approximate solution is given by

𝑢 (𝑥) = 𝑢0 +

𝑁

∑

𝑚=1

𝑢𝑚 (𝑥) . (10)

To implement the HAM, several numerical examples are
considered in the following section.

3. Numerical Examples

Example 1. Consider the following seventh-order boundary
value problem:

𝑢
(7)
(𝑥) = −𝑢 (𝑥) − 𝑒

𝑥
(35 + 12𝑥 + 2𝑥

2
) , 0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 0, 𝑢 (1) = 0,

𝑢
(1)
(0) = 1, 𝑢

(1)
(1) = −𝑒,

𝑢
(2)
(0) = 0, 𝑢

(2)
(1) = −4𝑒,

𝑢
(3)
(0) = −3.

(11)

The exact solution of Example 1 is 𝑢(𝑥) = 𝑥(1 − 𝑥)𝑒𝑥 [3].
Using the HAM (3), the zeroth-order deformation is

given by

(1 − 𝑞) 𝐿 [𝑈 (𝑥, 𝑞) − 𝑢0 (𝑥)]

= 𝑞ℎ𝐻 (𝑥)(

𝜕
7
𝑈 (𝑥, 𝑞)

𝜕𝑞
7

+ 𝑈 (𝑥, 𝑞) + 𝑒
𝑥
(35 + 12𝑥 + 2𝑥

2
)) .

(12)

Now, the initial approximation, 𝑢0(𝑥), is the solution of
(𝜕
7
/𝜕𝑥
7
)𝑢 = 0 subject to boundary conditions in (11); that

is,

𝑢0 (𝑥) = 𝑥 −
𝑥
3

2

+

1

2

(−17 + 6𝑒) 𝑥
4

+

1

2

(27 − 10𝑒) 𝑥
5
+

1

2

(−11 + 4𝑒) 𝑥
6
.

(13)

The linear operator 𝐿 normally consists of the homogeneous
part of nonlinear operator 𝑁, whereas parameter ℎ and
function𝐻(𝑥) are introduced in order to optimize the initial
guess. Try to choose ℎ in such away that they get a convergent
series. Under the rule of solution expression (4), the auxiliary
function𝐻(𝑥) can be chosen as𝐻(𝑥) = 1. In this way, good
approximations of such problems can be obtained without
having to go up to high order of approximation and without
requiring a small parameter.

Hence, the𝑚th-order deformation can be given by

𝐿 [𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)] = ℎ𝐻 (𝑥) 𝑅𝑚 (�⃗�𝑚−1) , (14)

where

𝑅1 (�⃗�0) =
𝜕
7
𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞
7

+ 𝑢𝑚−1 (𝑥, 𝑞) + 𝑒
𝑥
(35 + 12𝑥 + 2𝑥

2
) ,

(15)

𝑅𝑚 (�⃗�𝑚−1) =
𝜕
7
𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞
7

+ 𝑢𝑚−1 (𝑥, 𝑞) , 𝑚 ≥ 2. (16)

Now, the solution of the 𝑚th-order deformation equations
(15) and (16) for𝑚 ≥ 1 becomes

𝑢𝑚 (𝑥) = 𝜒𝑚𝑢𝑚−1 (𝑥) + ℎ𝐿
−1
[𝑅𝑚 (�⃗�𝑚−1)] . (17)

Consequently, the first few terms of the homotopy series
solution are as follows:

𝑢0 (𝑥) = 𝑥 −
𝑥
3

2

+

1

2

(−17 + 6𝑒) 𝑥
4

+

1

2

(27 − 10𝑒) 𝑥
5
+

1

2

(−11 + 4𝑒) 𝑥
6
,

(18)

𝑢1 (𝑥) =
ℎ

518918400

× (−32691859200 + 32691859200𝑒
𝑥

− 24389164800𝑥 − 8302694400𝑒
𝑥
𝑥

− 9081072000𝑥
2
+ 1037836800𝑒

𝑥
𝑥
2

− 2335132800𝑥
3
+ 795242426295𝑥

4

− 292929440550𝑒𝑥
4
− 1230096003906𝑥

5

+ 452496853920𝑒𝑥
5
+ 502831877247𝑥

6

− 184994415376𝑒𝑥
6
+ 518918400𝑥

7
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Figure 1: Comparison of the approximate solution with the exact
solution for problem (11). Dotted line: approximate solution; solid
line: the exact solution.

+ 12870𝑥
8
− 429𝑥

10
− 2652𝑥

11

+ 936𝑒𝑥
11
+ 1755𝑥

12
− 650𝑒𝑥

12

−330𝑥
13
+ 120𝑒𝑥

13
) .

(19)

The𝑁th-order approximation of 𝑢(𝑥) can be expressed by

𝑢𝑁 (𝑥) = 𝑢0 (𝑥) +

𝑁

∑

𝑚=1

𝑢𝑚 (𝑥) . (20)

Equation (20) is a family of the approximate solutions to
problem (11) in terms of the convergence control parameter
ℎ.

We choose the value of auxiliary parameter as ℎ = −1

to ensure that the solution series converges. The errors in
absolute values obtained using the present method are com-
pared with those obtained using the variation of parameter
method [3] for Example 1 given in Table 1, which shows that
the presentmethod is quite accurate. Figures 1 and 2 show the
comparison of exact with approximate solution and absolute
errors for Example 1 solution respectively.

Convergence Theorem. In this subsection, one proves that if
the solution series (6) given by HAM is convergent, it must be
an exact solution of the considered problem.

If the series 𝑢0(𝑥) + ∑
∞

𝑚=1 𝑢𝑚(𝑥) converges, where 𝑢𝑚(𝑥) is
governed by (17) under the definitions (15) and (16), it must be
an exact solution of problem (11).

Proof. Let the series
∞

∑

𝑚=0

𝑢𝑚 (𝑥) (21)

be convergent. Then,

𝑢 (𝑥) =

∞

∑

𝑚=0

𝑢𝑚 (𝑥) , (22)

lim
𝑛→∞

𝑢𝑛 (𝑥) = 0. (23)

0.6 0.8 10.2 0.4

12

10

8

6

4

2

×10
−13

Figure 2: Absolute errors for problem (11).

We have
𝑛

∑

𝑚=1

[𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)]

= 𝑢1 + (𝑢2 − 𝑢1) + (𝑢3 − 𝑢2) + ⋅ ⋅ ⋅ + (𝑢𝑛 − 𝑢𝑛−1) .

(24)

Using (22),
∞

∑

𝑚=1

[𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)] = lim
𝑛→∞

𝑢𝑛 (𝑥) = 0, (25)

and applying the operator 𝐿, we can write

𝐿

∞

∑

𝑚=1

[𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)]

=

∞

∑

𝑚=1

𝐿 [𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)] = 0;

(26)

using the definition (14),
∞

∑

𝑚=1

𝐿 [𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)] = ℎ𝐻 (𝑥)

∞

∑

𝑚=1

𝑅𝑚 (�⃗�𝑚−1) , (27)

and since ℎ ̸= 0,𝐻(𝑥) ̸= 0, we have
∞

∑

𝑚=1

𝑅𝑚 (�⃗�𝑚−1) = 0. (28)

From (15) and (16), the following holds:
∞

∑

𝑚=1

𝑅𝑚 (�⃗�𝑚−1)

=

∞

∑

𝑚=1

(

𝜕
7
𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞
7

+ 𝑢𝑚−1 (𝑥, 𝑞)

+ (1 − 𝜒𝑚) 𝑒
𝑥
(35 + 12𝑥 + 2𝑥

2
))

= 0.

(29)

This completes the proof.
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Table 1: Comparison of numerical results for Example 1.

𝑥 Exact solution Approximate series solution Absolute error present method Absolute error Siddiqi and Iftikhar [3]
0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.9946 0.9946 5.39291𝐸 − 14 8.55607𝐸 − 13

0.2 0.1954 0.1954 4.85167𝐸 − 14 9.94041𝐸 − 12

0.3 0.2835 0.2835 3.92464𝐸 − 14 3.52244𝐸 − 11

0.4 0.3580 0.3580 2.21489𝐸 − 14 7.3224𝐸 − 10

0.5 0.4122 0.4122 3.84137𝐸 − 14 1.08769𝐸 − 10

0.6 0.4373 0.4373 2.10831𝐸 − 13 1.29035𝐸 − 10

0.7 0.4229 0.4229 1.99785𝐸 − 13 1.51466𝐸 − 10

0.8 0.3561 0.3561 3.29736𝐸 − 13 2.717974𝐸 − 10

0.9 0.2214 0.2214 1.77622𝐸 − 12 7.48179𝐸 − 10

1.0 0.0000 −1.65159𝐸 − 12 1.65159𝐸 − 12 2.1729𝐸 − 09

Example 2. The following seventh-order nonlinear boundary
value problem is considered:

𝑢
(7)
(𝑥) = 𝑢 (𝑥) 𝑢


(𝑥) + 𝑒

−2𝑥
(2 + 𝑒

𝑥
(𝑥 − 8) − 3𝑥 + 𝑥

2
) ,

0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 1, 𝑢 (1) = 0,

𝑢
(1)
(0) = −2, 𝑢

(1)
(1) = −

1

𝑒

,

𝑢
(2)
(0) = 3, 𝑢

(2)
(1) =

2

𝑒

,

𝑢
(3)
(0) = −4.

(30)

The exact solution of Example 2 is 𝑢(𝑥) = (1 − 𝑥)𝑒−𝑥.
Using the HAM (3), the zeroth-order deformation is

given by

(1 − 𝑞) 𝐿 [𝑈 (𝑥, 𝑞) − 𝑢0 (𝑥)]

= 𝑞ℎ𝐻 (𝑥)(

𝜕
7
𝑈(𝑥, 𝑞)

𝜕𝑞
7

+ 𝑈 (𝑥, 𝑞)

𝜕𝑈 (𝑥, 𝑞)

𝜕𝑞

+𝑒
−2𝑥

(2 + 𝑒
𝑥
(−8 + 𝑥) − 3𝑥 + 𝑥

2
)) .

(31)

Now, the initial approximation, 𝑢0(𝑥), is the solution of
(𝜕
7
/𝜕𝑥
7
)𝑢 = 0 subject to boundary conditions in (30); that

is,

𝑢0 (𝑥) = 1 − 2𝑥 +
3𝑥
2

2

−

2𝑥
3

3

+

(36 − 12𝑒) 𝑥
4

6𝑒

+

(−66 + 24𝑒) 𝑥
5

6𝑒

+

(30 − 11𝑒) 𝑥
6

6𝑒

.

(32)

The linear operator 𝐿 normally consists of the homogeneous
part of nonlinear operator 𝑁, whereas parameter ℎ and
function𝐻(𝑥) are introduced in order to optimize the initial
guess. Try to choose ℎ in such away that they get a convergent

series. Under the rule of solution expression (4), the auxiliary
function𝐻(𝑥) can be chosen as𝐻(𝑥) = 1. In this way, good
approximations of such problems can be obtained without
having to go up to high order of approximation and without
requiring a small parameter.

Hence, the𝑚th-order deformation can be given by

𝐿 [𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)] = ℎ𝐻 (𝑥) 𝑅𝑚 (�⃗�𝑚−1) , (33)

where

𝑅1 (�⃗�0) =
𝜕
7
𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞
7

+ 𝑢𝑚−1 (𝑥, 𝑞)
𝜕𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞

+ 𝑒
−2𝑥

(2 + 𝑒
𝑥
(−8 + 𝑥) − 3𝑥 + 𝑥

2
) ,

𝑅𝑚 (�⃗�𝑚−1) =
𝜕
7
𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞
7

+ 𝑢𝑚−1 (𝑥, 𝑞)
𝜕𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞

, 𝑚 ≥ 2.

(34)

Now, the solution of the 𝑚th-order deformation equations
(34) for𝑚 ≥ 1 becomes

𝑢𝑚 (𝑥) = 𝜒𝑚𝑢𝑚−1 (𝑥) + ℎ𝐿
−1
[𝑅𝑚 (�⃗�𝑚−1)] . (35)

Consequently, the first few terms of the homotopy series
solution are as follows:

𝑢0 (𝑥) = 1 − 2𝑥 +
3𝑥
2

2

−

2𝑥
3

3

+

(36 − 12𝑒) 𝑥
4

6𝑒

+

(−66 + 24𝑒) 𝑥
5

6𝑒

+

(30 − 11𝑒) 𝑥
6

6𝑒

,

(36)

𝑢1 (𝑥) =
ℎ𝑒
−2−2𝑥

52929676800

× (2274322050𝑒
2
− 52929676800𝑒

2+𝑥

+ 50655354750𝑒
2+2𝑥

+ 1654052400𝑒
2
𝑥

+ 52929676800𝑒
2+𝑥
𝑥 − 102964761900𝑒

2+2𝑥
𝑥
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+ 413513100𝑒
2
𝑥
2
+ 77740462800𝑒

2+2𝑥
𝑥
2

− 34735100400𝑒
2+2𝑥

𝑥
3
− 100276694820𝑒

2𝑥
𝑥
4

+ 317578525200𝑒
1+2𝑥

𝑥
4
− 92426387280𝑒

2+2𝑥
𝑥
4

+ 168299259192𝑒
2𝑥
𝑥
5
− 582227931918𝑒

1+2𝑥
𝑥
5

+ 188997561564𝑒
2+2𝑥

𝑥
5
− 72364427100𝑒

2𝑥
𝑥
6

+ 264649706520𝑒
1+2𝑥

𝑥
6
− 87281523925𝑒

2+2𝑥
𝑥
6

+ 21003840𝑒
2+2𝑥

𝑥
7
− 9189180𝑒

2+2𝑥
𝑥
8

+ 3208920𝑒
2+2𝑥

𝑥
9
− 2100384𝑒

1+2𝑥
𝑥
10

+ 160446𝑒
2+2𝑥

𝑥
10
+ 3659760𝑒

1+2𝑥
𝑥
11

− 1113840𝑒
2+2𝑥

𝑥
11
− 2864160𝑒

1+2𝑥
𝑥
12

+ 1003340𝑒
2+2𝑥

𝑥
12
+ 1306620𝑒

1+2𝑥
𝑥
13

− 471240𝑒
2+2𝑥

𝑥
13
− 440640𝑒

2𝑥
𝑥
14

+ 69360𝑒
1+2𝑥

𝑥
14
+ 83640𝑒

2+2𝑥
𝑥
14

+ 969408𝑒
2𝑥
𝑥
15
− 626688𝑒

1+2𝑥
𝑥
15

+ 99552𝑒
2+2𝑥

𝑥
15
− 830790𝑒

2𝑥
𝑥
16

+ 596700𝑒
1+2𝑥

𝑥
16
− 107100𝑒

2+2𝑥
𝑥
16

+ 326700𝑒
2𝑥
𝑥
17
− 238590𝑒

1+2𝑥
𝑥
17

+ 43560𝑒
2+2𝑥

𝑥
17
− 49500𝑒

2𝑥
𝑥
18

+36300𝑒
1+2𝑥

𝑥
18
− 6655𝑒

2+2𝑥
𝑥
18
) .

(37)
The𝑁th-order approximation can be expressed by

𝑢 (𝑥) = 𝑢0 (𝑥) +

𝑁

∑

𝑚=1

𝑢𝑀 (𝑥) . (38)

Equation (38) is a family of the approximate solutions to
problem (12) in terms of the convergence control parameter
ℎ.

We choose the value of auxiliary parameter as ℎ =

−1 to ensure that the solution series converges. In Table 2,
the exact solution and the series solution of Example 2 are
compared, which shows that the method is quite accurate.
Figure 3 shows the comparison of exact solutionwith approx-
imate solution, and Figure 4 shows the absolute errors for
Example 2.

Example 3. The following seventh-order linear boundary
value problem is considered:

𝑢
(7)
(𝑥) = 𝑥𝑢 (𝑥) + 𝑒

𝑥
(𝑥
2
− 2𝑥 − 6) , 0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 1, 𝑢 (1) = 0,

𝑢
(1)
(0) = 0, 𝑢

(1)
(1) = −𝑒,

1

0.6

0.6

0.8

0.8

10.2

0.2

0.4

0.4

Figure 3: Comparison of the approximate solution with the exact
solution for problem (12). Dotted line: approximate solution; solid
line: the exact solution.

0.6 0.8 10.2 0.4

1.5

1

0.5

2

×10
−12

Figure 4: Absolute errors for problem (12).

Table 2: Comparison of numerical results for Example 2.

𝑥 Exact solution Approximate series
solution Absolute error

0.0 1.0000 1.0000 0.0000
0.1 0.814354 0.814354 4.15223𝐸 − 14

0.2 0.654985 0.654985 4.18332𝐸 − 13

0.3 0.518573 0.518573 1.21736𝐸 − 12

0.4 0.402192 0.402192 1.95471𝐸 − 12

0.5 0.303265 0.303265 2.03731𝐸 − 12

0.6 0.219525 0.219525 1.37063𝐸 − 12

0.7 0.148976 0.148976 4.66988𝐸 − 13

0.8 0.0898658 0.0898658 4.8378𝐸 − 14

0.9 0.040657 0.040657 6.00561𝐸 − 14

1.0 0.0000 −1.29172𝐸 − 15 1.29172𝐸 − 15

𝑢
(2)
(0) = −1, 𝑢

(2)
(1) = −2𝑒,

𝑢
(3)
(0) = −2.

(39)

The exact solution of Example 3 is 𝑢(𝑥) = (1 − 𝑥)𝑒𝑥 [32].
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1

Figure 5: Comparison of the approximate solution with the exact
solution for problem (13). Dotted line: approximate solution; solid
line: the exact solution.
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Figure 6: Absolute errors for problem (13).

Table 3: Comparison of numerical results for Example 3.

𝑥

Exact
solution

Approximate
series

solution

Absolute
error
present
method

Absolute
error

Siddiqi et al.
[32]

0.0 1.0000 1.0000 0.0000 0.0000
0.1 0.0994 0.0994 3.41727𝐸−13 4.6585𝐸 − 13

0.2 0.9771 0.9771 6.25056𝐸−14 5.7126𝐸 − 12

0.3 0.9449 0.9449 1.42442𝐸−13 2.1299𝐸 − 11

0.4 0.8950 0.8950 8.83738𝐸−14 4.6995𝐸 − 11

0.5 0.8243 0.8243 6.43929𝐸−14 7.4307𝐸 − 11

0.6 0.7288 0.7288 1.51812𝐸−12 8.9219𝐸 − 11

0.7 0.6041 0.6041 1.47904𝐸−12 7.9767𝐸 − 11

0.8 0.4451 0.4451 4.94338𝐸−12 4.6686𝐸 − 11

0.9 0.2459 0.2459 5.3817𝐸 − 12 1.0960𝐸 − 11

1.0 0.0000 1.20811𝐸−11 1.20811𝐸−11 6.9252𝐸 − 16

Following the procedure of the previous example, this
problem is solved using the convergence control parameter
ℎ = −1.

The comparison of the absolute errors obtained by the
present method and the absolute errors obtained by the
method in [32] is given in Table 3, which shows that the

present method is quite accurate. In Figure 5, the comparison
of exact solution with approximate solution is shown, and
Figure 6 shows absolute errors for Example 3.

Example 4. Consider the following eighth-order boundary
value problem:

𝑢
(8)
(𝑥) = −𝑥𝑢 (𝑥) − 𝑒

𝑥
(48 + 15𝑥 + 2𝑥

3
) , 0 ≤ 𝑥 ≤ 1,

𝑢 (0) = 0, 𝑢 (1) = 0,

𝑢
(1)
(0) = 1, 𝑢

(1)
(1) = −𝑒,

𝑢
(2)
(0) = 0, 𝑢

(2)
(1) = −4𝑒,

𝑢
(3)
(0) = −3, 𝑢

(3)
(1) = −9𝑒.

(40)

The exact solution of Example 4 is 𝑢(𝑥) = 𝑥(1 − 𝑥)𝑒𝑥 [5, 7, 9].
Using the HAM (3), the zeroth-order deformation is

given by

(1 − 𝑞) 𝐿 [𝑈 (𝑥, 𝑞) − 𝑢0 (𝑥)]

= 𝑞ℎ𝐻 (𝑥)(

𝜕
8
𝑈 (𝑥, 𝑞)

𝜕𝑞
8

+ 𝑥𝑈 (𝑥, 𝑞)

+𝑒
𝑥
(48 + 15𝑥 + 2𝑥

3
)) .

(41)

Now, the initial approximation, 𝑢0(𝑥), is the solution of
(𝜕
8
/𝜕𝑥
8
)𝑢 = 0 subject to boundary conditions in (40); that

is,

𝑢0 (𝑥) = 𝑥 −
𝑥
3

2

+

1

2

(−36 + 13𝑒) 𝑥
4
+

1

2

(84 − 31𝑒) 𝑥
5

+

1

2

(−68 + 25𝑒) 𝑥
6
+

1

2

(19 − 7𝑒) 𝑥
7
.

(42)

The linear operator 𝐿 normally consists of the homogeneous
part of nonlinear operator 𝑁, whereas parameter ℎ and
function𝐻(𝑥) are introduced in order to optimize the initial
guess. Try to choose ℎ in such away that they get a convergent
series. Under the rule of solution expression (4), the auxiliary
function𝐻(𝑥) can be chosen as𝐻(𝑥) = 1. In this way, good
approximations of such problems can be obtained without
having to go up to high order of approximation and without
requiring a small parameter.

Hence, the𝑚th-order deformation can be given by

𝐿 [𝑢𝑚 (𝑥) − 𝜒𝑚𝑢𝑚−1 (𝑥)] = ℎ𝐻 (𝑥) 𝑅𝑚 (�⃗�𝑚−1) , (43)

where

𝑅1 (�⃗�0) =
𝜕
8
𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞
8

+ 𝑥𝑢𝑚−1 (𝑥, 𝑞)

+ 𝑒
𝑥
(48 + 15𝑥 + 2𝑥

3
) ,

𝑅𝑚 (�⃗�𝑚−1) =
𝜕
8
𝑢𝑚−1 (𝑥, 𝑞)

𝜕𝑞
8

+ 𝑢𝑚−1 (𝑥, 𝑞) , 𝑚 ≥ 2.

(44)
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Table 4: Comparison of absolute errors for Example 4.

𝑥 Exact solution Approximate
series solution

Absolute error
present method

Akram and Rehman
[9]

Siddiqi and Akram
[5] Inc and Evans [7]

0.1 0.0994654 0.0994654 3.89966𝐸 − 15 1.63𝐸 − 10 5.62𝐸 − 10 3.73𝐸 − 09

0.2 0.195424 0.195424 9.45355𝐸 − 14 1.63𝐸 − 09 4.88𝐸 − 09 6.61𝐸 − 09

0.3 0.28347 0.28347 7.04437𝐸 − 14 4.90𝐸 − 09 1.37𝐸 − 08 2.33𝐸 − 08

0.4 0.358038 0.358038 4.36873𝐸 − 13 8.46𝐸 − 09 2.29𝐸 − 08 5.17𝐸 − 08

0.5 0.41218 0.41218 1.28897𝐸 − 13 1.01𝐸 − 08 2.71𝐸 − 08 9.76𝐸 − 08

0.6 0.437309 0.437309 4.01956𝐸 − 13 8.68𝐸 − 09 2.38𝐸 − 08 1.78𝐸 − 06

0.7 0.422888 0.422888 2.06929𝐸 − 12 5.15𝐸 − 09 1.49𝐸 − 08 4.12𝐸 − 06

0.8 0.356087 0.356087 2.65915𝐸 − 12 1.76𝐸 − 09 5.54𝐸 − 09 1.83𝐸 − 04

0.6 0.8 1

0.1

0.2

0.2

0.3

0.4

0.4

Figure 7: Comparison of the approximate solution with the exact
solution for problem (14). Dotted line: approximate solution; solid
line: the exact solution.

Now, the solution of the 𝑚th-order deformation equations
(44) for𝑚 ≥ 1 becomes

𝑢𝑚 (𝑥) = 𝜒𝑚𝑢𝑚−1 (𝑥) + ℎ𝐿
−1
[𝑅𝑚 (�⃗�𝑚−1)] . (45)

Consequently, the approximations 𝑢0, 𝑢1,. . . of the homotopy
series solution are obtained.

The𝑁-th order approximation can be expressed by

𝑢 (𝑥) = 𝑢0 (𝑥) +

𝑁

∑

𝑚=1

𝑢𝑚 (𝑥) . (46)

Equation (46) is a family of the approximate solutions to
problem (14) in terms of the convergence control parameter
ℎ.

We choose the value of auxiliary parameter as ℎ = −1 to
ensure that the solution series converges. For problem (14),
comparison of the results of the present method with the
results of Akram and Rehman [9], Inc and Evans [7], and
Siddiqi and Akram [5] is shown in Table 4. It is observed
that the errors in absolute values of the present method are
better. The comparison of exact solution with approximate
solution is shown in Figure 7, and absolute errors are shown
in Figure 8, respectively.

Example 5. Consider the following boundary value problem:

𝑢
(8)
(𝑥) = 𝑢 (𝑥) − 8 (2𝑥 cos (𝑥) + 7 sin (𝑥)) , −1 ≤ 𝑥 ≤ 1,

𝑢 (−1) = 𝑢 (1) = 0,

0.6 0.8 10.2 0.4

8

6

4

2

×10
−12

Figure 8: Absolute errors.

10.5

0.3

0.2

0.1

−0.5−1

−0.3

−0.2

−0.1

Figure 9: Comparison of the approximate solution with the exact
solution for problem (15). Dotted line: approximate solution, solid
line: the exact solution.

𝑢
(1)
(−1) = 𝑢

(1)
(1) = 2 sin (1) ,

𝑢
(2)
(−1) = −𝑢

(2)
(1) = −4 cos (1) − 2 sin (1) ,

𝑢
(3)
(−1) = 𝑢

(3)
(1) = 6 cos (1) − 6 sin (1) .

(47)

The exact solution of problem (15) is 𝑢(𝑥) = (𝑥
2
− 1) sin(𝑥)

[5, 6, 9, 14].
Following the procedure of the previous example, this

problem is solved using the convergence control parameter
as ℎ = −1.
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1−0.5 0.5−1

3.5

−13
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×10

Figure 10: Absolute errors for problem (15).

1
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Figure 11: Comparison of the approximate solution with the exact
solution for problem (16). Dotted line: approximate solution; solid
line: the exact solution.

Table 5: Comparison of maximum absolute errors for Problem (15).

Present
method

Akram and
Rehman [9]

Lamnii et al.
[14]

Siddiqi and
Twizell [6]
𝑥 ∈ [𝑥4, 𝑥𝑘−4]

Siddiqi
and

Akram [5]
1.89×10

−13
4.90 × 10

−9
5.01 × 10

−9
1.20 × 10

−5
1.02 × 10

−8

It is observed that the maximum absolute error values
are better than those of Akram and Rehman [9], Lamnii
et al. [14], Siddiqi and Akram [5], and Siddiqi and Twizell
[6] as shown in Table 5. The comparison of exact solution
with approximate solution is shown in Figure 9, and absolute
errors are shown in Figure 10, respectively.

Example 6. Consider the following boundary value problem:

𝑢
(8)
(𝑥) = −8𝑒

𝑥
+ 𝑢 (𝑥) , 0 < 𝑥 < 1,

𝑢 (0) = 1, 𝑢
(4)
(0) = −3,

𝑢
(1)
(0) = 0, 𝑢

(5)
(0) = −4,

𝑢
(2)
(0) = −1, 𝑢

(1)
(1) = −𝑒,

𝑢
(3)
(0) = −2, 𝑢

(2)
(1) = −2𝑒.

(48)

0.6 0.8 10.2 0.4

5

−13

4

3

2

1

×10

Figure 12: Absolute errors for problem (16).

0.5 1−0.5−1

1.2

1

0.8

0.6

0.4

0.2

Figure 13: Comparison of the approximate solution with the exact
solution for problem (17). Dotted line: approximate solution; solid
line: the exact solution.

The exact solution of problem (16) is 𝑢(𝑥) = (1 − 𝑥)𝑒
𝑥 [8, 9,

33, 34].
Following the procedure of the previous example, this

problem is solved using the convergence control parameter
as ℎ = −1.

It is observed that the errors in absolute values are better
than those of Akram and Rehman [9], Golbabai and Javidi
[8], He [33], and Torvattanabun and Koonprasert [34] as
shown in Table 6. Figures 11 and 12 show the comparison of
exact solution with approximate solution and absolute errors,
respectively.

Example 7. Consider the following tenth-order boundary
value problem:

𝑢
(10)

(𝑥)

= −𝑒
𝑥
(89 + 21𝑥 + 𝑥

2
− 𝑥
3
) + 𝑥𝑢 (𝑥) , −1 < 𝑥 < 1,

𝑢 (−1) = 0, 𝑢 (1) = 0,

𝑢
(1)
(−1) =

2

𝑒

, 𝑢
(1)
(1) = −2𝑒,

𝑢
(2)
(−1) =

2

𝑒

, 𝑢
(2)
(1) = −6𝑒,
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Table 6: Comparison of absolute errors for Problem (16).

𝑥

Present method
|𝑢 − 𝑢1|

Akram and Rehman
[9], |𝑢 − 𝑢7|

Golbabai and Javidi
[8]

(𝑁 = 7)
He [33] Torvattanabun and

Koonprasert [34]

0.25 2.55351𝐸 − 15 3.0291𝐸 − 10 2.1630𝐸 − 09 4.578𝐸 − 09 3.8922𝐸 − 10

0.50 9.65894𝐸 − 14 7.7317𝐸 − 09 1.1571𝐸 − 07 9.840𝐸 − 09 1.1571𝐸 − 07

0.75 5.63438𝐸 − 13 3.1222𝐸 − 08 1.0479𝐸 − 06 1.096𝐸 − 05 1.0479𝐸 − 06

1.0 9.23328𝐸 − 13 4.3979𝐸 − 08 4.2188𝐸 − 06 1.861𝐸 − 04 4.2188𝐸 − 06

Table 7: Comparison of maximum absolute errors for Problem (17).

Present
method

Geng and Li
[10] Siddiqi et al. [11] Siddiqi and Akram

[12]

Siddiqi and Twizell
[13]

𝑥 ∈ [𝑥5, 𝑥𝑘−5]

Lamnii et al. [14] Farajeyan and Maleki
[19]

6.42 × 10
−13

9.08 × 10
−12

1.97 × 10
−6

3.28 × 10
−6

2.07 × 10
−3

1.86 × 10
−8

1.75 × 10
−12

1

8

6

−13

4

2

−0.5 0.5−1

×10

Figure 14: Absolute errors for problem (17).

Table 8: Comparison of numerical results for Example 8.

𝑥 Exact solution Absolute error
present method

Absolute error
Kasi Viswanadham

and Raju [35]
0.1 −0.0473684 3.95413𝐸 − 11 1.322478𝐸 − 06

0.2 −0.0888889 7.33317𝐸 − 10 4.231930𝐸 − 06

0.3 −0.123529 7.33317𝐸 − 09 1.676381𝐸 − 05

0.4 −0.15 6.06524𝐸 − 09 4.245341𝐸 − 05

0.5 −0.166667 7.74775𝐸 − 09 6.663799𝐸 − 05

0.6 −0.171429 6.56402𝐸 − 09 6.940961𝐸 − 05

0.7 −0.161538 3.48667𝐸 − 09 4.750490𝐸 − 05

0.8 −0.133333 9.23198𝐸 − 10 1.643598𝐸 − 05

0.9 −0.08181824 5.33521𝐸 − 11 2.607703𝐸 − 07

𝑢
(3)
(−1) = 0, 𝑢

(3)
(1) = −12𝑒,

𝑢
(4)
(−1) =

−4

𝑒

, 𝑢
(3)
(1) = −20𝑒.

(49)

The exact solution of problem (17) is 𝑢(𝑥) = (1 − 𝑥
2
)𝑒
𝑥 [10–

14, 19].

Following the procedure of the previous example, this
problem is solved using the convergence control parameter
as ℎ = −1.

It is observed that the errors in absolute values of the
presentmethod are better than those of Farajeyan andMaleki
[19], Geng and Li [10], Lamnii et al. [14], Siddiqi and Akram
[12], Siddiqi et al. [11], and Siddiqi and Twizell [13] as shown
in Table 7. Figures 13 and 14 show the comparison of exact
solution with approximate solution and absolute errors for
Example 7, respectively.

Example 8. Consider the following tenth-order nonlinear
boundary value problem:

𝑢
(10)

(𝑥) =

14175

4

(𝑥 + 𝑢 (𝑥) + 1)
11
, 0 < 𝑥 < 1,

𝑢 (0) = 0, 𝑢 (1) = 0,

𝑢
(1)
(0) =

−1

2

, 𝑢
(1)
(1) = 1,

𝑢
(2)
(0) =

1

2

, 𝑢
(2)
(1) = 4,

𝑢
(3)
(0) =

3

4

, 𝑢
(3)
(1) = 12,

𝑢
(4)
(0) =

3

2

, 𝑢
(3)
(1) = 48.

(50)

The exact solution of problem (18) is 𝑢(𝑥) = (2/(2−𝑥))−𝑥−1
[35].

Following the procedure of the previous example, this
problem is solved using the convergence control parameter
as ℎ = −1.

It is observed that the errors in absolute values are better
than those of Viswanadham and Raju [35] as shown in
Table 8. In Figure 15, the comparison of exact solution with
approximate solution is shown, and in Figure 16, absolute
errors for Example 8 are shown, respectively.
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Figure 15: Comparison of the approximate solution with the exact
solution for problem (18). Dotted line: approximate solution; solid
line: the exact solution.

0.6 0.8 10.2 0.4

6

−9

4

2

×10

Figure 16: Absolute errors for problem (18).

4. Conclusion

In this paper, the homotopy analysis method (HAM) has
been applied to obtain the numerical solutions of seventh-
eighth-, and tenth-order boundary value problems. All com-
putational work was carried out usingMathematica software.
The numerical results show that only a few number of
approximations can be used for numerical purpose with a
high degree of accuracy. It is observed that the absolute errors
are better than the methods in [3, 5–14, 19, 32–35]. It is
also observed that our proposed method is well suited for
the solution of higher order boundary value problems and
reduces the computational work. HAM converges to exact
solutions more rapidly as compared to the other method.
Therefore, the present method is an accurate and reliable
analytical technique for boundary value problems.
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