Research Article

Product and Commutativity of k th-Order Slant Toeplitz Operators

Chaomei Liu ${ }^{1}$ and Yufeng Lu^{2}
${ }^{1}$ School of Science, Dalian Jiaotong University, Dalian 116028, China
${ }^{2}$ School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
Correspondence should be addressed to Chaomei Liu; liuchaomeidjtu@126.com

Received 9 November 2012; Revised 12 March 2013; Accepted 14 March 2013
Academic Editor: Miroslaw Lachowicz
Copyright © 2013 C. Liu and Y. Lu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The commutativity of k th-order slant Toeplitz operators with harmonic polynomial symbols, analytic symbols, and coanalytic symbols is discussed. We show that, on the Lebesgue space and Bergman space, necessary and sufficient conditions for the commutativity of k th-order slant Toeplitz operators are that their symbol functions are linearly dependent. Also, we study the product of two k th-order slant Toeplitz operators and give some necessary and sufficient conditions.

1. Preliminaries

Throughout this paper, k is a fixed positive integer, and $k \geq 2$. Let $\varphi(z)=\sum_{i=-\infty}^{\infty} a_{i} z^{i}$ be a bounded measurable function on the unit circle \mathbb{T}, where $a_{i}=\left\langle\varphi, z^{i}\right\rangle$ is the i th Fourier coefficient of φ and $\left\{z^{i}: i \in \mathbb{Z}\right\}$ is the usual basis of $L^{2}(\mathbb{T})$, with \mathbb{Z} being the set of integers. The k th-order slant Toeplitz operator U_{φ} with symbol φ in $L^{\infty}(\mathbb{T})$ is defined on $L^{2}(\mathbb{T})$ as follows:

$$
\begin{equation*}
U_{\varphi}\left(z^{l}\right)=\sum_{i=-\infty}^{\infty} a_{k i-l} z^{i} \tag{1}
\end{equation*}
$$

In the past several decades, slant Toeplitz operators have played outstanding roles in wavelet analysis, curve and surface modelling, and dynamical systems (e.g., see [110]). For instance, Villemoes [7] has associated the Besov regularity of solution of the refinement equation with the spectral radius of an associated slant Toeplitz operators and has used the spectral radius of the slant Toeplitz operators to characterize the $L_{p}(1 \leq p \leq \infty)$ regularity of refinable functions; Goodman et al. [6] have shown the connection between the spectral radii and conditions for the solutions of certain differential equations that in the Lipschitz classes. However, these mathematicians concentrated mainly on the applications, but these considerations serve as a source of
motivation to introduce and study the properties of slant Toeplitz operators.

In 1995, Ho [11-14] began a systematic study of the slant Toeplitz operators on the Hardy space. In [15-17], the authors discussed some properties of k th-order slant Toeplitz operator. In [18, 19], the authors defined the slant Toeplitz operator and k th-order slant Toeplitz operator on the Bergman spaces, respectively, and studied some properties of these operators.

In this paper, properties of k th-order slant Toeplitz operators with harmonic polynomial symbols, analytic symbols, and coanalytic symbols are discussed. We show that, on the Lebesgue space and Bergman space, the necessary and sufficient conditions for the commutativity of k th-order slant Toeplitz operators are that their symbol functions are linearly dependent. Meanwhile, we study the product of two k thorder slant Toeplitz operators and give some necessary and sufficient conditions.

2. Commutativity of k th-Order Slant Toeplitz Operators on $L^{2}(\mathbb{T})$

In [17], we investigated the properties of k th-order slant Toeplitz operators on $L^{2}(\mathbb{T})$ and have obtained that for $\varphi, \psi \in$ $L^{\infty}(\mathbb{T}), U_{\varphi}$ and U_{ψ} commute (essentially commute) if and only if $\varphi\left(z^{k}\right) \psi-\varphi \psi\left(z^{k}\right)=0$.

Immediately we come up with the following problem.
Could the commutativity of two k th-order slant Toeplitz operators be fully characterized by their symbols?

The partial answer to the pervious problem has been obtained in [17]: for $\psi \in L^{\infty}(\mathbb{T})$ and $\varphi(z)=\sum_{p=0}^{k-1} a_{p} z^{p}$ or $\varphi(z)=$ $\sum_{p=-k+1}^{0} a_{p} z^{p}, U_{\varphi}$ and U_{ψ} commute (essentially commute) if and only if there exist scalars α and β, not both zero, such that $\alpha \varphi+\beta \psi=0$.

In this section the commutativity of k th-order slant Toeplitz operators with analytic symbols and harmonic symbols will be studied. First we discuss the commutativity of two k th-order slant Toeplitz operators with analytic symbols.

Proposition 1. Let $\varphi, \psi \in H^{\infty}(\mathbb{T})$, then the following statements are equivalent:
(1.1) $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$;
(1.2) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

Proof. Begin with the easy direction. First, suppose that (1.2) holds. Without loss of generality, let $\alpha \neq 0$, so that $\varphi=$ $-(\beta / \alpha) \psi$. Thus, $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$.

To prove the other direction of the proposition, suppose that (1.1) holds; that is, $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$. Let $\varphi(z)=$ $\sum_{p=0}^{\infty} a_{p} z^{p}$ and $\psi(z)=\sum_{p=0}^{\infty} b_{p} z^{p}$, then

$$
\begin{equation*}
\sum_{p=0}^{\infty} a_{p} z^{k p} \cdot \sum_{p=0}^{\infty} b_{p} z^{p}=\sum_{p=0}^{\infty} a_{p} z^{p} \cdot \sum_{p=0}^{\infty} b_{p} z^{k p}, \tag{2}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\sum_{p=0}^{\infty} \sum_{k i+j=p} a_{i} b_{j} z^{p}=\sum_{p=0}^{\infty} \sum_{i+k j=p} a_{i} b_{j} z^{p}, \tag{3}
\end{equation*}
$$

where i and j are both nonnegative integers. Hence, for all nonnegative integers i, j, and p,

$$
\begin{equation*}
\sum_{k i+j=p} a_{i} b_{j}=\sum_{i+k j=p} a_{i} b_{j} . \tag{4}
\end{equation*}
$$

Now we would give the proof in four cases.
Case I. Suppose that $a_{0} b_{0} \neq 0$. Let $\lambda=b_{0} / a_{0}$ and we continue the proof by the induction.

When $p=1$, from (4) we get that $a_{0} b_{1}=a_{1} b_{0}$, which means that $b_{1}=\lambda a_{1}$.

When $p=2$, from (4) we get that

$$
\begin{gather*}
a_{0} b_{2}+a_{1} b_{0}=a_{2} b_{0}+a_{0} b_{1}, \quad \text { if } k=2, \\
a_{0} b_{2}=a_{2} b_{0}, \quad \text { if } k>2, \tag{5}
\end{gather*}
$$

which means that $b_{2}=\lambda a_{2}$, since $b_{1}=\lambda a_{1}$.
Now suppose that $b_{i}=\lambda a_{i}$ for all integers i with $0 \leq i \leq$ m. Then, observe the connection between a_{m+1} and b_{m+1}. Let $m+1=k l+r$, where l and r are nonnegative integers with $0 \leq r \leq k-1$.

When $p=m+1$, from (4) we get

$$
\begin{align*}
& a_{0} b_{m+1}+a_{1} b_{m+1-k}+a_{2} b_{m+1-2 k}+\cdots+a_{l} b_{m+1-l k} \\
& \quad=b_{0} a_{m+1}+b_{1} a_{m+1-k}+b_{2} a_{m+1-2 k}+\cdots+b_{l} a_{m+1-l k} \tag{6}
\end{align*}
$$

From the assumption we have $a_{0} b_{m+1}=b_{0} a_{m+1}$; that is; $b_{m+1}=$ λa_{m+1}.

Hence, from the above discussion we get that $b_{i}=\lambda a_{i}$ for all integers i with $i \geq 0$ by the induction, which means that $\psi(z)=\lambda \varphi(z)$. So, the required result holds.

Case II. Suppose that $a_{0}=0$ and $b_{0} \neq 0$. We want to show that $a_{i}=0$ for all integers i with $i \geq 0$; that is, $\varphi \equiv 0$. Suppose that there exists some a_{i} which is not zero. Without loss of generality, let $a_{i}=0$ for all integers i with $0 \leq i \leq l-1$ and $a_{l} \neq 0$, where $l \geq 1$ is an integer, then $\varphi(z)=z^{l} \varphi_{1}(z)$ and $\varphi_{1}(z)=\sum_{i=0}^{\infty} a_{i+1} z^{i} \doteq \sum_{i=0}^{\infty} a_{i}^{\prime} z^{i}$.

Because $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$, we can get that $z^{(k-1) l} \varphi_{1}\left(z^{k}\right) \psi(z)=\varphi_{1}(z) \psi\left(z^{k}\right)$, which means that

$$
\begin{equation*}
\sum_{p=0}^{\infty} \sum_{k i+j=p} a_{i}^{\prime} b_{j} z^{p+(k-1) l}=\sum_{p=0}^{\infty} \sum_{i+k j=p} a_{i}^{\prime} b_{j} z^{p} . \tag{7}
\end{equation*}
$$

Thus, we have $a_{0}^{\prime} b_{0}=0$, and, so, since $a_{0}^{\prime}=a_{l} \neq 0$, we have $b_{0}=0$. This leads to a contradiction.

Hence, $\varphi \equiv 0$ and the required result holds.
Case III. Suppose that $a_{0} \neq 0$ and $b_{0}=0$. Similar to Case II, we can get that $\psi \equiv 0$. So, the required result holds.

Case IV. Suppose that $a_{0}=0$ and $b_{0}=0$. If $\varphi \equiv 0$ or $\psi \equiv$ 0 , then the required result holds. Otherwise, without loss of generality, let $a_{i}=0$ for all integers i with $0 \leq i \leq l-1$ and $a_{l} \neq 0$, and let $b_{j}=0$ for all integers j with $0 \leq j \leq m-1$ and $b_{m} \neq 0$, where l and m are positive integers. Then, $\varphi(z)=$ $z^{l} \varphi_{1}(z)$ and $\psi(z)=z^{m} \psi_{1}(z)$.

If $l=m$, then $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$ is equal to $\varphi_{1}\left(z^{k}\right) \psi_{1}(z)=\varphi_{1}(z) \psi_{1}\left(z^{k}\right)$. The proof is similar to Case I.

If $l>m$, then $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$ is equal to $z^{k(l-m)} \varphi_{1}\left(z^{k}\right) \psi_{1}(z)=\varphi_{1}(z) \psi_{1}\left(z^{k}\right)$. The proof is similar to Case II.

If $l<m$, then $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$ is equal to $\varphi_{1}\left(z^{k}\right) \psi_{1}(z)=z^{k(m-l)} \varphi_{1}(z) \psi_{1}\left(z^{k}\right)$. The proof is similar to Case III.

From the preceding Proposition 1, it is evident that Corollary 2 holds.

Corollary 2. Let $\bar{\varphi}, \bar{\psi} \in H^{\infty}(\mathbb{T})$, then the following statements are equivalent:
(1.1) $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right) ;$
(1.2) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

From Theorem 2.8 in [17], Proposition 1, and Corollary 2, we can obtain the following Theorem 3.

Theorem 3. Let $\varphi, \psi \in H^{\infty}(\mathbb{T})$ or $\bar{\varphi}, \bar{\psi} \in H^{\infty}(\mathbb{T})$, the following statements are equivalent:
(1.1) U_{φ} and U_{ψ} commute;
(1.2) U_{φ} and U_{ψ} essentially commute;
(1.3) $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$;
(1.4) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

Now we start to study the commutativity of two k th-order slant Toeplitz operators with harmonic symbols.

Proposition 4. $\operatorname{Let} \varphi(z)=\sum_{p=-n}^{n} a_{p} z^{p}$ and $\psi(z)=\sum_{p=-n}^{n} b_{p} z^{p}$, where $a_{-n}^{2}+b_{-n}^{2} \neq 0$ and n is a positive integer, then the following statements are equivalent:
(1.1) $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right) ;$
(1.2) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

Proof. We begin with the easy direction. First, suppose that (1.2) holds and let $\alpha \neq 0$ without lost of generality, so that $\varphi=$ $-(\beta / \alpha) \psi$. Thus, $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$.

To prove the other direction of the proposition, suppose that (1.1) holds. Since $\varphi(z)=\sum_{p=-n}^{n} a_{p} z^{p}$ and $\psi(z)=$ $\sum_{p=-n}^{n} b_{p} z^{p}$, then $\varphi\left(z^{k}\right)=\sum_{p=-n}^{n} a_{\mathrm{p}} z^{k p}, \psi\left(z^{k}\right)=\sum_{p=-n}^{n} b_{p} z^{k p}$ and

$$
\begin{align*}
\varphi\left(z^{k}\right) \psi(z) & =\sum_{p=-n}^{n} a_{p} z^{k p} \cdot \sum_{p=-n}^{n} b_{p} z^{p} \\
& =\sum_{p=-(k+1) n}^{(k+1) n} \sum_{k i+j=p}^{n} a_{i} b_{j} z^{p} \tag{8}\\
\varphi(z) \psi\left(z^{k}\right) & =\sum_{p=-n}^{n} a_{p} z^{p} \cdot \sum_{p=-n}^{n} b_{p} z^{k p} \\
& =\sum_{p=-(k+1) n}^{(k+1) n} \sum_{i+k j=p}^{n} a_{i} b_{j} z^{p}
\end{align*}
$$

where both i and j are integers with $-n \leq i, j \leq n$. Because $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$, we can get that

$$
\begin{equation*}
\sum_{k i+j=p} a_{i} b_{j}=\sum_{i+k j=p} a_{i} b_{j} \tag{9}
\end{equation*}
$$

for any integers p with $-(k+1) n \leq p \leq(k+1) n$.
Now we start to investigate the connection between a_{j} and $b_{j}(j=-n, \ldots, n)$ by induction. Since $a_{-n}^{2}+b_{-n}^{2} \neq 0$, without loss of generality, let $a_{-n} \neq 0$ and let $\lambda=b_{-n} / a_{-n}$, which also means that $b_{-n}=\lambda a_{-n}$.

When $p=-(k+1) n+1$, then by (9), we can get that $a_{-n} b_{-n+1}=a_{-n+1} b_{-n}$, which means that $b_{-n+1}=\lambda a_{-n+1}$, since $a_{-n} \neq 0$.

Suppose that $b_{-n+j}=\lambda a_{-n+j}$ for any integers j with $0 \leq$ $j \leq l-1$, where $1 \leq l \leq 2 n$. Now we consider the connection
between b_{-n+l} and a_{-n+l}. Let $l=m k+r$, where m and r are both nonnegative integers with $0 \leq r \leq k-1$.

When $p=-(k+1) n+l$, by (9) we get that

$$
\begin{align*}
& a_{-n} b_{-n+l}+a_{-n+1} b_{-n+l-k}+\cdots+a_{-n+m} b_{-n+l-m k} \tag{10}\\
& \quad=b_{-n} a_{-n+l}+b_{-n+1} a_{-n+l-k}+\cdots+b_{-n+m} a_{-n+l-m k} .
\end{align*}
$$

From the assumption we get that $a_{-n} b_{-n+l}=a_{-n+l} b_{-n}$, which means that $b_{-n+l}=\lambda a_{-n+l}$.

Hence, by the induction we obtain that $b_{j}=\lambda a_{j}(j=$ $-n, \ldots, n)$; that is, $\psi(z)=\sum_{j=-n}^{n} \lambda a_{j} z^{j}=\lambda \sum_{j=-n}^{n} a_{j} z^{j}=$ $\lambda \varphi(z)$. So, the required result holds.

Lemma 5. Let $\varphi(z)=\sum_{p=-n}^{n} a_{p} z^{p}, \psi(z)=\sum_{p=-m}^{m} b_{p} z^{p}$, and $b_{m} b_{-m} \neq 0$, where n and m are integers and $n>m \geq 1$. If $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$, then $a_{j}=0$ for any integers j with $m+1 \leq|j| \leq n$.

Proof. Since $\varphi(z)=\sum_{p=-n}^{n} a_{p} z^{p}, \psi(z)=\sum_{p=-m}^{m} b_{p} z^{p}$, and $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$, then

$$
\begin{equation*}
\sum_{p=-(k n+m)}^{k n+m} \sum_{k i+j=p} a_{i} b_{j} z^{p}=\sum_{p=-(n+k m)}^{n+k m} \sum_{i+k j=p} a_{i} b_{j} z^{p} . \tag{11}
\end{equation*}
$$

Since $n>m \geq 1$, we can get that for any integers p with $n+k m+1 \leq|p| \leq k n+m$,

$$
\begin{equation*}
\sum_{k i+j=p} a_{i} b_{j}=0, \tag{12}
\end{equation*}
$$

for any integers p with $0 \leq|p| \leq n+k m$,

$$
\begin{equation*}
\sum_{k i+j=p} a_{i} b_{j}=\sum_{i+k j=p} a_{i} b_{j} . \tag{13}
\end{equation*}
$$

We want to show that $a_{j}=0$ for any integers j with $m+$ $1 \leq j \leq n$. Here are two cases: $n<m+k$ and $n \geq m+k$. Let $m=l k+r$, where l and r are nonnegative integers with $0 \leq r \leq k-1$.

First Case. If $n<m+k$, then $k(m+1)+m=k m+m+k>$ $k m+n$. Now we, continue the discussion by induction.

When $p=k n+m$, by (12), we can get that $a_{n} b_{m}=0$. So, $a_{n}=0$, since $b_{-m} b_{m} \neq 0$.

When $p=k n+m-k$, by (12) we can get that $a_{n-1} b_{m}+(m-$ $k)^{+} a_{n} b_{m-k}=0$, where $(m-k)^{+}=\max \{\operatorname{sgn}(2 m-k+1), 0\}$ and sgn is a sign function. So, $a_{n-1}=0$, since $b_{-m} b_{m} \neq 0$ and $a_{n}=0$.

Suppose that $a_{n-j}=0$ for any integers j with $0 \leq j \leq t<$ $n-m-1$. Now, consider the value of a_{n-t-1}.

When $p=k n+m-k(t+1)$, by (12) we get that

$$
\begin{equation*}
a_{n-t-1} b_{m}+\cdots+a_{n-t-1+\lambda} b_{m-\lambda k}=0 \tag{14}
\end{equation*}
$$

where

$$
\begin{gather*}
\lambda=t+1, \quad \text { if } 2 m \geq(t+1) k \\
\lambda=\left[\frac{2 m}{k}\right], \quad \text { if } 2 m<(t+1) k \tag{15}
\end{gather*}
$$

and $[2 m / k]$ is the biggest integer which is not bigger than $2 m / k$. Then, by the assumption and (14), we get that $a_{n-t-1}=$ 0 , since $b_{m} b_{-m} \neq 0$.

Hence, from the above discussion we obtain that $a_{j}=0$ for all integers j with $m+1 \leq j \leq n$ by the induction.

Second Case. If $n \geq m+k$, then $k(m+1)+m=k m+m+k \leq$ $k m+n$. Now we continue the discussion by induction.

When $p=k n+m$, by (12), we can get that $a_{n} b_{m}=0$. So, $a_{n}=0$, since $b_{-m} b_{m} \neq 0$.

Suppose that a_{n-j} for any integers j with $0 \leq j \leq t<$ $n-m-1$. Now, consider the value of a_{n-t-1}.

If $p=k n+m-k(t+1)>k m+n$, by (12) we get that

$$
\begin{equation*}
a_{n-t-1} b_{m}+\cdots+a_{n-t-1+\lambda} b_{m-\lambda k}=0 \tag{16}
\end{equation*}
$$

where

$$
\begin{gather*}
\lambda=t+1, \quad \text { if } 2 m \geq(t+1) k \\
\lambda=\left[\frac{2 m}{k}\right], \quad \text { if } 2 m<(t+1) k \tag{17}
\end{gather*}
$$

and $[x]$ is the biggest integer which is not bigger than x. Then, by the assumption and (16), we get that $a_{n-t-1}=0$, since $b_{m} b_{-m} \neq 0$.

If $p=k n+m-k(t+1) \leq k m+n$, by (13), we get that

$$
\begin{align*}
& a_{n-t-1} b_{m}+\cdots+a_{n-t-1+\lambda_{1}} b_{m-\lambda_{1} k} \\
& \quad=b_{m} a_{k n-k m-k t-k+m}+\cdots+b_{m-\lambda_{2}} a_{k n-k m-k t-k+m+\lambda_{2} k} \tag{18}
\end{align*}
$$

where

$$
\begin{gather*}
\lambda_{1}=t+1, \quad \text { if } 2 m \geq(t+1) k, \\
\lambda_{1}=\left[\frac{2 m}{k}\right], \quad \text { if } 2 m<(t+1) k, \\
\lambda_{2}=2 m, \quad \text { if } k n+k m-k t-k+m \leq n, \tag{19}\\
\lambda_{2}=\left[\frac{n+k m+k t+k-k n-m}{k}\right], \\
\text { if } k n+k m-k t-k+m>n,
\end{gather*}
$$

and $[x]$ is the biggest integer which is not bigger than x. Then, by the assumption and (18), we get that $a_{n-t-1}=0$, since $b_{m} b_{-m} \neq 0$.

Hence, from the above discussion we obtain that $a_{j}=0$ for all integers j with $m+1 \leq j \leq n$ by the induction.

Similarly, we could get that $a_{j}=0$ for all integers j with $-n \leq j \leq-(m+1)$.

From Proposition 4 and Lemma 5, it is evident that Proposition 6 holds.

Proposition 6. Let $\varphi(z)=\sum_{p=-n}^{n} a_{p} z^{p}, \psi(z)=\sum_{p=-m}^{m} b_{p} z^{p}$ and $b_{m} b_{-m} \neq 0$, where n, m are integers and $n>m \geq 1$, then the following statements are equivalent:
(1.1) $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right) ;$
(1.2) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

Theorem 7 is obvious from Theorem 2.8 in [17] and Proposition 6.

Theorem 7. Let $\varphi(z)=\sum_{p=-n}^{n} a_{p} z^{p}, \psi(z)=\sum_{p=-m}^{m} b_{p} z^{p}$, and $b_{m} b_{-m} \neq 0$, where n and m are integers and $n>m \geq 1$, and the following statements are equivalent:
(1.1) U_{φ} and U_{ψ} commute;
(1.2) U_{φ} and U_{ψ} essentially commute;
(1.3) $\varphi\left(z^{k}\right) \psi(z)=\varphi(z) \psi\left(z^{k}\right)$;
(1.4) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

3. Product of Two k th-Order Slant Toeplitz Operators on $L^{2}(\mathbb{T})$

In $[15,17]$, the authors have investigated properties of the product of two k th-order slant Toeplitz operators on $L^{2}(\mathbb{T})$ and have obtained the following result.

Theorem 8 (see [15, 17]). Let $\varphi, \psi \in L^{\infty}(\mathbb{T})$, then the following statements are equivalent:
(1.1) $U_{\varphi} U_{\psi}$ is a kth-order slant Toeplitz operator;
(1.2) $U_{\varphi} U_{\psi}$ is a zero operator;
(1.3) $U_{\varphi} U_{\psi}$ is compact;
(1.4) $\varphi\left(z^{k}\right) \psi(z)=0$.

In this section, we will describe properties of the product of two k th-order slant Toeplitz operators with analytic symbols and harmonic symbols on $L^{2}(\mathbb{T})$ by their symbols. First, we start to discuss properties of two k th-order slant Toeplitz product with analytic symbols.

Proposition 9. Let $\varphi, \psi \in H^{\infty}(\mathbb{T})$, then $\varphi\left(z^{k}\right) \psi(z)=0$ if and only if $\varphi=0$ or $\psi=0$.

Proof. As we know, the "if" direction of the proposition is trivial.

Now suppose that $\varphi\left(z^{k}\right) \psi(z)=0$. Since $\varphi, \psi \in H^{\infty}(\mathbb{T})$, we have $\widehat{\varphi}\left(z^{k}\right) \widehat{\psi}(z)=0$, where $\widehat{\varphi}$ and $\widehat{\psi}$ are the Poisson extensions of φ and ψ, respectively, and they are analytic on the unit disk \mathbb{D}. Hence, we get that $\widehat{\varphi}\left(z^{k}\right)$ is identically 0 or $\widehat{\psi}$ is identically 0 ; that is, φ is identically 0 or ψ is identically 0 .

Similarly, we could obtain Corollary 10.
Corollary 10. Let $\bar{\varphi}, \bar{\psi} \in H^{\infty}(\mathbb{T})$, then $\varphi\left(z^{k}\right) \psi(z)=0$ if and only if $\varphi=0$ or $\psi=0$.

It is obvious that Theorem 11 holds from the preceding analysis.

Theorem 11. Let $\varphi, \psi \in H^{\infty}(\mathbb{T})$ or $\bar{\varphi}, \bar{\psi} \in H^{\infty}(\mathbb{T})$, then the following statements are equivalent:
(1.1) $U_{\varphi} U_{\psi}$ is a kth-order slant Toeplitz operator;
(1.2) $U_{\varphi} U_{\psi}$ is a zero operator;
(1.3) $U_{\varphi} U_{\psi}$ is compact;
(1.4) $\varphi\left(z^{k}\right) \psi(z)=0$;
(1.5) $\varphi=0$ or $\psi=0$.

Now, we start to discuss the properties of two k th-order slant Toeplitz product with harmonic symbols.

Proposition 12. Let $\varphi(z)=\sum_{p=0}^{n} a_{p} z^{p}$ and $\psi(z)=$ $\sum_{p=0}^{m} b_{-p} z^{-p}$, where n and m are both positive integers, then $\varphi\left(z^{k}\right) \psi(z)=0$ if and only if $\varphi=0$ or $\psi=0$.

Proof. We begin with the easy direction. First, suppose that $\varphi=0$ or $\psi=0$; then it is clear that $\varphi\left(z^{k}\right) \psi(z)=0$.

Without loss of generality, let $a_{n}^{2}+b_{-m}^{2} \neq 0$. Otherwise, $a_{n}^{2}+$ $b_{-m}^{2}=0$; then we can consider the value of a_{i} and b_{j}, where i and j are both integers with $0 \leq i \leq n-1$ and $0 \leq j \leq$ $m-1$, since $\varphi(z)$ and ψ are both polynomial functions. There are four cases: (1) $a_{i}=0$ for all integers i with $0 \leq i \leq n$; (2) $b_{-j}=0$ for all integers j with $0 \leq j \leq m$; (3) $a_{s} \neq 0$ and $a_{i}=0$ for all integers i with $s+1 \leq i \leq n$; (4) $b_{-t} \neq 0$ and $b_{-j}=0$ for all integers j with $t+1 \leq j \leq m$, where s and t are both nonnegative integers with $s \leq n-1$ and $t \leq m-1$. If the first two cases hold, then the required result holds; if the latter two cases holds, then we have $\varphi(z)=\sum_{p=0}^{s} a_{p} z^{p}$ and $a_{s}^{2}+b_{-m}^{2} \neq 0$ or $\psi(z)=\sum_{p=0}^{t} b_{-p} z^{-p}$ and $a_{n}^{2}+b_{-t}^{2} \neq 0$.

Now suppose that $\varphi\left(z^{k}\right) \psi(z)=0$ and $a_{n}^{2}+b_{-m}^{2} \neq 0$. Since $\varphi(z)=\sum_{p=0}^{n} a_{p} z^{p}, \psi(z)=\sum_{p=0}^{m} b_{-p} z^{-p}$, then

$$
\begin{equation*}
\varphi\left(z^{k}\right) \psi(z)=\sum_{p=0}^{n} a_{p} z^{k p} \cdot \sum_{p=0}^{m} b_{-p} z^{-p}=\sum_{p=-m}^{k n} \sum_{k i-j=p} a_{i} b_{-j} z^{p}, \tag{20}
\end{equation*}
$$

where i and j are both integers with $0 \leq i \leq n$ and $0 \leq j \leq m$. Because $\varphi\left(z^{k}\right) \psi(z)=0$, we get, for any integers p with $-m \leq$ $p \leq k n$,

$$
\begin{equation*}
\sum_{k i-j=p} a_{i} b_{-j}=0 \tag{21}
\end{equation*}
$$

where i and j are both integers with $0 \leq i \leq n$ and $0 \leq j \leq m$. Since $a_{n}^{2}+b_{-m}^{2} \neq 0$, yet we only obtain either $a_{n} \neq 0$ or $b_{-m} \neq 0$.

First Case. If $a_{n} \neq 0$. Now we want to show that $\psi \equiv 0$ by the induction.

When $p=k n$, by (21), we get that $a_{n} b_{0}=0$, which means that $b_{0}=0$, since $a_{n} \neq 0$.

When $p=k n-1$, by (21), we get that $a_{n} b_{-1}=0$, which means that $b_{-1}=0$, since $a_{n} \neq 0$.

Now suppose that $b_{-l}=0$ for any integers l with $0 \leq l \leq t$, where t is an integer with $0 \leq t \leq m-1$. Considering the value of b_{-t-1}, when $p=k n-t-1$, by (21), we get that

$$
\begin{equation*}
a_{n} b_{-t-1}+a_{n-1} b_{-t-1+k}+a_{n-2} b_{-t-1+2 k}+\cdots+a_{n-\lambda} b_{-t-1+k \lambda}=0 \tag{22}
\end{equation*}
$$

where $\lambda=\min \{n,[(t+1) / k]\}$ and $[x]$ is the biggest integer which is not bigger than x. By the assumption and the above equation, we get that $a_{n} b_{-t-1}=0$; that is, $b_{-t-1}=0$, since $a_{n} \neq 0$.

From the preceding analysis, by the induction, we can obtain that $b_{-l}=0$ for any integers l with $0 \leq l \leq m$. Hence, $\psi \equiv 0$.

Second Case. If $b_{-m} \neq 0$. Arguing as in the First case, we obtain that $\varphi \equiv 0$.

Proposition 13. Let $\varphi(z)=\sum_{p=0}^{n} a_{p} z^{p}$ and $\psi(z)=$ $\sum_{p=-m}^{m} b_{p} z^{p}$, where n and m are positive integers and $a_{n}^{2}+b_{m}^{2}+$ $b_{-m}^{2} \neq 0$, then the following statements are equivalent:
(1.1) $\varphi\left(z^{k}\right) \psi(z)=0$;
(1.2) $\varphi(z) \psi\left(z^{k}\right)=0$;
(1.3) $\varphi=0$ or $\psi=0$.

Proof. We begin with the easy direction. First, suppose that $\varphi=0$ or $\psi=0$; then it is clear that (1.1) and (1.2) hold.

Now suppose that (1.1) holds. Since $\varphi(z)=\sum_{p=0}^{n} a_{p} z^{p}$, $\psi(z)=\sum_{p=-m}^{m} b_{p} z^{p}$, then

$$
\begin{equation*}
\varphi\left(z^{k}\right) \psi(z)=\sum_{p=0}^{n} a_{p} z^{k p} \cdot \sum_{p=-m}^{m} b_{p} z^{p}=\sum_{p=-m}^{k n+m} \sum_{k i+j=p} a_{i} b_{j} z^{p} \tag{23}
\end{equation*}
$$

where i and j are both integers with $0 \leq i \leq n$ and $-m \leq j \leq$ m. Because $\varphi\left(z^{k}\right) \psi(z)=0$, we get that for any integers p with $-m \leq p \leq k n+m$,

$$
\begin{equation*}
\sum_{k i+j=p} a_{i} b_{j}=0 \tag{24}
\end{equation*}
$$

where i and j are both integers with $0 \leq i \leq n$ and $-m \leq$ $j \leq m$. Since $a_{n}^{2}+b_{m}^{2}+b_{-m}^{2} \neq 0$, yet we can obtain that $a_{n} \neq 0$, $b_{-m} \neq 0$, or $b_{m} \neq 0$.

First Case. If $a_{n} \neq 0$. Now we start to continue the proof by induction.

When $p=k n+m$, by (24), we get that $a_{n} b_{m}=0$, which means that $b_{m}=0$, since $a_{n} \neq 0$.

When $p=k n+m-1$, by (24), we get that $a_{n} b_{m-1}=0$, which means that $b_{m-1}=0$, since $a_{n} \neq 0$.

Now suppose that $b_{l}=0$ for any integers l with $t \leq l \leq m$, where t is an integer with $0<t \leq m$. Considering the value of b_{t-1}, when $p=k n+t-1$, by (24), we get that

$$
\begin{equation*}
a_{n} b_{t-1}+\cdots+a_{n-\lambda} b_{t-1+k \lambda}=0 \tag{25}
\end{equation*}
$$

where $\lambda=\min \{n,[(m-t+1) / 2]\}$ and $[x]$ is the biggest integer which is not bigger than x. By the assumption and the above equation, we get that $a_{n} b_{t-1}=0$; that is, $b_{t-1}=0$, since $a_{n} \neq 0$.

From the preceding analysis, by the induction we can obtain that $b_{l}=0$ for any integers l with $0 \leq l \leq m$. Then, by Proposition 12 we get that $\psi \equiv 0$, since φ is not 0 identically.

Second Case. If $b_{m} \neq 0$. In the following, we will continue the proof by induction.

When $p=k n+m$, by (24), we get that $a_{n} b_{m}=0$, which means that $a_{n}=0$, since $b_{m} \neq 0$.

When $p=k n+m-k$, by (24), we get that $a_{n-1} b_{m}+(m-$ $k)^{+} a_{n} b_{m-k}=0$, where $(m-k)^{+}=\max \{0$, $\operatorname{sgn}(2 m-k+1)\}$ and sgn is a sign function. So, $a_{n-1}=0$, since $a_{n}=0$ and $b_{m} \neq 0$.

Now, suppose that $a_{l}=0$ for any integers l with $t \leq l \leq n$, where t is an integer with $0<t \leq n$. Considering the value of a_{t-1}, when $p=m+k t-k$, by (24), we get that

$$
\begin{equation*}
b_{m} a_{t-1}+\cdots+b_{m-k \lambda} a_{t-1+\lambda}=0 \tag{26}
\end{equation*}
$$

where $\lambda=\min \{n-t+1,[2 m / k]\}$ and $[x]$ is the biggest integer which is not bigger than x. By the assumption and the above equation, we get that $b_{m} a_{t-1}=0$; that is, $a_{t-1}=0$, since $b_{m} \neq 0$.

From the preceding analysis, by the induction we can obtain that $a_{l}=0$ for any integers l with $0 \leq l \leq n$, which means that $\varphi \equiv 0$.

Third Case. If $b_{-m} \neq 0$. A computation analogous to the one done in the second case from which we can get that $\varphi \equiv 0$.

From the above analysis, we have that (1.3) holds.
Arguing as in the pervious discussion, we obtain that if (1.2) holds, then (1.3) is true.

Proposition 14. Let $\varphi(z)=\sum_{p=-n}^{n} a_{p} z^{p}, \psi(z)=\sum_{p=-m}^{m} b_{p} z^{p}$, where n and m are both positive integers and $a_{n}^{2}+b_{m}^{2}+a_{-n}^{2}+$ $b_{-m}^{2} \neq 0$, then $\varphi\left(z^{k}\right) \psi(z)=0$ if and only if $\varphi=0$ or $\psi=0$.

Proof. We begin with the easy direction. First, suppose that $\varphi=0$ or $\psi=0$; then it is clear that $\varphi\left(z^{k}\right) \psi(z)=0$.

Now suppose that $\varphi\left(z^{k}\right) \psi(z)=0$. Since $\varphi(z)=$ $\sum_{p=-n}^{n} a_{p} z^{p}, \psi(z)=\sum_{p=-m}^{m} b_{p} z^{p}$, then

$$
\begin{align*}
\varphi\left(z^{k}\right) \psi(z) & =\sum_{p=-n}^{n} a_{p} z^{k p} \cdot \sum_{p=-n}^{n} b_{p} z^{p} \\
& =\sum_{p=-(k n+m)}^{k n+m} \sum_{k i+j=p} a_{i} b_{j} z^{p}, \tag{27}
\end{align*}
$$

where i and j are both integers with $-n \leq i \leq n$ and $-m \leq$ $j \leq m$. Because $\varphi\left(z^{k}\right) \psi(z)=0$, we get that, for any integers p with $-(k n+m) \leq p \leq k n+m$,

$$
\begin{equation*}
\sum_{k i+j=p} a_{i} b_{j}=0, \tag{28}
\end{equation*}
$$

where i and j are both integers with $-n \leq i \leq n$ and $-m \leq j \leq$ m.

Since $a_{n}^{2}+b_{m}^{2}+a_{-n}^{2}+b_{-m}^{2} \neq 0$, without loss of generality, suppose that $a_{n} \neq 0$. We want to continue the proof by induction.

When $p=k n+m$, by (28), we get that $a_{n} b_{m}=0$, which means that $b_{m}=0$, since $a_{n} \neq 0$, when $p=k n+m-1$, by (28), we get that $a_{n} b_{m-1}=0$, which means that $b_{m-1}=0$, since $a_{n} \neq 0$.

Now suppose that $b_{l}=0$ for any integers l with $t \leq l \leq m$, where t is an integer with $0<t \leq m$. Considering the value of b_{t-1}. When $p=k n+t-1$, by (28) we get that

$$
\begin{equation*}
a_{n} b_{t-1}+\cdots+a_{n-\lambda} b_{t-1+k \lambda}=0, \tag{29}
\end{equation*}
$$

where $\lambda=\min \{2 n,[(m-t+1) / k]\}$ and $[x]$ is the biggest integer which is not bigger than x. By the assumption and the above equation, we get that $a_{n} b_{t-1}=0$; that is, $b_{t-1}=0$, since $a_{n} \neq 0$.

From the preceding analysis, by the induction we can obtain that $b_{l}=0$ for any integers l with $0 \leq l \leq m$. Then, by Proposition 13 we get that $\psi \equiv 0$, since φ is not 0 identically and $\varphi\left(z^{k}\right) \psi(z)=0$ is equivalent to $\overline{\varphi\left(z^{k}\right) \psi(z)}=\overline{\varphi\left(z^{k}\right)} \cdot \overline{\psi(z)}=$ 0 .

Form Proposition 3.4 and Theorem 3.1 in [15, 17], we will obtain the following theorem which describes the product of two slant Toeplitz operators with harmonic symbols.

Theorem 15. Let $\varphi(z)=\sum_{p=-n}^{n} a_{p} z^{p}, \psi(z)=\sum_{p=-m}^{m} b_{p} z^{p}$, where n and m are both positive integers and $a_{n}^{2}+b_{m}^{2}+a_{-n}^{2}+$ $b_{-m}^{2} \neq 0$, then the following statements are equivalent:
(1.1) $U_{\varphi} U_{\psi}$ is a kth-order slant Toeplitz operator;
(1.2) $U_{\varphi} U_{\psi}$ is a zero operator;
(1.3) $U_{\varphi} U_{\psi}$ is compact;
(1.4) $\varphi\left(z^{k}\right) \psi(z)=0$;
(1.5) $\varphi=0$ or $\psi=0$.

4. Commutativity of k th-Order Slant Toeplitz Operators on Bergman Spaces

Let \mathbb{C} be the complex plane and let \mathbb{D} be the unit disk in \mathbb{C}. Let $d A$ be the area measure on \mathbb{D} normalized so that $\int_{\mathbb{D}} 1 d A=$ 1. Let $A^{2}(\mathbb{D})$ be the space of analytic functions in $L^{2}(\mathbb{D}, d A)$ which consists of Lebesgue measurable functions f on \mathbb{D} with

$$
\begin{equation*}
\int_{\mathbb{D}}|f(z)|^{2} d A(z)<+\infty \tag{30}
\end{equation*}
$$

It is well known that $A^{2}(\mathbb{D})$ is a closed subspace of the Hilbert space $L^{2}(\mathbb{D}, d A)$ with the inner product $\langle\cdot, \cdot\rangle$ and $\left\{z^{i}: i \in\right.$ $\left.\mathbb{Z}^{+}\right\}$are the orthogonal basis in $A^{2}(\mathbb{D})$, where \mathbb{Z}^{+}is the set of nonnegative integers. Let $L^{\infty}(\mathbb{D})$ be the Banach space of Lebesgue measurable functions f on \mathbb{D} with

$$
\begin{equation*}
\|f\|_{\infty}=\text { ess } \sup \{|f(z)|: z \in \mathbb{D}\}<+\infty \tag{31}
\end{equation*}
$$

Let P denote the orthogonal projection from $L^{2}(\mathbb{D}, d A)$ onto $A^{2}(\mathbb{D})$. For $f \in L^{\infty}(\mathbb{D})$, the Toeplitz operator T_{f} on $A^{2}(\mathbb{D})$ is defined by

$$
\begin{equation*}
T_{f}(g)=P(f g), \quad g \in A^{2}(\mathbb{D}) \tag{32}
\end{equation*}
$$

and the k th-order slant Toeplitz operator B_{f} on $A^{2}(\mathbb{D})$ is defined by

$$
\begin{equation*}
B_{f}=W_{k} T_{f} \tag{33}
\end{equation*}
$$

where W_{k} is a bounded linear operator on $A^{2}(\mathbb{D})$ which is defined as

$$
W_{k}\left(z^{i}\right)= \begin{cases}z^{i / k}, & \text { if } i \text { is divisible by } k \tag{34}\\ 0, & \text { otherwise }\end{cases}
$$

In this section we will investigate the commutativity of k th-order slant Toeplitz operators with coanalytic symbols and harmonic symbols on Bergman space $A^{2}(\mathbb{D})$. First, we study the commutativity of k th-order slant Toeplitz operators with coanalytic symbols.

Lemma 16. Let $q \geq 0$ be an integer, let $f, g \in H^{\infty}(\mathbb{D})$, both of which are not 0 identically. If $f W_{k}^{*} g=g W_{k}^{*} f$, the following statements are equivalent:
(1.1) $f^{(i)}(0)=0$ for any integers i with $0 \leq i \leq q$ and $f^{(q+1)}(0) \neq 0 ;$
(1.2) $g^{(i)}(0)=0$ for any integers i with $0 \leq i \leq q$ and $g^{(q+1)}(0) \neq 0$.

Proof. First, suppose that (1.1) holds. Since $f \in H^{\infty}(\mathbb{D})$, we get that $f(z)=z^{q+1} f_{1}(z)$ and $\left(W_{k}^{*} f\right)(z)=z^{k q+k} f_{2}(z)$, where $f_{1}(0) \neq 0, f_{2}(0) \neq 0$, and $f_{1}, f_{2} \in H^{\infty}(\mathbb{D})$. Because $f W_{k}^{*} g=$ $g W_{k}^{*} f$ and $g \in H^{\infty}(\mathbb{D})$, we get that

$$
\begin{equation*}
f_{1}(z)\left(W_{k}^{*} g\right)(z)=z^{(k-1)(q+1)} f_{2}(z) g(z) \tag{35}
\end{equation*}
$$

so $g(0)=0$. Since g is not 0 identically, without loss of generality, take $g^{(j)}(0)=0$ for any integers j with $0 \leq j \leq p$ and $g^{(p+1)}(0) \neq 0$, then $g(z)=z^{p+1} g_{1}(z)$ and $\left(W_{k}^{*} g\right)(z)=$ $z^{k(p+1)} g_{2}(z)$, where $g_{1}(0) \neq 0, g_{2}(0) \neq 0$, and $g_{1}, g_{2} \in H^{\infty}(\mathbb{D})$; so, by (35) we get that

$$
\begin{equation*}
f_{1}(z) g_{2}(z) z^{(k-1)(p+1)}=z^{(k-1)(q+1)} f_{2}(z) g_{1}(z) \tag{36}
\end{equation*}
$$

so $p=q$. Otherwise, if $p>q$, then by the above equation we get that $f_{1}(z) g_{2}(z) z^{(k-1)(p-q)}=f_{2}(z) g_{1}(z)$, which means that $f_{2}(0) g_{1}(0)=0$, that leads a contradiction; if $p<$ q, then by the above equation we get that $f_{1}(z) g_{2}(z)=$ $z^{(k-1)(q-p)} f_{2}(z) g_{1}(z)$, which means that $f_{1}(0) g_{2}(0)=0$, that leads a contradiction. Hence (1.2) holds.

Similarly, we can obtain the other direction of the Lemma.

Theorem 17. Let $\bar{\varphi}, \bar{\psi} \in H^{\infty}(\mathbb{D})$, then the following statements are equivalent:
(1.1) B_{φ} and B_{ψ} commute;
(1.2) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

Proof. First suppose that (1.2) holds; then it is obvious that B_{φ} and B_{ψ} commute.

Now suppose that (1.1) holds. So, we get that $B_{\varphi}^{*} B_{\psi}^{*}(1)=$ $B_{\psi}^{*} B_{\varphi}^{*}(1)$; that is, $\bar{\varphi} W_{k}^{*} \bar{\psi}=\bar{\psi} W_{k}^{*} \bar{\varphi}$.

Now we continue the discussion in three cases.
First Case. If $\varphi \equiv 0$ or $\psi \equiv 0$. It is obvious that the required result holds.

Second Case. If $\bar{\varphi}(0) \neq 0$ and $\bar{\psi}(0) \neq 0$. Since $\bar{\varphi}, \bar{\psi} \in H^{\infty}(\mathbb{D})$, let $\bar{\varphi}(z)=\sum_{p=0}^{\infty} a_{p} z^{p}$ and $\bar{\psi}(z)=\sum_{p=0}^{\infty} b_{p} z^{p}$, then $a_{0} \neq 0$, $b_{0} \neq 0$, and $W_{k}^{*} \bar{\varphi}(z)=\sum_{p=0}^{\infty} a_{p}((k p+1) /(p+1)) z^{k p}$ and $W_{k}^{*} \bar{\psi}(z)=\sum_{p=0}^{\infty} b_{p}((k p+1) /(p+1)) z^{k p}$, so

$$
\begin{align*}
\bar{\psi} W_{k}^{*} \bar{\varphi}(z) & =\sum_{p=0}^{\infty} b_{p} z^{p} \cdot \sum_{p=0}^{\infty} a_{p} \frac{k p+1}{p+1} z^{k p} \\
& =\sum_{p=0}^{\infty} \sum_{k i+j=p} \frac{k i+1}{i+1} a_{i} b_{j} z^{p} \\
\bar{\varphi} W_{k}^{*} \bar{\psi}(z) & =\sum_{p=0}^{\infty} a_{p} z^{p} \cdot \sum_{p=0}^{\infty} b_{p} \frac{k p+1}{p+1} z^{k p} \tag{37}\\
& =\sum_{p=0}^{\infty} \sum_{i+k j=p} \frac{k j+1}{j+1} a_{i} b_{j} z^{p} .
\end{align*}
$$

Because $\bar{\varphi} W_{k}^{*} \bar{\psi}=\bar{\psi} W_{k}^{*} \bar{\varphi}$, we get that

$$
\begin{equation*}
\sum_{p=0}^{\infty} \sum_{k i+j=p} \frac{k i+1}{i+1} a_{i} b_{j} z^{p}=\sum_{p=0}^{\infty} \sum_{i+k j=p} \frac{k j+1}{j+1} a_{i} b_{j} z^{p} \tag{38}
\end{equation*}
$$

that is, for any integers $p \geq 0$,

$$
\begin{equation*}
\sum_{k i+j=p} \frac{k i+1}{i+1} a_{i} b_{j}=\sum_{i+k j=p} \frac{k j+1}{j+1} a_{i} b_{j} \tag{39}
\end{equation*}
$$

where i and j are both nonnegative integers. In the following, we want to continue the proof by the induction.

When $p=0$, by (39), we get that $a_{0} b_{0}=a_{0} b_{0}$, so $b_{0}=$ $\left(b_{0} / a_{0}\right) a_{0}$, since $a_{0} \neq 0$. Let $\lambda=b_{0} / a_{0}$, then $b_{0}=\lambda a_{0}$.

When $p=1$, by (39), we get that $a_{0} b_{1}=a_{1} b_{0}$, so $b_{1}=\lambda a_{1}$.
Suppose that $b_{j}=\lambda a_{j}$ for any integers j with $0 \leq$ $j \leq l$, where l is a nonnegative integer. Now, consider the connection between a_{l+1} and b_{l+1}.

When $p=l+1$, by (39), we get that

$$
\begin{equation*}
\sum_{k i+j=l+1} \frac{k i+1}{i+1} a_{i} b_{j}=\sum_{i+k j=l+1} \frac{k j+1}{j+1} a_{i} b_{j} \tag{40}
\end{equation*}
$$

that is,

$$
\begin{align*}
a_{0} b_{l+1} & +\cdots+\frac{k \lambda+1}{\lambda+1} a_{\lambda} b_{l+1-\lambda k} \tag{41}\\
& =b_{0} a_{l+1}+\cdots+\frac{k \lambda+1}{\lambda+1} b_{\lambda} a_{l+1-\lambda k}
\end{align*}
$$

where $\lambda=[(l+1) / k]$ and $[x]$ is the biggest integer which is not bigger than x. By this assumption, we can obtain that $a_{0} b_{l+1}=b_{0} a_{l+1}$; that is, $b_{l+1}=\lambda a_{l+1}$, since $a_{0} \neq 0$.

Hence, by the induction, we obtain that $b_{j}=\lambda a_{j}$ for any nonnegative integers j from the pervoius discussion; that is, $\overline{\psi(z)}=\sum_{p=0}^{\infty} \lambda a_{p} z^{p}=\lambda \overline{\varphi(z)}$. So, the required result holds.

Third Case. If φ and ψ are both not 0 identically, and $\bar{\varphi}(0)=0$ or $\bar{\psi}(0)=0$. Without loss of generality, take $\bar{\varphi}^{(i)}(0)=0$ for any integers $0 \leq i \leq i_{1}$ and $\bar{\varphi}^{\left(i_{1}+1\right)}(0) \neq 0$. By Lemma 16 , we get that $\bar{\psi}^{(i)}(0)=0$ for any integers $0 \leq i \leq i_{1}$ and $\bar{\psi}^{\left(i_{1}+1\right)}(0) \neq 0$, and

$$
\begin{equation*}
\bar{\varphi}(z)=z^{i_{1}+1} \varphi_{1}(z), \quad \bar{\psi}(z)=z^{i_{1}+1} \psi_{1}(z) \tag{42}
\end{equation*}
$$

where $\varphi_{1}, \psi_{1} \in H^{\infty}(\mathbb{D})$, and $\varphi_{1}(0) \neq 0, \psi_{1}(0) \neq 0$, so $\bar{\psi} W_{k}^{*}(\bar{\varphi})=$ $z^{(k+1)\left(i_{1}+1\right)} \psi_{1} W_{k}^{*}\left(\varphi_{1}\right)$ and $\bar{\varphi} W_{k}^{*}(\bar{\psi})=z^{(k+1)\left(i_{1}+1\right)} \varphi_{1} W_{k}^{*}\left(\psi_{1}\right)$. Since $\bar{\psi} W_{k}^{*}(\bar{\varphi})=\bar{\varphi} W_{k}^{*}(\bar{\psi})$, yet we can get that $\psi_{1} W_{k}^{*}\left(\varphi_{1}\right)=$ $\varphi_{1} W_{k}^{*}\left(\psi_{1}\right)$. Since $\varphi_{1}(0) \neq 0$ and $\psi_{1}(0) \neq 0$, yet by the second case we get that $\psi_{1}=\lambda_{1} \varphi_{1}$, where $\lambda_{1}=\psi_{1}(0) / \varphi_{1}(0)$. So, $\bar{\psi}(z)=z^{i_{1}+1} \psi_{1}(z)=\lambda_{1} z^{i_{1}+1} \varphi_{1}(z)=\lambda_{1} \varphi_{1}(z)$. The required result holds.

Now we are in a position to discuss the commutativity of slant Toeplitz operators with harmonic symbols.

Theorem 18. Let $\varphi(z)=\sum_{p=0}^{n} a_{p} z^{p}+\sum_{k=1}^{n} a_{-p} \bar{z}^{p}$ and $\psi(z)=$ $\sum_{p=0}^{n} b_{p} z^{p}+\sum_{k=1}^{n} b_{-p} \bar{z}^{p}$, where $a_{-n}^{2}+b_{-n}^{2} \neq 0$ and $n \geq 1$ is an integer, then the following statements are equivalent:
(1.1) B_{φ} and B_{ψ} commute;
(1.2) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

Proof. First suppose that (1.2) holds. It is obvious that B_{φ} and B_{ψ} commute.

Now suppose that (1.1) holds. Let $\varphi_{1}(z)=\sum_{p=0}^{n} a_{p} z^{p}$, $\overline{\varphi_{2}}(z)=\sum_{p=1}^{n} a_{-p} \bar{z}^{p}, \psi_{1}(z)=\sum_{p=0}^{n} b_{p} z^{p}$, and $\overline{\psi_{2}}(z)=$ $\sum_{p=1}^{n} b_{-p} \bar{z}^{p}$, then $\varphi=\varphi_{1}+\overline{\varphi_{2}}$ and $\psi=\psi_{1}+\overline{\psi_{2}}$. Since B_{φ} and B_{ψ} commute, we have $T_{\bar{\varphi}} W_{k}^{*} T_{\bar{\psi}} W_{k}^{*} 1=T_{\bar{\psi}} W_{k}^{*} T_{\bar{\varphi}} W_{k}^{*} 1$, that is,

$$
\begin{align*}
& \varphi_{2} W_{k}^{*} \psi_{2}+\overline{\psi_{1}(0)} \varphi_{2}+P\left(\overline{\varphi_{1}} W_{k}^{*} \psi_{2}\right) \tag{43}\\
& \quad=\psi_{2} W_{k}^{*} \varphi_{2}+\overline{\varphi_{1}(0)} \psi_{2}+P\left(\overline{\psi_{1}} W_{k}^{*} \varphi_{2}\right)
\end{align*}
$$

Then, by (43), we get that for any integers p with $k n+1 \leq p \leq$ $k n+n$,

$$
\begin{equation*}
\sum_{i+k j=p} \overline{a_{-i}} \overline{b_{-j}} \frac{k j+1}{j+1}=\sum_{k i+j=\mathrm{p}} \overline{a_{-i}} \overline{b_{-j}} \frac{k i+1}{i+1}, \tag{44}
\end{equation*}
$$

where i and j are positive integers which are not bigger than n. Since $a_{-n}^{2}+b_{-n}^{2} \neq 0$, without loss of generality, take $b_{-n} \neq 0$. Now we continue the proof by the induction.

When $p=k n+n$, by (44), we get that $\overline{a_{-n}} \overline{b_{-n}}((k n+1) /(n+$ $1))=\overline{a_{-n}} \overline{b_{-n}}((k n+1) /(n+1))$, so $\overline{a_{-n}}=\left(\overline{a_{-n}} / \overline{b_{-n}}\right) \overline{b_{-n}}$, since $b_{-n} \neq 0$. Let $\lambda=\overline{a_{-n}} / \overline{b_{-n}}$, then $\overline{a_{-n}}=\lambda \overline{b_{-n}}$.

When $p=k n+n-1$, by (44), we get that $\overline{a_{-n+1}} \overline{b_{-n}}((k n+$ $1) /(n+1))=\overline{a_{-n}} \overline{b_{-n+1}}((k n+1) /(n+1))$, so $\overline{a_{-n+1}}=\lambda \overline{b_{-n+1}}$, since $b_{-n} \neq 0$.

Suppose that $\overline{a_{-n+i}}=\lambda \overline{b_{-n+i}}$ for any integers i with $0 \leq i \leq$ $l<n-1$. Now, consider the connection between a_{-n+l+1} and b_{-n+l+1}.

When $p=k n+n-l-1$, by (44), we get that

$$
\begin{align*}
& \overline{a_{-n+l+1}} \\
& \overline{b_{-n}} \frac{2 n+1}{n+1}+\cdots+\overline{a_{-n+l+1-k \gamma}} \overline{b_{-n+\gamma}} \frac{k \gamma+1}{k+1} \tag{45}\\
& \quad=\overline{b_{-n+l+1}} \overline{a_{-n}} \frac{2 n+1}{n+1}+\cdots+\overline{b_{-n+l+1-k \gamma}} \overline{a_{-n+\gamma}} \frac{k \gamma+1}{k+1},
\end{align*}
$$

where $\gamma=[(l+1) / k]$ and $[x]$ is the biggest integer which is not bigger than x. From the assumption we obtain that $\overline{a_{-n+l+1}} \overline{b_{-n}}((2 n+1) /(n+1))=\overline{b_{-n+l+1}} \overline{a_{-n}}((2 n+1) /(n+1))$, so $\overline{a_{-n+l+1}}=\lambda \overline{b_{-n+l+1}}$, since $b_{-n} \neq 0$.

From the pervous discussion, by the induction we obtain that $\overline{a_{-n+i}}=\lambda \overline{b_{-n+i}}$ for any integers i with $0 \leq i \leq n-1$. Hence, $\varphi_{2}(z)=\sum_{p=1}^{n} a_{-p} \bar{z}^{p}=\sum_{p=1}^{n} \bar{\lambda} b_{-p} \bar{z}^{p}=\bar{\lambda} \psi_{2}(z)$.

Since $\varphi_{2}(z)=\bar{\lambda} \psi_{2}(z)$, by (43), we get that

$$
\begin{equation*}
\overline{\psi_{1}(0)} \varphi_{2}+P\left(\overline{\varphi_{1}} W_{k}^{*} \psi_{2}\right)=\overline{\varphi_{1}(0)} \psi_{2}+P\left(\overline{\psi_{1}} W_{k}^{*} \varphi_{2}\right) \tag{46}
\end{equation*}
$$

Then,

$$
\begin{align*}
\left\langle\overline{\psi_{1}}(0)\right. & \left.\varphi_{2}+P\left(\overline{\varphi_{1}} W_{k}^{*} \psi_{2}\right), z^{k n}\right\rangle \\
& =\left\langle W_{k}^{*} \psi_{2}, z^{k n} \varphi_{1}\right\rangle=b_{-n} \overline{0_{0}} \frac{1}{n+1} \\
& =\left\langle\overline{\varphi_{1}(0)} \psi_{2}+P\left(\overline{\psi_{1}} W_{k}^{*} \varphi_{2}\right), z^{k n}\right\rangle \tag{47}\\
& =\left\langle W_{k}^{*} \varphi_{2}, z^{k n} \psi_{1}\right\rangle=a_{-n} \overline{b_{0}} \frac{1}{n+1},
\end{align*}
$$

and we get that $b_{-n} \overline{a_{0}}=a_{-n} \overline{b_{0}}$; that is, $a_{0}=\lambda b_{0}$. So, by (46) we have that $\overline{\psi_{1}(0)} \varphi_{2}=\overline{\varphi_{1}(0)} \psi_{2}$ and $P\left(\overline{\left.\varphi_{1} W_{k}^{*} \psi_{2}\right)=P\left(\overline{\psi_{1}} W_{k}^{*} \varphi_{2}\right) \text {, }, \text {, } n \text {. }}\right.$ that is, $P\left(\overline{\lambda \psi_{1}-\varphi_{1}} W_{k}^{*} \psi_{2}\right)=0$. Hence, for any integers l with $k n-n \leq l \leq k n-1$, we have

$$
\begin{align*}
0 & =\left\langle z^{l}, 0\right\rangle=\left\langle z^{l}, P\left(\overline{\lambda \psi_{1}-\varphi_{1}} W_{k}^{*} \psi_{2}\right)\right\rangle \tag{48}\\
& =\left\langle z^{l}, \overline{\lambda \psi_{1}-\varphi_{1}} W_{k}^{*} \psi_{2}\right\rangle=\left\langle\left(\lambda \psi_{1}-\varphi_{1}\right) z^{l}, W_{k}^{*} \psi_{2}\right\rangle,
\end{align*}
$$

that is,

$$
\begin{equation*}
\left\langle\sum_{p=0}^{n}\left(\lambda b_{p}-a_{p}\right) z^{p+l}, \sum_{p=1}^{n} b_{-p} \frac{k p+1}{p+1} z^{k p}\right\rangle=0 \tag{49}
\end{equation*}
$$

Since $a_{0}=\lambda b_{0}$, we have

$$
\begin{equation*}
\left\langle\sum_{p=1}^{n}\left(\lambda b_{p}-a_{p}\right) z^{p+l}, \sum_{p=1}^{n} b_{-p} \frac{k p+1}{p+1} z^{k p}\right\rangle=0 \tag{50}
\end{equation*}
$$

When $l=k n-1$, by (50), we get that $\left(\lambda b_{1}-a_{1}\right) \overline{b_{-n}}(1 /(n+1))=$ 0 , so $a_{1}=\lambda b_{1}$, since $b_{-n} \neq 0$. Then we have

$$
\begin{equation*}
\left\langle\sum_{p=2}^{n}\left(\lambda b_{p}-a_{p}\right) z^{p+l}, \sum_{p=1}^{n} b_{-p} \frac{k p+1}{p+1} z^{k p}\right\rangle=0 . \tag{51}
\end{equation*}
$$

Suppose that $a_{j}=\lambda b_{j}$ for any integers j with $0 \leq j \leq s$, where $0 \leq s \leq n-1$. By (50), we get that

$$
\begin{equation*}
\left\langle\sum_{p=s+1}^{n}\left(\lambda b_{\mathrm{p}}-a_{p}\right) z^{p+l}, \sum_{p=1}^{n} b_{-p} \frac{k p+1}{p+1} z^{k p}\right\rangle=0 \tag{52}
\end{equation*}
$$

Now consider the connection between a_{s+1} and b_{s+1}.
When $l=k n-s-1$, by (52), we get that $\left(\lambda b_{s+1}-\right.$ $\left.a_{s+1}\right) \overline{b_{-n}}(1 /(n+1))=0$, so $a_{s+1}=\lambda b_{s+1}$, since $b_{-n} \neq 0$.

Form the above discussion, by the induction we can obtain that $a_{j}=\lambda b_{j}$ for any integers j with $0 \leq j \leq n$, so $\varphi_{1}(z)=\sum_{p=0}^{n} a_{p} z^{p}=\sum_{p=0}^{n} \lambda b_{p} z^{p}=\lambda \psi_{1}(z)$.

Since $\varphi_{2}=\bar{\lambda} \psi_{2}$, we have $\varphi=\varphi_{1}+\overline{\varphi_{2}}=\lambda \psi_{1}+\lambda \overline{\psi_{2}}=\lambda \psi$. Hence, the required result holds.

Lemma 19. Let $\varphi(z)=\sum_{p=0}^{n} a_{p} z^{p}+\sum_{p=1}^{n} a_{-p} \bar{z}^{p}$ and $\psi(z)=$ $\sum_{p=0}^{m} b_{p} z^{p}+\sum_{p=1}^{m} b_{-p} \bar{z}^{p}$, where n and m are integers with $n>$ $m \geq 1$ and $b_{-m} \neq 0$. If B_{φ} and B_{ψ} commute, then $a_{-j}=0$ for any integers j with $m+1 \leq j \leq n$.

Proof. Let $\varphi_{1}(z)=\sum_{p=0}^{n} a_{p} z^{p}, \overline{\varphi_{2}}(z)=\sum_{p=1}^{n} a_{-p} \bar{z}^{p}, \psi_{1}(z)=$ $\sum_{p=0}^{m} b_{p} z^{p}$ and $\overline{\psi_{2}}(z)=\sum_{p=1}^{m} b_{-p} \bar{z}^{p}$, then $\varphi=\varphi_{1}+\overline{\varphi_{2}}$ and $\psi=$ $\psi_{1}+\overline{\psi_{2}}$. Since B_{φ} and B_{ψ} commute, we have $T_{\bar{\varphi}} W_{k}^{*} T_{\bar{\psi}} W_{k}^{*} 1=$ $T_{\bar{\psi}} W_{k}^{*} T_{\bar{\varphi}} W_{k}^{*} 1$; that is,

$$
\begin{align*}
& \varphi_{2} W_{k}^{*} \psi_{2}+\overline{\psi_{1}(0)} \varphi_{2}+P\left(\overline{\varphi_{1}} W_{k}^{*} \psi_{2}\right) \\
& =\psi_{2} W_{k}^{*} \varphi_{2}+\overline{\varphi_{1}(0)} \psi_{2}+P\left(\overline{\psi_{1}} W_{k}^{*} \varphi_{2}\right), \\
& \sum_{p=k+1}^{k m+n} \sum_{i+k j=p} \overline{a_{-i}} \overline{b_{-j}} \frac{k j+1}{j+1} z^{p}+\overline{\psi_{1}(0)} \sum_{p=1}^{n} \overline{a_{-p}} z^{p} \\
& \quad+\sum_{p=0}^{k m} \sum_{k j-i=p} \overline{a_{i}} \overline{b_{-j}} \frac{k j-i+1}{k j+1} z^{p} \\
& =\sum_{p=k+1}^{k n+m} \sum_{k i+j=p} \overline{a_{-i}} \overline{b_{-j}} \frac{k i+1}{i+1} z^{p} \\
& \quad+\overline{\varphi_{1}(0)} \sum_{p=1}^{m} \overline{b_{-p}} z^{p}+\sum_{p=0}^{k n} \sum_{k i-j=p} \overline{b_{j}} \overline{a_{-i}} \frac{k i-j+1}{k i+1} z^{p} . \tag{53}
\end{align*}
$$

Since $n>m$, let $n=m+r$, where r is a positive integer. Then, by the pervoius equation, we get that

$$
\begin{equation*}
\sum_{k i+j=k n+m} \overline{a_{-i}} \overline{b_{-j}} \frac{k i+1}{i+1}=0, \quad \text { that is, } \overline{a_{-n}} \overline{b_{-m}} \frac{k n+1}{n+1}=0 \tag{54}
\end{equation*}
$$

so $a_{-n}=0$, since $b_{-m} \neq 0$.

Suppose that $a_{-n+t}=0$ for any integers t with $0 \leq t \leq r-2$. Now consider the value of a_{-n+t+1}. By the assumption and the above equation we get that

$$
\begin{align*}
& \sum_{p=k+1}^{k m+n-t-1} \sum_{i+k j=p} \overline{a_{-i}} \overline{b_{-j}} \frac{k j+1}{j+1} z^{p}+\overline{\psi_{1}(0)} \sum_{p=1}^{n-t-1} \overline{a_{-p}} z^{p} \\
&+\sum_{p=0}^{k m} \sum_{k j-i=p} \overline{a_{i}} \overline{b_{-j}} \frac{k j-i+1}{k j+1} z^{p} \\
& \quad=\sum_{p=k+1}^{k n+m-k t-k} \sum_{k i+j=p} \overline{a_{-i}} \overline{b_{-j}} \frac{k i+1}{i+1} z^{p}+\overline{\varphi_{1}(0)} \sum_{p=1}^{m} \overline{b_{-p}} z^{p} \\
& \quad+\sum_{p=0}^{k n-k t-k} \sum_{k i-j=p} \overline{b_{j}} \overline{a_{-i}} \frac{k i-j+1}{k i+1} z^{p} . \tag{55}
\end{align*}
$$

Since $t+1<r$, we can get that $\sum_{k i+j=k n+m-k t-k} \overline{a_{-i}} \overline{b_{-j}}((k i+$ 1) $/(i+1))=0$; that is,

$$
\begin{align*}
& \overline{a_{-n+t+1}} \\
& \quad \overline{b_{-m}} \frac{k(n-t-1)+1}{n-t-1} \tag{56}\\
& \quad+\cdots+\overline{a_{-n+t+1-\lambda}} \overline{b_{-m+k \lambda}} \frac{k(n-t-1+\lambda)+1}{n-t-1+\lambda}=0,
\end{align*}
$$

where $\lambda=\min \{t+1,[2 m / k]\}$ and $[2 m / k]$ is the biggest integer which is not bigger than $2 m / k$. Since $b_{-m} \neq 0$, by assumption, we get that $a_{-n+t+1}=0$.

From the preceding discussion, by the induction we can get that $a_{-j}=0$ for any integers j with $m+1 \leq j \leq n$.

Theorem 20. Let $\varphi(z)=\sum_{p=0}^{n} a_{p} z^{p}+\sum_{p=1}^{n} a_{-p} \bar{z}^{p}$ and $\psi(z)=$ $\sum_{p=0}^{m} b_{p} z^{p}+\sum_{p=1}^{m} b_{-p} \bar{z}^{p}$, where $a_{-n}^{2}+b_{-m}^{2} \neq 0, n$ and m are integers with $n>m \geq 1$, then the following statements are equivalent:
(1.1) B_{φ} and B_{ψ} commute;
(1.2) there exist scalars α and β, not both zero, such that $\alpha \varphi+$ $\beta \psi=0$.

Proof. First suppose that (1.2) holds. It is obvious that B_{φ} and B_{ψ} commute.

Now suppose that (1.1) holds. Since $a_{-n}^{2}+b_{-m}^{2} \neq 0$, we can get that $a_{-n} \neq 0$ or $b_{-m} \neq 0$.

If $a_{-n} \neq 0$, by Theorem 18, we can get the required result.
If $b_{-m} \neq 0$, by Lemma 19, we can get that $\varphi(z)=$ $\sum_{p=0}^{n} a_{p} z^{p}+\sum_{k=1}^{m} a_{-p} \bar{z}^{p}$. Let $\varphi_{1}(z)=\sum_{p=0}^{n} a_{p} z^{p}, \overline{\varphi_{2}}(z)=$ $\sum_{p=1}^{m} a_{-p} \bar{z}^{p}, \psi_{1}(z)=\sum_{p=0}^{m} b_{p} z^{p}$, and $\overline{\psi_{2}}(z)=\sum_{p=1}^{m} b_{-p} \bar{z}^{p}$, then $\varphi=\varphi_{1}+\overline{\varphi_{2}}$ and $\psi=\psi_{1}+\overline{\psi_{2}}$.

Since B_{φ} and B_{ψ} commute, we have $T_{\bar{\varphi}} W_{k}^{*} T_{\bar{\psi}} W_{k}^{*} 1=$ $T_{\bar{\psi}} W_{k}^{*} T_{\bar{\varphi}} W_{k}^{*} 1$; that is,

$$
\begin{align*}
\varphi_{2} W_{k}^{*} & \psi_{2}+\overline{\psi_{1}(0)} \varphi_{2}+P\left(\overline{\varphi_{1}} W_{k}^{*} \psi_{2}\right) \tag{57}\\
& =\psi_{2} W_{k}^{*} \varphi_{2}+\overline{\varphi_{1}(0)} \psi_{2}+P\left(\overline{\psi_{1}} W_{k}^{*} \varphi_{2}\right)
\end{align*}
$$

By (57) we get that for any integers p with $k m+1 \leq p \leq$ $k m+m$,

$$
\begin{equation*}
\sum_{i+k j=p} \overline{a_{-i}} \overline{b_{-j}} \frac{k j+1}{j+1}=\sum_{k i+j=p} \overline{a_{-i}} \overline{b_{-j}} \frac{k i+1}{i+1} \tag{58}
\end{equation*}
$$

where i and j are positive integers with $-m \leq i \leq n$ and $-m \leq$ $j \leq m$. Now we continue the proof by the induction.

When $p=k m+m$, by (58), we get that $\overline{a_{-m}} \overline{b_{-m}}((k m+$ $1) /(m+1))=\overline{a_{-m}} \overline{b_{-m}}((k m+1) /(m+1))$, so $\overline{a_{-m}}=$ $\left(\overline{a_{-m}} / \overline{b_{-m}}\right) \overline{b_{-m}}$, since $b_{-m} \neq 0$. Let $\lambda=\left(\overline{a_{-m}} / \overline{b_{-m}}\right)$, then $\overline{a_{-m}}=$ $\lambda \overline{b_{-m}}$.

When $p=k m+m-1$, by (58), we get that $\overline{a_{-m+1}} \overline{b_{-m}}((k m+$ $1) /(m+1))=\overline{a_{-m}} \overline{b_{-m+1}}((k m+1) /(m+1))$, so $\overline{a_{-m+1}}=\lambda \overline{b_{-m+1}}$, since $b_{-m} \neq 0$.

Suppose that $\overline{a_{-m+i}}=\lambda \overline{b_{-m+i}}$ for any integers i with $0 \leq$ $i \leq l<m-1$. Now consider the connection between a_{-m+l+1} and b_{-m+l+1}.

When $p=k m+m-l-1$, by (58), we get that

$$
\begin{align*}
\overline{a_{-m+l+1}} & \overline{b_{-m}} \frac{k m+1}{m+1}+\cdots \\
& +\overline{a_{-m+l+1-r k}} \overline{b_{-m+r}} \frac{k(m-r)+1}{m-r+1} \tag{59}\\
= & \overline{b_{-m+l+1}} \overline{a_{-m}} \frac{k m+1}{m+1}+\cdots \\
& +\overline{b_{-m+l+1-r k}} \overline{a_{-m+r}} \frac{k(m-r)+1}{m-r+1}
\end{align*}
$$

From the assumption we obtain that $\overline{a_{-m+l+1}} \overline{b_{-m}}((k m+$ $1) /(m+1))=\overline{b_{-m+l+1}} \overline{a_{-m}}((k m+1) /(m+1))$, so $\overline{a_{-m+l+1}}=$ $\lambda \overline{b_{-m+l+1}}$, since $b_{-m} \neq 0$.

From the pervious discussion, by the induction we obtain that $\overline{a_{-m+i}}=\lambda \overline{b_{-m+i}}$ for any integers i with $0 \leq i \leq m-1$. Hence, $\overline{\varphi_{2}}(z)=\sum_{p=1}^{m} a_{-p} \bar{z}^{p}=\sum_{p=1}^{m} \bar{\lambda} b_{-p} \bar{z}^{p}=\bar{\lambda} \overline{\psi_{2}}(z)$.

Since $\varphi_{2}(z)=\lambda \psi_{2}(z)$, by (57), we get that

$$
\begin{equation*}
\overline{\psi_{1}(0)} \varphi_{2}+P\left(\overline{\varphi_{1}} W^{*} \psi_{2}\right)=\overline{\varphi_{1}(0)} \psi_{2}+P\left(\overline{\psi_{1}} W^{*} \varphi_{2}\right) \tag{60}
\end{equation*}
$$

Then,

$$
\begin{align*}
& \left\langle\overline{\psi_{1}(0)} \varphi_{2}+P\left(\overline{\varphi_{1}} W^{*} \psi_{2}\right), z^{k m}\right\rangle \\
& \quad=\left\langle W^{*} \psi_{2}, z^{k m} \varphi_{1}\right\rangle=\overline{b_{-m}} \overline{a_{0}} \frac{1}{m+1} \\
& \quad=\left\langle\overline{\varphi_{1}(0)} \psi_{2}+P\left(\overline{\psi_{1}} W^{*} \varphi_{2}\right), z^{k m}\right\rangle \tag{61}\\
& \quad=\left\langle W^{*} \varphi_{2}, z^{k m} \psi_{1}\right\rangle=\overline{a_{-m}} \overline{b_{0}} \frac{1}{m+1}
\end{align*}
$$

and we get that $\overline{b_{-m}} \overline{a_{0}}=\overline{a_{-m}} \overline{b_{0}}$; that is, $a_{0}=\bar{\lambda} b_{0}$. So, by (60), we have that $\overline{\psi_{1}(0)} \varphi_{2}=\overline{\varphi_{1}(0)} \psi_{2}$ and $P\left(\overline{\varphi_{1} W^{*}} \psi_{2}\right)=$
$P\left(\overline{\psi_{1}} W_{k}^{*} \varphi_{2}\right)$; that is, $P\left(\left(\lambda \overline{\psi_{1}}-\overline{\varphi_{1}}\right) W_{k}^{*} \psi_{2}\right)=0$. Hence, for any integers l with $k m-m \leq l \leq k m-1$, we have

$$
\begin{align*}
0 & =\left\langle z^{l}, 0\right\rangle=\left\langle z^{l}, P\left(\left(\lambda \overline{\psi_{1}}-\overline{\varphi_{1}}\right) W_{k}^{*} \psi_{2}\right)\right\rangle \\
& =\left\langle z^{l},\left(\lambda \overline{\psi_{1}}-\overline{\varphi_{1}}\right) W_{k}^{*} \psi_{2}\right\rangle=\left\langle\left(\bar{\lambda} \psi_{1}-\varphi_{1}\right) z^{1}, W_{k}^{*} \psi_{2}\right\rangle, \tag{62}
\end{align*}
$$

that is,

$$
\begin{equation*}
\left\langle\sum_{p=0}^{m}\left(\bar{\lambda} b_{p}-a_{p}\right) z^{p+l}-\sum_{p=m+1}^{n} a_{p} z^{p+l}, \sum_{p=1}^{m} b_{-p} \frac{k p+1}{p+1} z^{k p}\right\rangle=0 . \tag{63}
\end{equation*}
$$

Since $a_{0}=\lambda b_{0}$, we have

$$
\begin{equation*}
\left\langle\sum_{p=1}^{m}\left(\bar{\lambda} b_{p}-a_{p}\right) z^{p+l}-\sum_{p=m+1}^{n} a_{p} z^{p+l}, \sum_{p=1}^{m} b_{-p} \frac{k p+1}{p+1} z^{k p}\right\rangle=0 . \tag{64}
\end{equation*}
$$

When $l=k m-1$, by (64), we get that $\left(\bar{\lambda} b_{1}-a_{1}\right) \overline{b_{-m}}((k m+$ $1) /(m+1))=0$, so $a_{1}=\bar{\lambda} b_{1}$, since $b_{-m} \neq 0$. Then, we have

$$
\begin{equation*}
\left\langle\sum_{p=2}^{m}\left(\bar{\lambda} b_{p}-a_{p}\right) z^{p+l}-\sum_{p=m+1}^{n} a_{p} z^{p+l}, \sum_{p=1}^{m} b_{-p} \frac{k p+1}{p+1} z^{k p}\right\rangle=0 . \tag{65}
\end{equation*}
$$

Suppose that $a_{j}=\bar{\lambda} b_{j}$ for any integers j with $0 \leq j \leq s$, where $0 \leq s \leq m-1$. By (64), we get that

$$
\begin{equation*}
\left\langle\sum_{p=s+1}^{m}\left(\bar{\lambda} b_{p}-a_{p}\right) z^{p+l}-\sum_{p=m+1}^{n} a_{p} z^{p+l}, \sum_{p=1}^{m} b_{-p} \frac{k p+1}{p+1} z^{k p}\right\rangle=0 . \tag{66}
\end{equation*}
$$

Now consider the connection between a_{s+1} and b_{s+1}.
When $l=k m-s-1$, by (66), we get that $\left(\bar{\lambda} b_{s+1}-\right.$ $\left.a_{s+1}\right) \overline{b_{-m}}((k m+1) /(m+1))=0$, so $a_{s+1}=\bar{\lambda} b_{s+1}$, since $b_{-m} \neq 0$.

From the pervious discussion, by the induction, we can obtain that $a_{j}=\bar{\lambda} b_{j}$ for any integers j with $0 \leq j \leq m$. Hence,

$$
\begin{align*}
\varphi_{1}(z) & =\sum_{p=0}^{n} a_{p} z^{p}=\sum_{p=0}^{m} \bar{\lambda} b_{p} z^{p}+\sum_{p=m+1}^{n} a_{p} z^{p} \\
& =\bar{\lambda} \psi_{1}(z)+\sum_{p=m+1}^{n} a_{p} z^{p} . \tag{67}
\end{align*}
$$

Let $\varphi_{3}(z)=\sum_{p=m+1}^{n} a_{p} z^{p}$, then $\varphi=\varphi_{1}+\overline{\varphi_{2}}=\bar{\lambda} \psi_{1}+\varphi_{3}+\bar{\lambda} \overline{\psi_{2}}=$ $\bar{\lambda} \psi+\varphi_{3}$, since $\varphi_{2}=\lambda \psi_{2}$.

Now we want to show that $\varphi_{3} \equiv 0$. Because $B_{\varphi} B_{\psi}=B_{\psi} B_{\varphi}$, yet we get that $B_{\varphi_{3}} B_{\psi}=B_{\psi} B_{\varphi_{3}}$, which means that

$$
\begin{equation*}
T_{\overline{\varphi_{3}}} W_{k}^{*} T_{\bar{\psi}} W_{k}^{*}=T_{\bar{\psi}} W_{k}^{*} T_{\overline{\varphi_{3}}} W_{k}^{*} \tag{68}
\end{equation*}
$$

Since $m \geq 1$, we have $T_{\overline{\varphi_{3}}} W_{k}^{*} T_{\bar{\psi}} W_{k}^{*} 1=0$; that is, $T_{\overline{\varphi_{3}}} W_{k}^{*}\left[\overline{\psi_{2}}+\right.$ $\left.\overline{\psi_{1}(0)}\right]=0$. Then, we get that for any integers l with $0 \leq l \leq$ $k m-m-1,\left\langle T_{\overline{\varphi_{3}}} W_{k}^{*}\left[\overline{\psi_{2}}+\overline{\psi_{1}(0)}\right], z^{l}\right\rangle=0$; that is,

$$
\begin{equation*}
\left\langle\sum_{j=1}^{m} \overline{b_{-j}} \frac{k j+1}{j+1} z^{k j}+\overline{\psi_{1}(0)}, \sum_{i=m+1}^{n} a_{i} z^{i+l}\right\rangle=0 . \tag{69}
\end{equation*}
$$

By (69), we can get that for any integers l with $\max \{0, k m-$ $n\} \leq l \leq k m-m-1, \overline{b_{-m}} \overline{a_{k m-l}}(1 /(m+1))=0$; that is, $a_{k m-l}=0$, since $b_{-m} \neq 0$.

If $n \leq k m$, then $\varphi_{3} \equiv 0$, which means that $\varphi=\bar{\lambda} \psi$, so the required result holds.

If $n \geq k m+1$, then $\varphi_{3}(z)=\sum_{p=k m+1}^{n} a_{p} z^{p}$. So, by (68), we can get that $T_{\overline{\varphi_{3}}} W_{k}^{*} T_{\bar{\psi}} W_{k}^{*}\left(z^{m}\right)=0$, that is, $T_{\overline{\varphi_{3}}} W_{k}^{*}\left[\overline{\psi_{2}} z^{k m}+\right.$ $\left.P\left(\overline{\psi_{1}} z^{k m}\right)\right]=0$. So we get that for any integers l with $\max \left\{0, k^{2} m+k m-n\right\} \leq l \leq k^{2} m-1$,

$$
\begin{equation*}
\left\langle W_{k}^{*}\left[\overline{\psi_{2}} z^{k m}+P\left(\overline{\psi_{1}} z^{k m}\right)\right], \sum_{i=k m+1}^{n} a_{i} z^{i+l}\right\rangle=0 \tag{70}
\end{equation*}
$$

By (70), we can get that for any integers l with $\max \left\{0, k^{2} m+\right.$ $k m-n\} \leq l \leq k^{2} m-1, \overline{b_{-m}} \overline{a_{k^{2} m+k m-l}}\left(1 /\left(k^{2} m+k m+1\right)\right)=0$, that is, $a_{k^{2} m+k m-l}=0$, since $b_{-m} \neq 0$.

If $n \leq k^{2} m+k m$, then $\varphi_{3} \equiv 0$, which means that $\varphi=\bar{\lambda} \psi$, so, the required result holds.

If $n \geq k^{2} m+k m+1$, then $\varphi_{3}(z)=\sum_{p=k^{2} m+k m+1}^{n} a_{p} z^{p}$. Then successively by the pervoius method, we can get that $a_{i}=0$ for all integers i with $m+1 \leq i \leq n$, which means that $\varphi=\bar{\lambda} \psi$. So, the required result holds.

Acknowledgments

The authors thank the referees for several suggestions that improved the paper. This research is supported by NSFC, Items nos. 11271059 and 11226120.

References

[1] G. K. Chui, Introductio to Wavelets, Academic Press, Boston, Mass, USA, 1992.
[2] A. Cohen and I. Daubechies, "A new technique to estimate the regularity of refinable functions," Revista Matemática Iberoamericana, vol. 12, no. 2, pp. 527-591, 1996.
[3] I. Daubechies, "Orthonormal bases of compactly supported wavelets," Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909-996, 1988.
[4] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, "Stationary subdivision," Memoirs of the American Mathematical Society, vol. 93, no. 453, pp. 1-186, 1991.
[5] I. Daubechies and J. C. Lagarias, "Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals," SIAM Journal on Mathematical Analysis, vol. 23, no. 4, pp. 1031-1079, 1992.
[6] T. N. T. Goodman, C. A. Micchelli, and J. D. Ward, "Spectral radius formulas for subdivision operators," in Recent Advances in Wavelet Analysis, vol. 3, pp. 335-360, Academic Press, Boston, Mass, USA, 1994.
[7] L. F. Villemoes, "Wavelet analysis of refinement equations," SIAM Journal on Mathematical Analysis, vol. 25, no. 5, pp. 14331460, 1994.
[8] G. Strang and V. Strela, "Short wavelets and matrix dilation equations," IEEE Transactions on Signal Processing, vol. 43, no. 1, pp. 108-115, 1995.
[9] G. Strang and V. Strela, "Orthogonal multiwavelets with vanishing moments," in Wavelet Applications, vol. 2242 of Proceedings of SPIE, 1994.
[10] C. Heil, G. Strang, and V. Strela, "Approximation by translates of refinable functions," Numerische Mathematik, vol. 73, no. 1, pp. 75-94, 1996.
[11] M. C. Ho, "Properties of slant Toeplitz operators," Indiana University Mathematics Journal, vol. 45, no. 3, pp. 843-862, 1996.
[12] M. C. Ho, "Spectra of slant Toeplitz operators with continuous symbols," The Michigan Mathematical Journal, vol. 44, no. 1, pp. 157-166, 1997.
[13] M. C. Ho, "Adjoints of slant Toeplitz operators," Integral Equations and Operator Theory, vol. 29, no. 3, pp. 301-312, 1997.
[14] M. C. Ho, "Adjoints of slant Toeplitz operators. II," Integral Equations and Operator Theory, vol. 41, no. 2, pp. 179-188, 2001.
[15] S. C. Arora and R. Batra, "On generalized slant Toeplitz operators," Indian Journal of Mathematics, vol. 45, no. 2, pp. 121134, 2003.
[16] S. C. Arora and R. Batra, "Generalized slant Toeplitz operators on H^{2}," Mathematische Nachrichten, vol. 278, no. 4, pp. 347-355, 2005.
[17] Y. F. Lu, C. M. Liu, and J. Yang, "Commutativity of k th order slant Toeplitz operators," Mathematische Nachrichten, vol. 283, no. 9, pp. 1304-1313, 2010.
[18] H. B. An and R. Y. Jian, "Slant Toeplitz operators on Bergman spaces," Acta Mathematica Sinica, vol. 47, no. 1, pp. 103-110, 2004.
[19] J. Yang, A.-P. Leng, and Y.-F. Lu, " k-order slant Toeplitz operators on the Bergman space," Northeastern Mathematical Journal, vol. 23, no. 5, pp. 403-412, 2007.

