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The sequence space ℓ(𝑝) was introduced by Maddox (1967). Quite recently, the domain of the generalized difference matrix 𝐵(𝑟, 𝑠)
in the sequence space ℓ𝑝 has been investigated by Kirişçi and Başar (2010). In the present paper, the sequence space ℓ( ̃𝐵, 𝑝)
of nonabsolute type has been studied which is the domain of the generalized difference matrix 𝐵(𝑟, 𝑠) in the sequence space
ℓ(𝑝). Furthermore, the alpha-, beta-, and gamma-duals of the space ℓ( ̃𝐵, 𝑝) have been determined, and the Schauder basis has
been given. The classes of matrix transformations from the space ℓ( ̃𝐵, 𝑝) to the spaces ℓ∞, c and c0 have been characterized.
Additionally, the characterizations of some other matrix transformations from the space ℓ( ̃𝐵, 𝑝) to the Euler, Riesz, difference,
and so forth sequence spaces have been obtained by means of a given lemma. The last section of the paper has been devoted to
conclusion.

1. Preliminaries, Background, and Notation

By 𝑤, we denote the space of all real valued sequences. Any
vector subspace of 𝑤 is called a sequence space. We write ℓ∞,
𝑐, and 𝑐0 for the spaces of all bounded, convergent, and null
sequences, respectively. Also by 𝑏𝑠, 𝑐𝑠, ℓ1, and ℓ𝑝, we denote
the spaces of all bounded, convergent, absolutely convergent
and 𝑝-absolutely convergent series, respectively, where 1 <

𝑝 < ∞.
A linear topological space 𝑋 over the real field R is said

to be a paranormed space if there is a subadditive function
𝑔 : 𝑋 → R such that 𝑔(𝜃) = 0, 𝑔(𝑥) = 𝑔(−𝑥) and
scalar multiplication is continuous; that is, |𝛼𝑛 − 𝛼| → 0

and 𝑔(𝑥𝑛 − 𝑥) → 0 imply 𝑔(𝛼𝑛𝑥𝑛 − 𝛼𝑥) → 0 for all 𝛼’s
in R and all 𝑥’s in 𝑋, where 𝜃 is the zero vector in the linear
space𝑋.

Assume here and after that (𝑝𝑘) is a bounded sequence
of strictly positive real numbers with sup𝑝𝑘 = 𝐻 and
𝑀 = max{1,𝐻}. Then, the linear spaces ℓ(𝑝) were defined
by Maddox [1] (see also Simons [2] and Nakano [3])

as follows:

ℓ (𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝑤 : ∑

𝑘





𝑥𝑘






𝑝𝑘
< ∞} ,

(0 < 𝑝𝑘 ≤ 𝐻 < ∞)

(1)

which is the complete space paranormed by

𝑔 (𝑥) = (∑

𝑘





𝑥𝑘






𝑝𝑘
)

1/𝑀

. (2)

For simplicity in notation, here and in what follows, the
summation without limits runs from 0 to ∞. We assume
throughout that 𝑝−1

𝑘
+ (𝑝



𝑘
)

−1
= 1 and denote the collection

of all finite subsets of N = {0, 1, 2, . . .} by F and use the
convention that any term with negative subscript is equal to
naught.

Let 𝜆, 𝜇 be any two sequence spaces and let 𝐴 =

(𝑎𝑛𝑘) be an infinite matrix of real or complex numbers 𝑎𝑛𝑘,
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where 𝑛, 𝑘 ∈ N.Then, we say that𝐴 defines a matrix mapping
from 𝜆 into 𝜇, and we denote it by writing 𝐴 : 𝜆 → 𝜇; if for
every sequence 𝑥 = (𝑥𝑘) ∈ 𝜆 the sequence 𝐴𝑥 = {(𝐴𝑥)𝑛}, the
𝐴-transform of 𝑥, is in 𝜇, where

(𝐴𝑥)𝑛 = ∑

𝑘

𝑎𝑛𝑘𝑥𝑘, for each 𝑛 ∈ N. (3)

By (𝜆 : 𝜇), we denote the class of all matrices 𝐴 such that
𝐴 : 𝜆 → 𝜇. Thus, 𝐴 ∈ (𝜆 : 𝜇) if and only if the series on the
right side of (3) converges for each 𝑛 ∈ N and every 𝑥 ∈ 𝜆,
and we have 𝐴𝑥 = {(𝐴𝑥)𝑛}𝑛∈N ∈ 𝜇 for all 𝑥 ∈ 𝜆. A sequence
𝑥 is said to be 𝐴-summable to 𝛼 if 𝐴𝑥 converges to 𝛼 which
is called the 𝐴-limit of 𝑥.

The shift operator 𝑃 is defined on 𝜔 by (𝑃𝑥)𝑛 = 𝑥𝑛+1 for
all 𝑛 ∈ N. A Banach limit 𝐿 is defined on ℓ∞, as a nonnegative
linear functional, such that 𝐿(𝑃𝑥) = 𝐿(𝑥) and 𝐿(𝑒) = 1, where
𝑒 = (1, 1, 1, . . .). A sequence𝑥 = (𝑥𝑘) ∈ ℓ∞ is said to be almost
convergent to the generalized limit 𝑙 if all Banach limits of 𝑥
are 𝑙 and is denoted by 𝑓− lim𝑥𝑘 = 𝑙. Lorentz [4] proved that

𝑓 − lim𝑥𝑘 = 𝑙

iff lim
𝑚→∞

1

𝑚 + 1

𝑚

∑

𝑘=0

𝑥𝑘+𝑛 = 𝑙 uniformly in 𝑛.

(4)

It is well known that a convergent sequence is almost
convergent such that its ordinary and generalized limits are
equal. By 𝑓, we denote the space of all almost convergent
sequences; that is,

𝑓 :=

{𝑥=(𝑥𝑘) ∈ 𝜔:∃𝑙 ∈ C ∋ lim
𝑚→∞

𝑚

∑

𝑘=0

𝑥𝑛+𝑘

𝑚 + 1

=𝑙 uniformly in 𝑛}.

(5)

Define the double sequential band matrix 𝐵(𝑟, 𝑠) =

{𝑏𝑛𝑘(𝑟𝑘, 𝑠𝑘)} by

𝑏𝑛𝑘 (𝑟𝑘, 𝑠𝑘) =

{
{

{
{

{

𝑟𝑘, 𝑘 = 𝑛,

𝑠𝑘, 𝑘 = 𝑛 − 1,

0, otherwise
(6)

for all 𝑘, 𝑛 ∈ N, where 𝑟 = (𝑟𝑘) and 𝑠 = (𝑠𝑘) are
the convergent sequences. We should note that the double
sequential band matrices were firstly used by Srivastava and
Kumar [5, 6], Panigrahi and Srivastava [7], and Akhmedov
and El-Shabrawy [8].

The main purpose of this paper, which is a continuation
of Kirişçi and Başar [9], is to introduce the sequence space
ℓ(
̃
𝐵, 𝑝) of nonabsolute type consisting of all sequences whose

𝐵(𝑟, 𝑠)-transforms are in the space ℓ(𝑝). Furthermore, the
basis is constructed and the alpha-, beta-, and gamma-duals
are computed for the space ℓ(

̃
𝐵, 𝑝). Moreover, the matrix

transformations from the space ℓ(
̃
𝐵, 𝑝) to some sequence

spaces are characterized. Finally, we note open problems and
further suggestions.

It is clear that Δ(1) can be obtained as a special case of
𝐵(𝑟, 𝑠) for 𝑟 = 𝑒 and 𝑠 = −𝑒 and it is also trivial that 𝐵(𝑟, 𝑠)
is reduced in the special case 𝑟 = 𝑟𝑒 and 𝑠 = 𝑠𝑒 to the
generalized difference matrix 𝐵(𝑟, 𝑠). So, the results related to
the matrix domain of the matrix 𝐵(𝑟, 𝑠) are more general and
more comprehensive than the corresponding consequences
of the matrix domains of Δ(1) and 𝐵(𝑟, 𝑠).

The rest of this paper is organized as follows. In Section 2,
the linear sequence space ℓ( ̃𝐵, 𝑝) is defined and proved that
it is a complete paranormed space with a Schauder basis.
Section 3 is devoted to the determination of alpha-, beta-,
and gamma-duals of the space ℓ(

̃
𝐵, 𝑝). In Section 4, the

classes (ℓ(
̃
𝐵, 𝑝) : ℓ∞), (ℓ( ̃𝐵, 𝑝) : 𝑓), (ℓ( ̃𝐵, 𝑝) : 𝑐),

and (ℓ(
̃
𝐵, 𝑝) : 𝑐0) of infinite matrices are characterized.

Additionally, the characterizations of some other classes of
matrix transformations from the space ℓ( ̃𝐵, 𝑝) to the Euler,
Riesz, difference, and so forth sequence spaces are obtained
by means of a given lemma. In the final section of the paper,
open problems and further suggestions are noted.

2. The Sequence Space ℓ( ̃𝐵,𝑝) of
Nonabsolute Type

In this section, we introduce the complete paranormed linear
sequence space ℓ( ̃𝐵, 𝑝).

The matrix domain 𝜆𝐴 of an infinite matrix 𝐴 in a
sequence space 𝜆 is defined by

𝜆𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝜔 : 𝐴𝑥 ∈ 𝜆} . (7)

Choudhary and Mishra [10] defined the sequence space ℓ(𝑝)
which consists of all sequences such that 𝑆-transforms of
them are in the space ℓ(𝑝), where 𝑆 = (𝑠𝑛𝑘) is defined by

𝑠𝑛𝑘 = {

1, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

(8)

for all 𝑘, 𝑛 ∈ N. Başar and Altay [11] have recently examined
the space 𝑏𝑠(𝑝) which is formerly defined by Başar in [12]
as the set of all series whose sequences of partial sums are
in ℓ∞(𝑝). More recently, Aydın and Başar [13] have studied
the space 𝑎𝑟(𝑢, 𝑝) which is the domain of the matrix 𝐴𝑟 in
the sequence space ℓ(𝑝), where the matrix 𝐴𝑟

= {𝑎𝑛𝑘(𝑟)} is
defined by

𝑎𝑛𝑘 (𝑟) =

{

{

{

1 + 𝑟
𝑘

𝑛 + 1

𝑢𝑘, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

(9)

for all 𝑘, 𝑛 ∈ N, (𝑢𝑘) such that 𝑢𝑘 ̸= 0 for all 𝑘 ∈ N and 0 < 𝑟 <

1. Altay and Başar [14] have studied the sequence space 𝑟𝑡(𝑝)
which is derived from the sequence space ℓ(𝑝) of Maddox
by the Riesz means 𝑅𝑡. With the notation of (7), the spaces
ℓ(𝑝), 𝑏𝑠(𝑝), 𝑎

𝑟
(𝑢, 𝑝), and 𝑟𝑡(𝑝) can be redefined by

ℓ (𝑝) = [ℓ (𝑝)]
𝑆
, 𝑏𝑠 (𝑝) = [ℓ∞ (𝑝)]

𝑆
,

𝑎
𝑟
(𝑢, 𝑝) = [ℓ (𝑝)]

𝐴𝑟
, 𝑟

𝑡
(𝑝) = [ℓ (𝑝)]

𝑅𝑡
.

(10)
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Following Choudhary and Mishra [10], Başar and Altay
[11], Altay and Başar [14–17], and Aydın and Başar [13, 18],
we introduce the sequence space ℓ(

̃
𝐵, 𝑝) as the set of all

sequences whose𝐵(𝑟, 𝑠)-transforms are in the space ℓ(𝑝); that
is

ℓ (
̃
𝐵, 𝑝) := {(𝑥𝑘) ∈ 𝑤 : ∑

𝑘





𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘






𝑝𝑘
< ∞} ,

(0 < 𝑝𝑘 ≤ 𝐻 < ∞) .

(11)

It is trivial that in the case 𝑝𝑘 = 𝑝 for all 𝑘 ∈ N, the sequence
space ℓ( ̃𝐵, 𝑝) is reduced to the sequence space ̃ℓ𝑝 which is
introduced by Kirişçi and Başar [9]. With the notation of (7),
we can redefine the space ℓ( ̃𝐵, 𝑝) as follows:

ℓ (
̃
𝐵, 𝑝) := [ℓ (𝑝)]

𝐵(𝑟,𝑠)
. (12)

Define the sequence 𝑦 = (𝑦𝑘), which will be frequently used,
as the 𝐵(𝑟, 𝑠)-transform of a sequence 𝑥 = (𝑥𝑘); that is,

𝑦𝑘 = {𝐵 (𝑟, 𝑠) 𝑥}𝑘 = 𝑟𝑘𝑥𝑘 + 𝑠𝑘−1𝑥𝑘−1, ∀𝑘 ∈ N. (13)

Since the spaces ℓ(𝑝) and ℓ( ̃𝐵, 𝑝) are linearly isomorphic by
Corollary 4, one can easily observe that 𝑥 = (𝑥𝑘) ∈ ℓ(

̃
𝐵, 𝑝) if

and only if 𝑦 = (𝑦𝑘) ∈ ℓ(𝑝), where the sequences 𝑥 = (𝑥𝑘)

and 𝑦 = (𝑦𝑘) are connected with the relation (13).
Now, we may begin with the following theorem which is

essential in the text.

Theorem 1. ℓ( ̃𝐵, 𝑝) is a complete linear metric space para-
normed by the paranorm

ℎ (𝑥) = (∑

𝑘





𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘






𝑝𝑘
)

1/𝑀

. (14)

Proof. It is easy to see that the space ℓ( ̃𝐵, 𝑝) is linear with
respect to the coordinate-wise addition and scalar multipli-
cation. Therefore, we first show that it is a paranormed space
with the paranorm ℎ defined by (14).

It is clear that ℎ(𝜃) = 0 where 𝜃 = (0, 0, 0, . . .) and ℎ(𝑥) =
ℎ(−𝑥) for all 𝑥 ∈ ℓ(

̃
𝐵, 𝑝).

Let𝑥, 𝑦 ∈ ℓ(
̃
𝐵, 𝑝); then byMinkowski’s inequalitywe have

ℎ (𝑥 + 𝑦) = [∑

𝑘





𝑠𝑘−1 (𝑥𝑘−1 + 𝑦𝑘−1) + 𝑟𝑘 (𝑥𝑘 + 𝑦𝑘)






𝑝𝑘
]

1/𝑀

= {∑

𝑘

[





𝑠𝑘−1 (𝑥𝑘−1+𝑦𝑘−1)+𝑟𝑘 (𝑥𝑘+𝑦𝑘)






𝑝𝑘/𝑀
]

𝑀

}

1/𝑀

≤ (∑

𝑘





𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘






𝑝𝑘
)

1/𝑀

+ (∑

𝑘





𝑠𝑘−1𝑦𝑘−1 + 𝑟𝑘𝑦𝑘






𝑝𝑘
)

1/𝑀

= ℎ (𝑥) + ℎ (𝑦) .

(15)

Let (𝜆𝑛) be a sequence of scalars with 𝜆𝑛 → 𝜆, as 𝑛 →

∞, and let (𝑥(𝑛))
∞

𝑛=0
be a sequence of elements 𝑥(𝑛) ∈ ℓ(

̃
𝐵, 𝑝)

with ℎ(𝑥(𝑛) − 𝑥) → 0, as 𝑛 → ∞. We observe that

ℎ (𝜆𝑛𝑥
(𝑛)

− 𝜆𝑥) ≤ ℎ [(𝜆𝑛 − 𝜆) (𝑥
(𝑛)

− 𝑥)]

+ ℎ [𝜆 (𝑥
(𝑛)

− 𝑥)]

+ ℎ [(𝜆𝑛 − 𝜆) 𝑥] .

(16)

It follows from 𝜆𝑛 → 𝜆 (𝑛 → ∞) that |𝜆𝑛 − 𝜆| < 1 for all
sufficiently large 𝑛; hence

lim
𝑛→∞

ℎ [(𝜆𝑛 − 𝜆) (𝑥
(𝑛)

− 𝑥)] ≤ lim
𝑛→∞

ℎ (𝑥
(𝑛)

− 𝑥) = 0. (17)

Furthermore, we have

lim
𝑛→∞

ℎ [𝜆 (𝑥
(𝑛)

− 𝑥)] ≤ max {1, |𝜆|𝑀} lim
𝑛→∞

ℎ (𝑥
(𝑛)

− 𝑥) = 0.

(18)

Also, we have

lim
𝑛→∞

ℎ [(𝜆𝑛 − 𝜆) 𝑥] ≤ lim
𝑛→∞





𝜆𝑛 − 𝜆





ℎ (𝑥) = 0. (19)

Then, we obtain from (16), (17), (18), and (19) that ℎ(𝜆𝑛𝑥
(𝑛)

−

𝜆𝑥) → 0, as 𝑛 → ∞. This shows that ℎ is a paranorm on
ℓ(
̃
𝐵, 𝑝).
Furthermore, if ℎ(𝑥) = 0, then (∑𝑘 |𝑠𝑘−1𝑥𝑘−1 +

𝑟𝑘𝑥𝑘|
𝑝𝑘
)
1/𝑀

= 0. Therefore |𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘|
𝑝𝑘

= 0 for each
𝑘 ∈ N. If we put 𝑘 = 0, since 𝑠−1 = 0 and 𝑟0 ̸= 0, we have
𝑥0 = 0. For 𝑘 = 1, since 𝑥0 = 0 we have 𝑥1 = 0. Continuing
in this way, we obtain 𝑥𝑘 = 0 for all 𝑘 ∈ N. That is, 𝑥 = 𝜃. This
shows that ℎ is a total paranorm.

Now, we show that ℓ( ̃𝐵, 𝑝) is complete. Let {𝑥𝑛} be any
Cauchy sequence in ℓ(

̃
𝐵, 𝑝) where 𝑥𝑛 = {𝑥

(𝑛)

0
, 𝑥

(𝑛)

1
,𝑥(𝑛)

2
, . . .}.

Here and after, for short we write ̃
𝐵 instead of 𝐵(𝑟, 𝑠). Then

for a given 𝜀 > 0, there exists a positive integer 𝑛0(𝜀) such that
ℎ(𝑥

𝑛
− 𝑥

𝑚
) < 𝜀 for all 𝑛,𝑚 > 𝑛0(𝜀). Since for each fixed 𝑘 ∈ N






(
̃
𝐵𝑥

𝑛
)
𝑘
− (

̃
𝐵𝑥

𝑚
)
𝑘






≤ [∑

𝑘






(
̃
𝐵𝑥

𝑛
)
𝑘
− (

̃
𝐵𝑥

𝑚
)
𝑘







𝑝𝑘
]

1/𝑀

= ℎ (𝑥
𝑛
− 𝑥

𝑚
) < 𝜀

(20)

for every 𝑛,𝑚 > 𝑛0(𝜀), {( ̃𝐵𝑥
0
)𝑘, (

̃
𝐵𝑥

1
)𝑘, (

̃
𝐵𝑥

2
)𝑘, . . .} is a

Cauchy sequence of real numbers for every fixed 𝑘 ∈ N. Since
R is complete, it converges, say ( ̃𝐵𝑥𝑛)𝑘 → (

̃
𝐵𝑥)𝑘 as 𝑛 → ∞.

Using these infinitely many limits ( ̃𝐵𝑥)0, ( ̃𝐵𝑥)1, ( ̃𝐵𝑥)2, . . . we
define the sequence {( ̃𝐵𝑥)0, ( ̃𝐵𝑥)1, ( ̃𝐵𝑥)2, . . .}. For each𝐾 ∈ N

and 𝑛,𝑚 > 𝑛0(𝜀)

[

𝐾

∑

𝑘=0






(
̃
𝐵𝑥

𝑛
)
𝑘
− (

̃
𝐵𝑥

𝑚
)
𝑘







𝑝𝑘
]

1/𝑀

≤ ℎ (𝑥
𝑛
− 𝑥

𝑚
) < 𝜀. (21)

By letting𝑚,𝐾 → ∞, we have for 𝑛 > 𝑛0(𝜀) that

ℎ (𝑥
𝑛
− 𝑥) = [∑

𝑘






(
̃
𝐵𝑥

𝑛
)
𝑘
− (

̃
𝐵𝑥)

𝑘







𝑝𝑘
]

1/𝑀

< 𝜀. (22)
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This shows us 𝑥𝑛 − 𝑥 ∈ ℓ(
̃
𝐵, 𝑝). Since ℓ( ̃𝐵, 𝑝) is a linear space,

we conclude that 𝑥 ∈ ℓ(
̃
𝐵, 𝑝); It follows that 𝑥𝑛 → 𝑥, as 𝑛 →

∞ in ℓ(
̃
𝐵, 𝑝), thus we have shown that ℓ( ̃𝐵, 𝑝) is complete.

Therefore, one can easily check that the absolute property
does not hold on the space ℓ( ̃𝐵, 𝑝); that is, 𝑔1(𝑥) ̸= 𝑔1(|𝑥|),
where |𝑥| = (|𝑥𝑘|).This says that ℓ( ̃𝐵, 𝑝) is the sequence space
of nonabsolute type.

Theorem 2. Convergence in ℓ(
̃
𝐵, 𝑝) is stronger than coor-

dinate-wise convergence.

Proof. First we show that ℎ(𝑥𝑛 − 𝑥) → 0, as 𝑛 → ∞ implies
𝑥
𝑛

𝑘
→ 𝑥𝑘; as 𝑛 → ∞ for every 𝑘 ∈ N. We fix 𝑘, then we have

lim
𝑛→∞






𝑠𝑘−1𝑥

(𝑛)

𝑘−1
+ 𝑟𝑘𝑥

(𝑛)

𝑘
− 𝑠𝑘−1𝑥𝑘−1 − 𝑟𝑘𝑥𝑘







𝑝𝑘

≤ lim
𝑛→∞

∑

𝑘






𝑠𝑘−1𝑥

(𝑛)

𝑘−1
+ 𝑟𝑘𝑥

(𝑛)

𝑘
− 𝑠𝑘−1𝑥𝑘−1 − 𝑟𝑘𝑥𝑘







𝑝𝑘

= lim
𝑛→∞

[ℎ (𝑥
𝑛
− 𝑥)]

𝑀
= 0.

(23)

Hence, we have for 𝑘 = 0 that

lim
𝑛→∞






𝑠−1𝑥

(𝑛)

−1
+ 𝑟0𝑥

(𝑛)

0
− 𝑠−1𝑥−1 − 𝑟0𝑥0






= 0, (24)

which gives the fact that |𝑥(𝑛)
0

− 𝑥0| → 0, as 𝑛 → ∞.
Similarly, for each 𝑘 ∈ N, we have |𝑥(𝑛)

𝑘
− 𝑥𝑘| → 0, as

𝑛 → ∞.

A sequence space 𝜆 with a linear topology is called a
𝐾-space provided each of the maps 𝑝𝑖 : 𝜆 → C defined by
𝑝𝑖(𝑥) = 𝑥𝑖 is continuous for all 𝑖 ∈ N, where C denotes the
complex field. A𝐾-space𝜆 is called an𝐹𝐾-space provided𝜆 is
complete linear metric space. An 𝐹𝐾-space whose topology
is normable is called a 𝐵𝐾-space. Given a 𝐵𝐾-space 𝜆 ⊃ 𝜙,
we denote the 𝑛th section of a sequence 𝑥 = (𝑥𝑘) ∈ 𝜆 by
𝑥
[𝑛]

:= ∑
𝑛

𝑘=0
𝑥𝑘𝑒

(𝑘), and we say that 𝑥 = (𝑥𝑘) has the property
𝐴𝐾 if lim𝑛→∞ ‖ 𝑥 − 𝑥

[𝑛]
‖𝜆 = 0. If 𝐴𝐾 property holds for

every 𝑥 ∈ 𝜆, then we say that the space 𝜆 is called 𝐴𝐾-space
(cf. [19]). Now, we may give the following.

Theorem 3. (ℓ𝑝)𝐵 is the linear space under the coordinatewise
addition and scalar multiplication which is the 𝐵𝐾-space with
the norm

‖𝑥‖ := (∑

𝑘





𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘






𝑝
)

1/𝑝

, where 1 ≤ 𝑝 < ∞.

(25)

Proof. Because the first part of the theorem is a routine
verification, we omit the detail. Since ℓ𝑝 is the 𝐵𝐾-space with
respect to its usual norm (see [20, pages 217-218]) and 𝐵(𝑟, 𝑠)
is a normal matrix, Theorem 4.3.2 of Wilansky [21, page 61]
gives the fact that (ℓ𝑝)𝐵 is the 𝐵𝐾-space, where 1 ≤ 𝑝 <

∞.

Let us suppose that 1 < 𝑝𝑘 ≤ 𝑠𝑘 for all 𝑘 ∈ N. Then, it
is known that ℓ(𝑝) ⊂ ℓ(𝑠) which leads us to the immediate
consequence that ℓ( ̃𝐵, 𝑝) ⊂ ℓ(

̃
𝐵, 𝑠).

With the notation of (13), define the transformation 𝑇

from ℓ(
̃
𝐵, 𝑝) to ℓ(𝑝) by 𝑥 → 𝑦 = 𝑇𝑥. Since 𝑇 is linear and

bijection, we have the following.

Corollary 4. The sequence space ℓ( ̃𝐵, 𝑝) of nonabsolute type
is linearly paranorm isomorphic to the space ℓ(𝑝), where 0 <

𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ N.

Theorem 5. The space ℓ( ̃𝐵, 𝑝) has AK.

Proof. For each 𝑥 = (𝑥𝑘) ∈ ℓ(
̃
𝐵, 𝑝), we put

𝑥
⟨𝑚⟩

=

𝑚

∑

𝑘=0

𝑥𝑘𝑒
(𝑘)
, ∀𝑚 ∈ {1, 2, . . .} . (26)

Let 𝜀 > 0 and 𝑥 ∈ ℓ(
̃
𝐵, 𝑝) be given.Then, there is𝑁 = 𝑁(𝜀) ∈

N such that
∞

∑

𝑘=𝑁





𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘






𝑝𝑘
< 𝜀

𝑀
. (27)

Then we have for all𝑚 ≥ 𝑁,

ℎ (𝑥 − 𝑥
⟨𝑚⟩

) = ℎ(𝑥 −

𝑚

∑

𝑘=1

𝑥𝑘𝑒
(𝑘)
)

= (

∞

∑

𝑘=𝑚+1





𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘






𝑝𝑘
)

1/𝑀

≤ (

∞

∑

𝑘=𝑁





𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘






𝑝𝑘
)

1/𝑀

< 𝜀.

(28)

This shows that 𝑥 = ∑𝑘 𝑥𝑘𝑒
(𝑘).

Now we have to show that this representation is unique.
We assume that 𝑥 = ∑𝑘 𝜆𝑘𝑒

(𝑘). Then for each 𝑘,

(




𝑠𝑘−1𝜆𝑘−1 + 𝑟𝑘𝜆𝑘 − 𝑠𝑘−1𝑥𝑘−1 − 𝑟𝑘𝑥𝑘






𝑝𝑘
)

1/𝑀

≤ (∑

𝑘





𝑠𝑘−1𝜆𝑘−1 + 𝑟𝑘𝜆𝑘 − 𝑠𝑘−1𝑥𝑘−1 − 𝑟𝑘𝑥𝑘






𝑝𝑘
)

1/𝑀

= ℎ (𝑥 − 𝑥) = 0.

(29)

Hence, 𝑠𝑘−1𝜆𝑘−1 + 𝑟𝑘𝜆𝑘 = 𝑠𝑘−1𝑥𝑘−1 + 𝑟𝑘𝑥𝑘 for each 𝑘.
For 𝑘 = 0, 𝑟0𝜆0 = 𝑟0𝑥0. Since 𝑟0 ̸= 0, we have 𝜆0 = 𝑥0.
For 𝑘 = 1, 𝑠0𝜆0 + 𝑟1𝜆1 = 𝑠0𝑥0 + 𝑟1𝑥1. Since 𝑟1 ̸= 0, we also

have 𝜆1 = 𝑥1.
Continuing in this way, we obtain 𝜆𝑘 = 𝑥𝑘 for each 𝑘.

Therefore, the representation is unique.

We firstly define the concept of the Schauder basis for a
paranormed sequence space and next give the basis of the
sequence space ℓ( ̃𝐵, 𝑝).
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Let (𝑋, 𝑔) be a paranormed space. A sequence (𝑏𝑘) of the
elements of 𝑋 is called a basis for 𝑋 if and only if, for each
𝑥 ∈ 𝑋, there exists a unique sequence (𝛼𝑘) of scalars such
that

lim
𝑛→∞

𝑔(𝑥 −

𝑛

∑

𝑘=0

𝛼𝑘𝑏𝑘) = 0. (30)

The series ∑𝑘 𝛼𝑘𝑏𝑘 which has the sum 𝑥 is then called the
expansion of𝑥with respect to (𝑏𝑛) andwritten as𝑥 = ∑𝑘 𝛼𝑘𝑏𝑘.
Since it is known that the matrix domain 𝜆𝐴 of a sequence
space 𝜆 has a basis if and only if 𝜆 has a basis whenever
𝐴 = (𝑎𝑛𝑘) is a triangle (cf. [22, Remark 2.4]), we have the
following.

Corollary 6. Let 0 < 𝑝𝑘 ≤ 𝐻 < ∞ and 𝛼𝑘 = (
̃
𝐵𝑥)𝑘 for all

𝑘 ∈ N. Define the sequence 𝑏(𝑘) = {𝑏
(𝑘)

𝑛
}𝑛∈N of the elements of

the space ℓ( ̃𝐵, 𝑝) by

𝑏
(𝑘)

𝑛
:=

{
{

{
{

{

(−1)
𝑛−𝑘

𝑟𝑛

𝑛−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

(31)

for every fixed 𝑘 ∈ N.Then, the sequence {𝑏(𝑘)}k∈N given by (31)
is a basis for the space ℓ( ̃𝐵, 𝑝) and any 𝑥 ∈ ℓ(

̃
𝐵, 𝑝) has a unique

representation of the form 𝑥 := ∑𝑘 𝛼𝑘𝑏
(𝑘).

3. The Alpha-, Beta-, and Gamma-Duals of
the Space ℓ( ̃𝐵,𝑝)

In this section, we state and prove the theorems determining
the alpha-, beta-, and gamma-duals of the sequence space
ℓ(
̃
𝐵, 𝑝) of nonabsolute type.
For the sequence spaces 𝜆 and 𝜇, the set 𝑆(𝜆, 𝜇) defined

by

𝑆 (𝜆, 𝜇)

:= {𝑧 = (𝑧𝑘) ∈ 𝜔 : 𝑥𝑧 = (𝑥𝑘𝑧𝑘) ∈ 𝜇 ∀𝑥 = (𝑥𝑘) ∈ 𝜆}

(32)

is called the multiplier space of the spaces 𝜆 and 𝜇. With the
notation of (32), the alpha-, beta-, and gamma-duals of a
sequence space 𝜆, which are, respectively, denoted by 𝜆𝛼, 𝜆𝛽,
and 𝜆𝛾, are defined by

𝜆
𝛼
:= 𝑆 (𝜆, ℓ1) , 𝜆

𝛽
:= 𝑆 (𝜆, 𝑐𝑠) , 𝜆

𝛾
:= 𝑆 (𝜆, 𝑏𝑠) .

(33)

Since the case 0 < 𝑝𝑘 ≤ 1 may be established in similar
way to the proof of the case 1 < 𝑝𝑘 ≤ 𝐻 < ∞, we omit the
detail of that case and give the proof only for the case 1 < 𝑝𝑘 ≤

𝐻 < ∞ in Theorems 10–12 below.
We begin with quoting three lemmas which are needed in

provingTheorems 10–12.

Lemma 7 ([23, (i) and (ii) of Theorem 1]). Let 𝐴 = (𝑎𝑛𝑘) be
an infinite matrix. Then, the following statements hold.

(i) Let 0 < 𝑝𝑘 ≤ 1 for all 𝑘 ∈ N. Then, 𝐴 ∈ (ℓ(𝑝) : ℓ∞) if
and only if

sup
𝑛,𝑘∈N





𝑎𝑛𝑘






𝑝𝑘
< ∞. (34)

(ii) Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ N. Then, 𝐴 ∈ (ℓ(𝑝) :

ℓ∞) if and only if there exists an integer 𝑀 > 1 such
that

sup
𝑛∈N

∑

𝑘






𝑎𝑛𝑘𝑀

−1




𝑝


𝑘

< ∞. (35)

Lemma 8 ([23, Corollary for Theorem 1]). Let 0 < 𝑝𝑘 ≤ 𝐻 <

∞ for all 𝑘 ∈ N. Then, 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ(𝑝) : 𝑐) if and only if
(34) and (35) hold, and

lim
𝑛→∞

𝑎𝑛𝑘 = 𝛽𝑘, ∀𝑘 ∈ N. (36)

Lemma 9 ([24, Theorem 5.1.0]). Let 𝐴 = (𝑎𝑛𝑘) be an infinite
matrix. Then, the following statements hold

(i) Let 0 < 𝑝𝑘 ≤ 1 for all 𝑘 ∈ N. Then, 𝐴 ∈ (ℓ(𝑝) : ℓ1) if
and only if

sup
𝑁∈F

sup
𝑘∈N












∑

𝑛∈𝑁

𝑎𝑛𝑘












𝑝𝑘

< ∞. (37)

(ii) Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ N. Then, 𝐴 ∈ (ℓ(𝑝) :

ℓ1) if and only if there exists an integer𝑀 > 1 such that

sup
𝑁∈F

∑

𝑘












∑

𝑛∈𝑁

𝑎𝑛𝑘𝑀
−1












𝑝


𝑘

< ∞. (38)

Theorem 10. Define the sets 𝑆1(𝑝) and 𝑆2(𝑝) by

𝑆1 (𝑝) = ⋃

𝑀>1

{

{

{

𝑎=(𝑎𝑘) ∈ 𝜔 :

sup
𝑁∈F

∑

𝑘













∑

𝑛∈𝑁

(−1)
𝑛−𝑘

𝑟𝑛

𝑛−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑀
−1













𝑝


𝑘

< ∞

}

}

}

,

𝑆2 (𝑝)=

{

{

{

𝑎=(𝑎𝑘)∈𝜔 : sup
N∈F

sup
𝑘∈N













∑

𝑛∈𝑁

(−1)
𝑛−𝑘

𝑟𝑛

𝑛−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛













𝑝𝑘

<∞

}

}

}

.

(39)

Then,

{ℓ (
̃
𝐵, 𝑝)}

𝛼

= {

𝑆1 (𝑝) , 1 < 𝑝𝑘 ≤ 𝐻 < ∞, ∀𝑘 ∈ N,

𝑆2 (𝑝) , 0 < 𝑝𝑘 ≤ 1, ∀𝑘 ∈ N.
(40)

Proof. Let us take any 𝑎 = (𝑎𝑛) ∈ 𝜔. By using (13) we obtain
that

𝑥𝑛 =

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

𝑟𝑛

𝑛−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑦𝑘 (41)
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holds for all 𝑛 ∈ N which leads us to

𝑎𝑛𝑥𝑛 =

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

𝑟𝑛

𝑛−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑦𝑘 = (𝐶𝑦)
𝑛
, (𝑛 ∈ N) , (42)

where 𝐶 = (𝑐𝑛𝑘) is defined by

𝑐𝑛𝑘 =

{
{

{
{

{

(−1)
𝑛−𝑘

𝑟𝑛

𝑛−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛

(43)

for all 𝑘, 𝑛 ∈ N. Thus, we observe by combining (42) with the
condition (37) of Part (i) of Lemma 9 that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ ℓ1

whenever 𝑥 = (𝑥𝑘) ∈ ℓ(
̃
𝐵, 𝑝) if and only if 𝐶𝑦 ∈ ℓ1 whenever

𝑦 = (𝑦𝑘) ∈ ℓ(𝑝). That means {ℓ( ̃𝐵, 𝑝)}𝛼 = 𝑆1(𝑝).

Theorem 11. Define the sets 𝑆3(𝑝), 𝑆4(𝑝), and 𝑆5(𝑝) by

𝑆3 (𝑝) =

⋃

𝑀>1

{

{

{

𝑎 = (𝑎𝑘) ∈ 𝜔 : sup
𝑛∈N

∑

𝑘













𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑖𝑀
−1













𝑝


𝑘

<∞

}

}

}

,

𝑆4 (𝑝) =

{

{

{

𝑎 = (𝑎𝑘) ∈ 𝜔 :

∞

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑖 < ∞

}

}

}

,

𝑆5 (𝑝) =

{

{

{

𝑎 = (𝑎𝑘) ∈ 𝜔 : sup
𝑛,𝑘∈N













𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑖













𝑝𝑘

< ∞

}

}

}

.

(44)

Then,

{ℓ (
̃
𝐵, 𝑝)}

𝛽

= {

𝑆3 (𝑝) ∩ 𝑆4 (𝑝) , 1 < 𝑝𝑘 ≤ 𝐻 < ∞ ∀𝑘 ∈ N,

𝑆4 (𝑝) ∩ 𝑆5 (𝑝) , 0 < 𝑝𝑘 ≤ 1 ∀𝑘 ∈ N.

(45)

Proof. Take any 𝑎 = (𝑎𝑖) ∈ 𝜔 and consider the equation
obtained with (13) that

𝑛

∑

𝑖=0

𝑎𝑖𝑥𝑖 =

𝑛

∑

𝑖=0

[

[

𝑖

∑

𝑘=0

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑦𝑘
]

]

𝑎𝑖

=

𝑛

∑

𝑘=0

[

[

𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

s𝑗
𝑟𝑗

𝑎𝑖
]

]

𝑦𝑘

= (𝐷𝑦)
𝑛
,

(46)

where𝐷 = (𝑑𝑛𝑘) is defined by

𝑑𝑛𝑘 =

{
{

{
{

{

𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑖, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛

(47)

for all 𝑘, 𝑛 ∈ N.Thus, we deduce fromLemma 8with (46) that
𝑎𝑥 = (𝑎𝑖𝑥𝑖) ∈ 𝑐𝑠 whenever 𝑥 = (𝑥𝑖) ∈ ℓ(

̃
𝐵, 𝑝) if and only if

𝐷𝑦 ∈ 𝑐 whenever 𝑦 = (𝑦𝑘) ∈ ℓ(𝑝). Therefore, we derive from
(35) and (36) that

sup
𝑛∈N

∑

𝑘













𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑖𝑀
−1













𝑝


𝑘

< ∞,

∞

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑖 < ∞.

(48)

This shows that {ℓ( ̃𝐵, 𝑝)}𝛽 = 𝑆3(𝑝) ∩ 𝑆4(𝑝).

Theorem 12.

{ℓ (
̃
𝐵, 𝑝)}

𝛾

= {

𝑆3 (𝑝) , 1 < 𝑝𝑘 ≤ 𝐻 < ∞, ∀𝑘 ∈ N,

𝑆5 (𝑝) , 0 < 𝑝𝑘 ≤ 1, ∀𝑘 ∈ N.
(49)

Proof. From Lemma 7 and (46), we obtain that 𝑎𝑥 = (𝑎𝑖𝑥𝑖) ∈

𝑏𝑠 whenever 𝑥 = (𝑥𝑖) ∈ ℓ(
̃
𝐵, 𝑝) if and only if 𝐷𝑦 ∈ ℓ∞

whenever 𝑦 = (𝑦𝑘) ∈ ℓ(𝑝), where 𝐷 = (𝑑𝑛𝑘) is defined by
(47).Therefore, we obtain from (34) and (35) that {ℓ( ̃𝐵, 𝑝)}𝛾 =
𝑆3(𝑝) for 1 < 𝑝𝑘, {ℓ( ̃𝐵, 𝑝)}

𝛾
= 𝑆5(𝑝) for 𝑝𝑘 ≤ 1.

4. Matrix Transformations on
the Sequence Space ℓ( ̃𝐵,𝑝)

In this section, we characterize some matrix transformations
on the space ℓ( ̃𝐵, 𝑝).Theorem 13 gives the exact conditions of
the general case 0 < 𝑝𝑘 ≤ 𝐻 < ∞ by combining the cases
0 < 𝑝𝑘 ≤ 1 and 1 < 𝑝𝑘 ≤ 𝐻 < ∞. We consider only the case
1 < 𝑝𝑘 ≤ 𝐻 < ∞ and leave the case 0 < 𝑝𝑘 ≤ 1 to the reader
because it can be proved in similar way.

Theorem 13. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix. Then, the
following statements hold.

(i) Let 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ N.Then,𝐴 ∈ (ℓ(
̃
𝐵, 𝑝) :

ℓ∞) if and only if there exists an integer 𝑀 > 1 such
that

sup
𝑛∈N

∑

𝑘













𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑖𝑀
−1













𝑝


𝑘

< ∞, (50)

∞

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑖 < ∞. (51)

(ii) Let 0 < 𝑝𝑘 ≤ 1 for all 𝑘 ∈ N. Then, 𝐴 ∈ (ℓ(
̃
𝐵, 𝑝) : ℓ∞)

if and only if the condition (51) holds, and

sup
𝑛,𝑘∈N













𝑛

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑖













𝑝𝑘

< ∞. (52)

Proof. Suppose that the conditions (50) and (51) hold, and
𝑥 ∈ ℓ(

̃
𝐵, 𝑝). In this situation, since {𝑎𝑛𝑘}𝑘∈N ∈ {ℓ(

̃
𝐵, 𝑝)}

𝛽 for
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every fixed 𝑛 ∈ N, the 𝐴-transform of 𝑥 exists. Consider the
following equality obtained by using the relation (13) that

𝑚

∑

𝑘=0

𝑎𝑛𝑘𝑥𝑘 =

𝑚

∑

𝑘=0

𝑚

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑖𝑦𝑘 (53)

for all𝑚, 𝑛 ∈ N. Taking into account the hypothesis we derive
from (53) as𝑚 → ∞ that

∑

𝑘

𝑎𝑛𝑘𝑥𝑘 = ∑

𝑘

∞

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑖𝑦𝑘, for each 𝑛 ∈ N. (54)

Now, by combining (54) with the following inequality (see
[23]) which holds for any𝑀 > 0 and any 𝑎, 𝑏 ∈ C

|𝑎𝑏| ≤ 𝑀(






𝑎𝑀

−1




𝑝


+ |𝑏|
𝑝
) , (55)

where 𝑝 > 1 and 𝑝−1 + 𝑝−1 = 1, one can easily see that

sup
𝑛∈N












∑

𝑘

𝑎𝑛𝑘𝑥𝑘












≤ sup
𝑛∈N

∑

𝑘













∞

∑

𝑖=𝑘

(−1)
𝑖−𝑘

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑖

















𝑦𝑘






≤ sup
𝑛∈N

∑

𝑘

𝑀(













∞

∑

𝑖=𝑘

1

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑖𝑀
−1













𝑝


𝑘

+





𝑦𝑘






𝑝𝑘
)

≤ 𝑀(sup
𝑛∈N

∑

𝑘













∞

∑

𝑖=𝑘

1

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑖𝑀
−1













𝑝


𝑘

+∑

𝑘





𝑦𝑘






𝑝𝑘
) < ∞.

(56)

Conversely, suppose that 𝐴 ∈ (ℓ(
̃
𝐵, 𝑝) : ℓ∞) and 1 <

𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ N. Then 𝐴𝑥 exists for every
𝑥 ∈ ℓ(

̃
𝐵, 𝑝) and this implies that {𝑎𝑛𝑘}𝑘∈N ∈ {ℓ(

̃
𝐵, 𝑝)}

𝛽 for
all 𝑛 ∈ N. Now, the necessity of (51) is immediate. Besides,
we have from (54) that the matrix 𝐵 = (𝑏𝑛𝑘) defined by
𝑏𝑛𝑘 = ∑

∞

𝑖=𝑘
((−1)

𝑖−𝑘
/𝑟𝑖)∏

𝑖−1

𝑗=𝑘
(𝑠𝑗/𝑟𝑗)𝑎𝑛𝑖 for all 𝑛, 𝑘 ∈ N, is in the

class (ℓ(𝑝) : ℓ∞). Then, 𝐵 satisfies the condition (35) which is
equivalent to (50).

This completes the proof.

Lemma 14 ([25, Theorem 1]). 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ(𝑝) : 𝑓) if and
only if (34) and (35) hold, and

∃𝛼𝑘 ∈ C ∋ 𝑓 − lim 𝑎𝑛𝑘 = 𝛼𝑘 for every fixed 𝑘 ∈ N. (57)

Theorem 15. Let the entries of the matrices 𝐸 = (𝑒𝑛𝑘) and 𝐹 =

(𝑓𝑛𝑘) be connected with the relation

𝑒𝑛𝑘 := 𝑠𝑘−1𝑓𝑛,𝑘−1 + 𝑟𝑘𝑓𝑛𝑘 or 𝑓𝑛𝑘 :=

∞

∑

𝑖=𝑘

(−1)
𝑖

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑒𝑛𝑖

(58)

for all 𝑘, 𝑛 ∈ N. Then, 𝐸 ∈ (ℓ(
̃
𝐵, 𝑝) : 𝑓) if and only if 𝐹 ∈

(ℓ(𝑝) : 𝑓) and

𝐹
𝑛
∈ (ℓ (𝑝) : 𝑐) (59)

for every fixed 𝑛 ∈ N, where 𝐹𝑛 = (𝑓
(𝑛)

𝑚𝑘
) with

𝑓
(𝑛)

𝑚𝑘
:=

{
{

{
{

{

𝑚

∑

𝑖=𝑘

(−1)
𝑖

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

𝑒𝑛𝑖, 0 ≤ 𝑘 ≤ 𝑚,

0, 𝑘 > 𝑚,

(60)

for all𝑚, 𝑘 ∈ N.

Proof. Let 𝐸 = (𝑒𝑛𝑘) ∈ (ℓ(
̃
𝐵, 𝑝) : 𝑓) and take 𝑥 ∈ ℓ(

̃
𝐵, 𝑝).

Then, we obtain the equality

𝑚

∑

𝑘=0

𝑒𝑛𝑘𝑥𝑘 =

𝑚

∑

𝑘=0

𝑒𝑛𝑘
[

[

𝑘

∑

𝑖=0

(−1)
𝑘−𝑖

𝑟𝑖

𝑘−1

∏

𝑗=𝑖

𝑠𝑗

𝑟𝑗

𝑦𝑖
]

]

=

𝑚

∑

𝑘=0

[

[

𝑚

∑

𝑖=𝑘

(−1)
𝑖

𝑟𝑖

𝑖−1

∏

𝑗=𝑘

𝑠𝑗

𝑟𝑗

]

]

𝑦𝑘 =

𝑚

∑

𝑘=0

𝑓
(𝑛)

𝑚𝑘
𝑦𝑘

(61)

for all 𝑚, 𝑛 ∈ N. Since 𝐸𝑥 exists, 𝐹𝑛 ∈ (ℓ(𝑝) : 𝑐). Letting
𝑚 → ∞ in the equality (61) we have 𝐸𝑥 = 𝐹𝑦. Since 𝐸𝑥 ∈ 𝑓,
then 𝐹𝑦 ∈ 𝑓. That is 𝐹 ∈ (ℓ(𝑝) : 𝑓).

Conversely, let 𝐹 ∈ (ℓ(𝑝) : 𝑓), and 𝐹𝑛 ∈ (ℓ(𝑝) : 𝑐), and
take 𝑥 ∈ ℓ(

̃
𝐵, 𝑝). Then, since (𝑓𝑛𝑘)𝑘∈N ∈ {ℓ(𝑝)}

𝛽 and 𝐹 ∈

(ℓ(𝑝) : 𝑓) we have (𝑒𝑛𝑘)𝑘∈N ∈ {ℓ(
̃
𝐵, 𝑝)}

𝛽 for all 𝑛 ∈ N. So,
𝐸𝑥 exists. Therefore we obtain from equality (61) as𝑚 → ∞

that 𝐸𝑥 = 𝐹𝑦, that is 𝐸 ∈ (ℓ(
̃
𝐵, 𝑝) : 𝑓).

Theorem 16. Let 0 < 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ N. Then,
𝐴 ∈ (ℓ(

̃
𝐵, 𝑝) : 𝑐) if and only if (50)–(52) hold and

lim
𝑛→∞

∞

∑

𝑘=𝑖

(−1)
𝑘−𝑖

𝑟𝑘

𝑘−1

∏

𝑗=𝑖

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑘 = 𝛼𝑘, for every fixed 𝑘 ∈ N.

(62)

Proof. Let 𝐴 ∈ (ℓ(
̃
𝐵, 𝑝) : 𝑐) and 1 < 𝑝𝑘 ≤ 𝐻 < ∞ for all

𝑘 ∈ N. Then, since the inclusion 𝑐 ⊂ ℓ∞ holds, the necessities
of (50) and (51) are immediately obtained from part (i) of
Theorem 13.

To prove the necessity of (62), consider the sequence 𝑏(𝑘)

defined by (31) which is in the space ℓ( ̃𝐵, 𝑝) for every fixed
𝑘 ∈ N. Because the 𝐴-transform of every 𝑥 ∈ ℓ(

̃
𝐵, 𝑝) exists

and is in 𝑐 by the hypothesis,

𝐴𝑏
(𝑘)

=

{

{

{

∞

∑

𝑘=𝑖

(−1)
𝑘−𝑖

𝑟𝑘

𝑘−1

∏

𝑗=𝑖

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑘

}

}

}𝑛∈N

∈ 𝑐 (63)

for every fixed 𝑘 ∈ N which shows the necessity of (62).
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Conversely suppose that conditions (50), (51), and (62)
hold, and take any 𝑥 = (𝑥𝑘) in the space ℓ( ̃𝐵, 𝑝). Then, 𝐴𝑥
exists. We observe for all𝑚, 𝑛 ∈ N that

𝑚

∑

𝑘=0













𝑚

∑

𝑘=𝑖

(−1)
𝑘−𝑖

𝑟𝑘

𝑘−1

∏

𝑗=𝑖

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑘𝑀
−1













𝑝


𝑘

≤ sup
𝑛∈N

𝑚

∑

𝑘













𝑚

∑

𝑘=𝑖

(−1)
𝑘−𝑖

𝑟𝑘

𝑘−1

∏

𝑗=𝑖

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑘𝑀
−1













𝑝


𝑘

< ∞,

(64)

which gives the fact that by letting𝑚, 𝑛 → ∞ with (50) and
(62) that

lim
𝑚,𝑛→∞

𝑚

∑

𝑘=0













𝑚

∑

𝑘=𝑖

(−1)
𝑘−𝑖

𝑟𝑘

𝑘−1

∏

𝑗=𝑖

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑘𝑀
−1













𝑝


𝑘

≤ sup
𝑛∈N

𝑚

∑

𝑘













𝑚

∑

𝑘=𝑖

(−1)
𝑘−𝑖

𝑟𝑘

𝑘−1

∏

𝑗=𝑖

𝑠𝑗

𝑟𝑗

𝑎𝑛𝑘𝑀
−1













𝑝


𝑘

< ∞.

(65)

This shows that ∑𝑘 |𝛼𝑘𝑀
−1
|
𝑝


𝑘
< ∞ and so (𝛼𝑘)𝑘∈N ∈

{ℓ(
̃
𝐵, 𝑝)}

𝛽 which implies that the series∑𝑘 𝛼𝑘𝑥𝑘 converges for
every 𝑥 ∈ ℓ(

̃
𝐵, 𝑝).

Let us now consider the equality obtained from (54) with
𝑎𝑛𝑘 − 𝛼𝑘 instead of 𝑎𝑛𝑘

∑

𝑘

(𝑎𝑛𝑘 − 𝛼𝑘) 𝑥𝑘 = ∑

𝑖

∑

𝑘=𝑖

(−1)
𝑘−𝑖

𝑟𝑘

𝑘−1

∏

𝑗=𝑖

𝑠𝑗

𝑟𝑗

(𝑎𝑛𝑘 − 𝛼𝑘) 𝑦𝑖

= ∑

𝑘

𝑐𝑛𝑖𝑦𝑖, ∀𝑛 ∈ N,

(66)

where 𝐶 = (𝑐𝑛𝑖) defined by 𝑐𝑛𝑖 =

∑𝑘=𝑖((−1)
𝑘−𝑖
/𝑟𝑘)∏

𝑘−1

𝑗=𝑖
(𝑠𝑗/𝑟𝑗)(𝑎𝑛𝑘 − 𝛼𝑘) for all 𝑛, 𝑖 ∈ N.

Therefore, we have at this stage from Lemma 8 that the
matrix 𝐶 belongs to the class (ℓ(𝑝) : 𝑐0) of infinite matrices.
Thus, we see by (66) that

lim
𝑛→∞

∑

𝑘

(𝑎𝑛𝑘 − 𝛼𝑘) 𝑥𝑘 = 0. (67)

Equation (67) means that 𝐴𝑥 ∈ 𝑐 whenever 𝑥 ∈ ℓ(
̃
𝐵, 𝑝) and

this is what we wished to prove.

Therefore, we have the following

Corollary 17. Let 0 < 𝑝𝑘 ≤ 𝐻 < ∞ for all 𝑘 ∈ N. Then,
𝐴 ∈ (ℓ(

̃
𝐵, 𝑝) : 𝑐0) if and only if (50)–(52) hold, and (62) also

holds with 𝛼𝑘 = 0 for all 𝑘 ∈ N.

Now, we give the following lemma given by Başar and
Altay [26] which is useful for deriving the characterizations
of the certain matrix classes via Theorems 13, 15, and 16 and
Corollary 17.

Lemma 18 ([26, Lemma 5.3]). Let 𝜆, 𝜇 be any two sequence
spaces, let 𝐴 be an infinite matrix, and let 𝐵 also be a triangle
matrix. Then, 𝐴 ∈ (𝜆 : 𝜇𝐵) if and only if 𝐵𝐴 ∈ (𝜆 : 𝜇).

It is trivial that Lemma 18 has several consequences.
Indeed, combining Lemma 18 with Theorems 13, 15, and 16
and Corollary 17, one can derive the following results.

Corollary 19. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and define
the matrix 𝐶 = (𝑐𝑛𝑘) by

𝑐𝑛𝑘 =

𝑛

∑

𝑗=0

(

𝑛

𝑗

) (1 − 𝑡)
𝑛−𝑗

𝑡
𝑗
𝑎𝑗𝑘, ∀𝑛, 𝑘 ∈ N. (68)

Then, the necessary and sufficient conditions in order to 𝐴

belongs to anyone of the classes (ℓ( ̃𝐵, 𝑝) : 𝑒𝑡
∞
), (ℓ( ̃𝐵, 𝑝) : 𝑒𝑡

𝑐
)

and (ℓ(
̃
𝐵, 𝑝) : 𝑒

𝑡

0
) are obtained from the respective ones in

Theorems 13, 16 and Corollary 17 by replacing the entries of
the matrix 𝐴 by those of the matrix 𝐶; where 0 < 𝑡 < 1, 𝑒𝑡

∞

and 𝑒𝑡
𝑐
, 𝑒𝑡

0
, respectively, denote the spaces of all sequences whose

𝐸
𝑡-transforms are in the spaces ℓ∞ and 𝑐, 𝑐0 and are recently

studied by Altay et al. [27] and Altay and Başar [28], where 𝐸𝑡
denotes the Euler mean of order 𝑡.

Corollary 20. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and define
the matrix 𝐶 = (𝑐𝑛𝑘) by

𝑐𝑛𝑘 = 𝑠𝑎𝑛−1,𝑘 + 𝑟𝑎𝑛𝑘, ∀𝑛, 𝑘 ∈ N. (69)

Then, the necessary and sufficient conditions in order to 𝐴

belongs to the class (ℓ( ̃𝐵, 𝑝) : ̂
𝑓) is obtained from Theorem 15

by replacing the entries of the matrix 𝐴 by those of the matrix
𝐶; where 𝑟, 𝑠 ∈ R \ {0} and ̂

𝑓 denotes the space of all sequences
whose 𝐵(𝑟, 𝑠)-transforms are in the space 𝑓 and is recently
studied by Başar and Kirişçi [29].

Corollary 21. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and define
the matrix 𝐶 = (𝑐𝑛𝑘) by

𝑐𝑛𝑘 = 𝑡𝑎𝑛−2,𝑘 + 𝑠𝑎𝑛−1,𝑘 + 𝑟𝑎𝑛𝑘, ∀𝑛, 𝑘 ∈ N. (70)

Then, the necessary and sufficient conditions in order to
𝐴 belongs to the class (ℓ( ̃𝐵, 𝑝) : 𝑓(𝐵)) is obtained from
Theorem 15 by replacing the entries of the matrix 𝐴 by those of
the matrix𝐶; where 𝑟, 𝑠, 𝑡 ∈ R \ {0} and 𝑓(𝐵) denotes the space
of all sequences whose 𝐵(𝑟, 𝑠, 𝑡)-transforms are in the space 𝑓
and is recently studied by Sönmez [30].

Corollary 22. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and define
the matrix 𝐶 = (𝑐𝑛𝑘) by

𝑐𝑛𝑘 =
1

𝑛 + 1

𝑛

∑

𝑗=0

𝑎𝑗𝑘, ∀𝑛, 𝑘 ∈ N. (71)

Then, the necessary and sufficient conditions in order to 𝐴

belongs to the class (ℓ( ̃𝐵, 𝑝) : ̃
𝑓) is obtained from Theorem 15

by replacing the entries of thematrix𝐴 by those of thematrix𝐶,
where ̃𝑓 denotes the space of all sequences whose𝐶1-transforms
are in the space 𝑓 and is recently studied by Kayaduman and
Şengönül [31].
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Corollary 23. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and let 𝑡 =
(𝑡𝑘) be a sequence of positive numbers and define the matrix
𝐶 = (𝑐𝑛𝑘) by

𝑐𝑛𝑘 =
1

𝑇𝑛

𝑛

∑

𝑗=0

𝑡𝑗𝑎𝑗𝑘, ∀𝑛, 𝑘 ∈ N, (72)

where 𝑇𝑛 = ∑
𝑛

𝑘=0
𝑡𝑘 for all 𝑛 ∈ N. Then, the necessary and

sufficient conditions in order to 𝐴 belongs to anyone of the
classes (ℓ( ̃𝐵, 𝑝) : 𝑟

𝑡

∞
), (ℓ( ̃𝐵, 𝑝) : 𝑟

𝑡

𝑐
) and (ℓ(

̃
𝐵, 𝑝) : 𝑟

𝑡

0
)

are obtained from the respective ones in Theorems 13, 16 and
Corollary 17 by replacing the entries of the matrix 𝐴 by those
of the matrix 𝐶, where 𝑟𝑡

∞
, 𝑟𝑡

𝑐
, and 𝑟𝑡

0
are defined by Altay and

Başar in [32] as the spaces of all sequences whose𝑅𝑡-transforms
are, respectively, in the spaces ℓ∞, 𝑐, and 𝑐0, and are derived
from the paranormed spaces 𝑟𝑡

∞
(𝑝), 𝑟𝑡

𝑐
(𝑝) and 𝑟𝑡

0
(𝑝) in the case

𝑝𝑘 = 𝑝 for all 𝑘 ∈ N.

Since the spaces 𝑟𝑡
∞
, 𝑟𝑡

𝑐
, and 𝑟𝑡

0
reduce in the case 𝑡 = 𝑒 to

theCesàro sequence spaces𝑋∞, 𝑐, and 𝑐0 of nonabsolute type,
respectively, Corollary 23 also includes the characterizations
of the classes (ℓ( ̃𝐵, 𝑝) : 𝑋∞), (ℓ( ̃𝐵, 𝑝) : 𝑐), and (ℓ( ̃𝐵, 𝑝) : 𝑐0),
as a special case, where𝑋∞ and 𝑐, 𝑐0 are the Cesàro spaces of
the sequences consisting of 𝐶1-transforms are in the spaces
ℓ∞ and 𝑐, 𝑐0 and studied byNg and Lee [33] and Şengönül and
Başar [34], respectively, where𝐶1 denotes the Cesàromean of
order 1.

Corollary 24. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and define
the matrix𝐶 = (𝑐𝑛𝑘) by 𝑐𝑛𝑘 = 𝑎𝑛𝑘−𝑎𝑛+1,𝑘 for all 𝑛, 𝑘 ∈ N.Then,
the necessary and sufficient conditions in order to 𝐴 belongs
to anyone of the classes (ℓ( ̃𝐵, 𝑝) : ℓ∞(Δ)), (ℓ( ̃𝐵, 𝑝) : 𝑐(Δ))

and (ℓ( ̃𝐵, 𝑝) : 𝑐0(Δ)) are obtained from the respective ones in
Theorems 13 and 16 and Corollary 17 by replacing the entries
of the matrix 𝐴 by those of the matrix 𝐶, where ℓ∞(Δ), 𝑐(Δ),
𝑐0(Δ) denote the difference spaces of all bounded, convergent,
and null sequences and are introduced by Kızmaz [35].

Corollary 25. Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix and define
the matrix 𝐶 = (𝑐𝑛𝑘) by 𝑐𝑛𝑘 = ∑

𝑛

𝑗=0
𝑎𝑗𝑘 for all 𝑛, 𝑘 ∈ N. Then

the necessary and sufficient conditions in order to 𝐴 belongs to
anyone of the classes (ℓ( ̃𝐵, 𝑝) : 𝑏𝑠), (ℓ( ̃𝐵, 𝑝) : 𝑐𝑠) and (ℓ( ̃𝐵, 𝑝) :
𝑐𝑠0) are obtained from the respective ones in Theorems 13, 16
and Corollary 17 by replacing the entries of the matrix 𝐴 by
those of the matrix 𝐶, where 𝑐𝑠0 denotes the set of those series
converging to zero.

5. Conclusion

The difference spaces ℓ∞(Δ), 𝑐(Δ), and 𝑐0(Δ)were introduced
by Kızmaz [35]. Since we essentially employ the infinite
matrices which is more different than Kızmaz and the other
authors following him, and use the technique of obtaining
a new sequence space by the matrix domain of a triangle
limitation method. Following this way, the domain of some
triangle matrices in the sequence space ℓ(𝑝) was recently
studied and were obtained certain topological and geometric
results by Altay and Başar [14, 16], Choudhary and Mishra

[10], Başar et al. [36], and Aydın and Başar [13]. Although
𝑏V(𝑒, 𝑝) = [ℓ(𝑝)]Δ is investigated, since 𝐵(1, −1) ≡ Δ, our
results are more general than those of Başar et al. [36]. Also
in case 𝑝𝑘 = 𝑝 for all 𝑘 ∈ N the results of the present study
are reduced to the corresponding results of the recent paper
of Kirişçi and Başar [9]. We should note that the difference
spaces Δ𝑐0(𝑝), Δ𝑐(𝑝) and Δℓ∞(𝑝) of Maddox’s spaces 𝑐0(𝑝),
𝑐(𝑝), and ℓ∞(𝑝) were studied by Ahmad and Mursaleen
[37]. Of course, a natural continuation of the present paper
is to study the sequence spaces [𝑐0(𝑝)]𝐵(𝑟,𝑠), [𝑐(𝑝)]𝐵(𝑟,𝑠) and
[ℓ∞(𝑝)]𝐵(𝑟,𝑠) to generalize the main results of Ahmad and
Mursaleen [37] which fills up a gap in the existing literature.

It is clear that Δ(1) can be obtained as a special case of
𝐵(𝑟, 𝑠) for 𝑟 = 𝑒 and 𝑠 = −𝑒 and it is also trivial that 𝐵(𝑟, 𝑠)
is reduced in the special case 𝑟 = 𝑟𝑒 and 𝑠 = 𝑠𝑒 to the
generalized difference matrix 𝐵(𝑟, 𝑠). So, the results related to
the domain of the matrix 𝐵(𝑟, 𝑠) are much more general and
more comprehensive than the corresponding consequences
of the domain of the matrix 𝐵(𝑟, 𝑠). We should note from
now that the main results of the present paper are given as
an extended abstract without proof by Nergiz and Başar [38],
and our next paper will be devoted to some geometric and
topological properties of the space ℓ( ̃𝐵, 𝑝).
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of certain sequence spaces and their matrix transformations,”
Indian Journal of Pure and Applied Mathematics, vol. 24, no. 5,
pp. 291–301, 1993.
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