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The object of the present paper is to study (LCS)
𝑛
-manifolds with vanishing quasi-conformal curvature tensor. (LCS)

𝑛
-manifolds

satisfying Ricci-symmetric condition are also characterized.

1. Introduction

Recently, in [1], Shaikh introduced and studied Lorentzian
concircular structure manifolds (briefly (LCS)-manifold)
which generalizes the notion of LP-Sasakian manifolds,
introduced by Matsumoto [2].

Generalizing the notion of LP-Sasakian manifold in 2003
[1], Shaikh introduced the notion of (LCS)

𝑛
-manifolds along

with their existence and applications to the general theory
of relativity and cosmology. Also, Shaikh and his coauthors
studied various types of (LCS)

𝑛
-manifolds by imposing the

curvature restrictions (see [3–6]). In [7, 8], the authors also
studied (LCS)

2𝑛+1
-manifolds.

The submanifold of an (LCS)
𝑛
-manifold is studied by

Atceken and Hui [9, 10] and Shukla et al. [11]. In [12], Yano
and Sawaki introduced the quasi-conformal curvature tensor,
and later it was studied by many authors with curvature
restrictions on various structures [13].

After then, the same author studied weakly symmetric
(LCS)

𝑛
-manifolds by several examples and obtain various

results in suchmanifolds. In [7], authors shown that a pseudo
projectively flat and pseudo projectively recurrent (LCS)

𝑛

manifolds are 𝜂-Einstein manifold.
On the other hand, in [5], authors proved the existence

of 𝜙-recurrent (LCS)
3
manifold which is neither locally

symmetric nor locally 𝜙-symmetric by nontrivial examples.
Furthermore, they also give the necessary and sufficient
conditions for a (LCS)

𝑛
-manifold to be locally 𝜙-recurrent.

In this study, we have investigated the quasi-conformal
flat (LCS)

𝑛
-manifolds satisfying properties such as Ricci-

symmetric, locally symmetric, and 𝜂-Einstein. Finally, we
give an example for 𝜂-Einstein manifolds.

2. Preliminaries

An 𝑛-dimensional Lorentzian manifold𝑀 is a smooth con-
nected paracompact Hausdorff manifold with a Lorentzian
metric tensor 𝑔, that is,𝑀 admits a smooth symmetric tensor
field 𝑔 of the type (2, 0) such that, for each 𝑝 ∈ 𝑀,

𝑔
𝑝
: 𝑇
𝑀
(𝑝) × 𝑇

𝑀
(𝑝) → R (1)

is a nondegenerate inner product of signature (−, +, +, . . . , +).
In such amanifold, a nonzero vector𝑋

𝑝
∈ 𝑇
𝑀
(𝑝) is said to be

timelike (resp., nonspacelike, null, and spacelike) if it satisfies
the condition 𝑔

𝑝
(𝑋
𝑝
, 𝑋
𝑝
) < 0 (resp., ≤0, =0, >0). These cases

are called casual character of the vectors.

Definition 1. In a Lorentzianmanifold (𝑀, 𝑔), a vector field 𝑃
defined by

𝑔 (𝑋, 𝑃) = 𝐴 (𝑋) (2)
for any𝑋 ∈ Γ(𝑇𝑀) is said to be a concircular vector field if

(∇
𝑋
𝐴)𝑌 = 𝛼 {𝑔 (𝑋, 𝑌) + 𝑤 (𝑋)𝐴 (𝑌)} (3)

for 𝑌 ∈ Γ(𝑇𝑀), where 𝛼 is a nonzero scalar function, 𝐴 is a
1-form,𝑤 is also closed 1-form, and ∇ denotes the Levi-Civita
connection on𝑀 [7].
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Let𝑀 be a Lorentzianmanifold admitting a unit timelike
concircular vector field 𝜉, called the characteristic vector field
of the manifold. Then we have

𝑔 (𝜉, 𝜉) = −1. (4)

Since 𝜉 is a unit concircular unit vector field, there exists a
nonzero 1-form 𝜂 such that

𝑔 (𝑋, 𝜉) = 𝜂 (𝑋) . (5)

The equation of the following form holds:

(∇
𝑋
𝜂) 𝑌 = 𝛼 {𝑔 (𝑋, 𝑌) + 𝜂 (𝑋) 𝜂 (𝑌)} , 𝛼 ̸= 0 (6)

for all 𝑋,𝑌 ∈ Γ(𝑇𝑀), where 𝛼 is a nonzero scalar function
satisfying

∇
𝑋
𝛼 = 𝑋 (𝛼) = 𝑑𝛼 (𝑋) = 𝜌𝜂 (𝑋) , (7)

𝜌 being a certain scalar function given by 𝜌 = −𝜉(𝛼).
Let us put

∇
𝑋
𝜉 = 𝛼𝜙𝑋, (8)

then from (6) and (8), we can derive

𝜙𝑋 = 𝑋 + 𝜂 (𝑋) 𝜉, (9)

which tell us that 𝜙 is a symmetric (1, 1)-tensor. Thus the
Lorentzian manifold 𝑀 together with the unit timelike
concircular vector field 𝜉, its associated 1-form 𝜂, and (1, 1)-
type tensor field 𝜙 is said to be a Lorentzian concircular
structure manifold.

A differentiable manifold 𝑀 of dimension 𝑛 is called
(LCS)-manifold if it admits a (1, 1)-type tensor field 𝜙, a
covariant vector field 𝜂, and a Lorentzian metric 𝑔 which
satisfy

𝜂 (𝜉) = 𝑔 (𝜉, 𝜉) = −1, (10)

𝜙
2

𝑋 = 𝑋 + 𝜂 (𝑋) 𝜉, (11)

𝑔 (𝑋, 𝜉) = 𝜂 (𝑋) , (12)

𝜙𝜉 = 0, 𝜂 ∘ 𝜙 = 0 (13)

for all𝑋 ∈ Γ(𝑇𝑀). Particularly, if we take 𝛼 = 1, then we can
obtain the 𝐿𝑃-Sasakian structure of Matsumoto [2].

Also, in an (LCS)
𝑛
-manifold 𝑀, the following relations

are satisfied (see [3–6]):

𝜂 (𝑅 (𝑋, 𝑌)𝑍) = (𝛼
2

− 𝜌) [𝑔 (𝑌, 𝑍) 𝜂 (𝑋) − 𝑔 (𝑋, 𝑍) 𝜂 (𝑌)] ,

(14)

𝑅 (𝜉, 𝑋) 𝑌 = (𝛼
2

− 𝜌) [𝑔 (𝑋, 𝑌) 𝜉 − 𝜂 (𝑌)𝑋] , (15)

𝑅 (𝑋, 𝑌) 𝜉 = (𝛼
2

− 𝜌) [𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌] , (16)

(∇
𝑋
𝜙)𝑌 = 𝛼 [𝑔 (𝑋, 𝑌) 𝜉 + 2𝜂 (𝑋) 𝜂 (𝑌) 𝜉 + 𝜂 (𝑌)𝑋] , (17)

𝑆 (𝑋, 𝜉) = (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑋) , (18)

𝑆 (𝜙𝑋, 𝜙𝑌) = 𝑆 (𝑋, 𝑌) + (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑋) 𝜂 (𝑌) (19)

for all vector fields 𝑋,𝑌, 𝑍 on𝑀, where 𝑅 and 𝑆 denote the
Riemannian curvature tensor and Ricci curvature, respec-
tively, 𝑄 is also the Ricci operator given by 𝑆(𝑋, 𝑌) =

𝑔(𝑄𝑋, 𝑌).
Now let (𝑀, 𝑔) be an 𝑛-dimensional Riemannian man-

ifold; then the concircular curvature tensor �̃�, the Weyl
conformal curvature tensor 𝐶, and the pseudo projective
curvature tensor �̃� are, respectively, defined by

�̃� (𝑋, 𝑌)𝑍 = 𝑅 (𝑋, 𝑌)𝑍

−

𝜏

𝑛 (𝑛 − 1)

[𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌] ,

(20)

𝐶 (𝑋, 𝑌)𝑍 = 𝑅 (𝑋, 𝑌)𝑍 −

1

𝑛 − 2

× [𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌

+𝑔 (𝑌, 𝑍)𝑄𝑋 − 𝑔 (𝑋, 𝑍)𝑄𝑌]

+

𝜏

(𝑛 − 1) (𝑛 − 2)

[𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌] ,

(21)

�̃� (𝑋, 𝑌)𝑍 = 𝑎𝑅 (𝑋, 𝑌)𝑍

+ 𝑏 [𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌]

−

𝜏

𝑛

[

𝑎

𝑛 − 1

+ 𝑏] [𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋,𝑍) 𝑌] ,

(22)

where 𝑎 and 𝑏 are constants such that 𝑎, 𝑏 ̸= 0, and 𝜏 is also
the scalar curvature of𝑀 [7].

For an 𝑛-dimensional (LCS)
𝑛
-manifold the quasi-

conformal curvature tensor ̃C is given by

̃C (𝑋, 𝑌)𝑍 = 𝑎𝑅 (𝑋, 𝑌)𝑍

+ 𝑏 [𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌

+𝑔 (𝑌, 𝑍)𝑄𝑋 − 𝑔 (𝑋,𝑍)𝑄𝑌]

−

𝜏

𝑛

[

𝑎

𝑛 − 1

+ 2𝑏] [𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌]

(23)

for all𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀) [14].
The notion of quasi-conformal curvature tensor was

defined by Yano and Swaki [12]. If 𝑎 = 1 and 𝑏 = −1/(𝑛 − 1),
then quasi-conformal curvature tensor reduces to conformal
curvature tensor.

3. Quasi-Conformally Flat (LCS)
𝑛
-Manifolds

and Some of Their Properties

For an 𝑛-dimensional quasi-conformally flat (LCS)
𝑛
-mani-

fold, we know for 𝑍 = 𝜉 from (23),
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𝑎𝑅 (𝑋, 𝑌) 𝜉 + 𝑏 [𝑆 (𝑌, 𝜉)𝑋 − 𝑆 (𝑋, 𝜉) 𝑌

+𝑔 (𝑌, 𝜉) 𝑄𝑋 − 𝑔 (𝑋, 𝜉) 𝑄𝑌]

−

𝜏

𝑛

[

𝑎

𝑛 − 1

+ 2𝑏] [𝑔 (𝑌, 𝜉)𝑋 − 𝑔 (𝑋, 𝜉) 𝑌] = 0.

(24)

Here, taking into account of (16), we have

[𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌] [𝑎 (𝛼
2

− 𝜌) + 𝑏 (𝑛 − 1) (𝛼
2

− 𝜌)

−

𝜏

𝑛

(

𝑎

𝑛 − 1

+ 2𝑏)]

+ 𝑏 [𝜂 (𝑌]𝑄𝑋 − 𝜂 (𝑋)𝑄𝑌] = 0.

(25)

Let 𝑌 = 𝜉 be in (25); then also by using (18) we obtain

[−𝑋 − 𝜂 (𝑋) 𝜉] [𝑎 (𝛼
2

− 𝜌) −

𝜏

𝑛

(

𝑎

𝑛 − 1

+ 2𝑏)

+ 𝑏 (𝑛 − 1) (𝛼
2

− 𝜌) ]

+ 𝑏 [−𝑄𝑋 − 𝜂 (𝑋) (𝑛 − 1) (𝛼
2

− 𝜌) 𝜉] = 0.

(26)

Taking the inner product on both sides of the last equation by
𝑌, we obtain

[𝑔 (𝑋, 𝑌) + 𝜂 (𝑋) 𝜂 (𝑌)] [𝑎 (𝛼
2

− 𝜌) + 𝑏 (𝑛 − 1)

× (𝛼
2

− 𝜌) −

𝜏

𝑛

(

𝑎

𝑛 − 1

+ 2𝑏)]

+ 𝑏 [𝑆 (𝑋, 𝑌) + 𝜂 (𝑋) 𝜂 (𝑌) (𝛼
2

− 𝜌) (𝑛 − 1)] = 0,

(27)

that is,

𝑆 (𝑋, 𝑌) = 𝑔 (𝑋, 𝑌)

× [

𝜏

𝑛𝑏

(

𝑎

𝑛 − 1

+ 2𝑏) − (𝛼
2

− 𝜌) (

𝑎

𝑏

+ (𝑛 − 1))]

+ 𝜂 (𝑋) 𝜂 (𝑌) [

𝜏

𝑛𝑏

(

𝑎

𝑛 − 1

+ 2𝑏)

− (𝛼
2

− 𝜌) (

𝑎

𝑏

+ 2 (𝑛 − 1))] .

(28)

Now we are in a proposition to state the following.

Theorem 2. If an 𝑛-dimensional (LCS)
𝑛
-manifold𝑀 is quasi-

conformally flat, then𝑀 is an 𝜂-Einstein manifold.

Now, let {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛−1
, 𝜉} be an orthonormal basis of the

tangent space at any point of the manifold. Then putting𝑋 =

𝑌 = 𝑒
𝑖
, 𝜉 in (28), and taking summation for 1 ≤ 𝑖 ≤ 𝑛 − 1, we

have

𝜏 = 𝑛 (𝑛 − 1) (𝛼
2

− 𝜌) if 𝑎 + (𝑛 − 2) 𝑏 ̸= 0. (29)

In view of (28) and (29), we obtain

𝑆 (𝑋, 𝑌) = (𝑛 − 1) (𝛼
2

− 𝜌) 𝑔 (𝑋, 𝑌) , (30)

which is equivalent to

𝑄𝑋 = (𝑛 − 1) (𝛼
2

− 𝜌)𝑋 (31)

for any𝑋 ∈ Γ(𝑇𝑀).
By using (29) and (31) in (23) for a quasi-conformally flat

(LCS)
𝑛
-manifold𝑀, we get

𝑅 (𝑋, 𝑌)𝑍 = (𝛼
2

− 𝜌) {𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌} , (32)

for all 𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝑀). If we consider Schur’s Theorem, we
can give the following the theorem.

Theorem3. Aquasi-conformally flat (LCS)
𝑛
-manifoldM (𝑛 >

1) is a manifold of constant curvature (𝛼2 − 𝜌) provided that
𝑎 + 𝑏(𝑛 − 2) ̸= 0.

Now let us consider an (LCS)
𝑛
-manifold 𝑀 which is

conformally flat. Thus we have from (21) that

𝑅 (𝑋, 𝑌)𝑍 =

1

𝑛 − 2

{𝑆 (𝑌, 𝑍)𝑋 − 𝑆 (𝑋, 𝑍) 𝑌

+𝑔 (𝑌, 𝑍)𝑄𝑋 − 𝑔 (𝑋, 𝑍)𝑄𝑌}

−

𝜏

(𝑛 − 1) (𝑛 − 2)

{𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋,𝑍) 𝑌} ,

(33)

for all vector fields𝑋,𝑌, 𝑍 tangent to𝑀. Setting𝑍 = 𝜉 in (33)
and using (16), (18) we have

[

𝜏

𝑛 − 1

− (𝛼
2

− 𝜌)] [𝜂 (𝑌)𝑋 − 𝜂 (𝑋)𝑌]

= [𝜂 (𝑌)𝑄𝑋 − 𝜂 (𝑋)𝑄𝑌] .

(34)

If we put 𝑌 = 𝜉 in (34) and also using (18), we obtain

𝑄𝑋 = [

𝜏

𝑛 − 1

− (𝛼
2

− 𝜌)]𝑋 + [

𝜏

𝑛 − 1

− 𝑛 (𝛼
2

− 𝜌)] 𝜂 (𝑋) 𝜉.

(35)

Corollary 4. A conformally flat (LCS)
𝑛
-manifold is an 𝜂-

Einstein manifold.

Generalizing the notion of a manifold of constant curva-
ture, Chen and Yano [15] introduced the notion of a manifold
of quasi-constant curvature which can be defined as follows:

Definition 5. ARiemannianmanifold is said to be a manifold
of quasi-constant curvature if it is conformally flat and its
curvature tensor �̃� of type (0, 4) is of the form

�̃� (𝑋, 𝑌, 𝑍,𝑊)

= 𝑎 {𝑔 (𝑌, 𝑍) 𝑔 (𝑋,𝑊) − 𝑔 (𝑋, 𝑍) 𝑔 (𝑌,𝑊)}

+ 𝑏 {𝑔 (𝑌, 𝑍)𝐴 (𝑋)𝐴 (𝑊) − 𝑔 (𝑋, 𝑍)𝐴 (𝑌)𝐴 (𝑊)

+𝑔 (𝑋,𝑊)𝐴 (𝑌)𝐴 (𝑍) − 𝑔 (𝑌,𝑊)𝐴 (𝑋)𝐴 (𝑍)} ,

(36)
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for all 𝑋,𝑌, 𝑍,𝑊 ∈ Γ(𝑇𝑀), where 𝑎, 𝑏 are scalars of which
𝑏 ̸= 0 and 𝐴 is a nonzero 1-form (for more details, we refer to
[13, 16]).

Thus we have the following theorem for (LCS)
𝑛
-conform-

ally flat manifolds.

Theorem 6. A conformally flat (LCS)
𝑛
-manifold is a manifold

of quasi-constant curvature.

Proof. From (33) and (35), we obtain

�̃� (𝑋, 𝑌, 𝑍,𝑊)

= (

𝜏 − 2 (𝑛 − 1) (𝛼
2

− 𝜌)

(𝑛 − 1) (𝑛 − 2)

)

× {𝑔 (𝑋,𝑊) 𝑔 (𝑌, 𝑍) − 𝑔 (𝑌,𝑊) 𝑔 (𝑋, 𝑍)}

+ (

𝜏 − 𝑛 (𝑛 − 1) (𝛼
2

− 𝜌)

(𝑛 − 1) (𝑛 − 2)

)

× {𝑔 (𝑋,𝑊) 𝜂 (𝑌) 𝜂 (𝑍) − 𝑔 (𝑌,𝑊) 𝜂 (𝑋) 𝜂 (𝑍)

+𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜂 (𝑊) − 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜂 (𝑊)} .

(37)

This implies (36) for

𝑎 =

𝜏 − 2 (𝑛 − 1) (𝛼
2

− 𝜌)

(𝑛 − 1) (𝑛 − 2)

,

𝑏 =

𝜏 − 𝑛 (𝑛 − 1) (𝛼
2

− 𝜌)

(𝑛 − 1) (𝑛 − 2)

, 𝐴 = 𝜂.

(38)

This proves our assertion.

Next, differentiating the (19) covariantly with respect to
𝑊, we get

∇
𝑊
𝑆 (𝜙𝑋, 𝜙𝑌) = ∇

𝑊
𝑆 (𝑋, 𝑌) + (𝑛 − 1)𝑊(𝛼

2

− 𝜌)

+ (𝑛 − 1) (𝛼
2

− 𝜌)𝑊 [𝜂 (𝑋) 𝜂 (𝑌)] ,

(39)

for any𝑋,𝑌 ∈ Γ(𝑇𝑀). Making use of the definition of∇𝑆 and
(8), we have

(∇
𝑊
𝑆) (𝜙𝑋, 𝜙𝑌) + 𝑆 (∇

𝑊
𝜙𝑋, 𝜙𝑌) + 𝑆 (𝜙𝑋, ∇

𝑊
𝜙𝑌)

= (∇
𝑊
𝑆) (𝑋, 𝑌) + 𝑆 (∇

𝑊
𝑋,𝑌) + 𝑆 (𝑋, ∇

𝑊
𝑌)

+ (𝑛 − 1)𝑊(𝛼
2

− 𝜌) 𝜂 (𝑋) 𝜂 (𝑌)

+ (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑌) {𝜂 (∇
𝑊
𝑋) + 𝛼𝑔 (𝑋, 𝜙𝑊)}

+ (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑋) {𝜂 (∇
𝑊
𝑌) + 𝛼𝑔 (𝑌, 𝜙𝑊)} .

(40)

Thus we have

(∇
𝑊
𝑆) (𝜙𝑋, 𝜙𝑌) − (∇

𝑊
𝑆) (𝑋, 𝑌)

= −𝑆 ((∇
𝑊
𝜙)𝑋 + 𝜙∇

𝑊
𝑋, 𝜙𝑌)

− 𝑆 (𝜙𝑋, (∇
𝑊
𝜙)𝑌 + 𝜙∇

𝑊
𝑌) + 𝑆 (∇

𝑊
𝑋,𝑌)

+ 𝑆 (𝑋, ∇
𝑊
𝑌) + (𝑛 − 1)𝑊(𝛼

2

− 𝜌) 𝜂 (𝑋) 𝜂 (𝑌)

+ (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑌) {𝜂 (∇
𝑊
𝑋) + 𝛼𝑔 (𝑋, 𝜙𝑊)}

+ (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑋) {𝜂 (∇
𝑊
𝑌) + 𝛼𝑔 (𝑌, 𝜙𝑊)} .

(41)

Here taking account of (17), we arrive at

(∇
𝑊
𝑆) (𝜙𝑋, 𝜙𝑌) − (∇

𝑊
𝑆) (𝑋, 𝑌)

= −𝑆 (𝛼 {𝑔 (𝑋,𝑊) 𝜉 + 2𝜂 (𝑋) 𝜂 (W) 𝜉 + 𝜂 (𝑋)𝑊} , 𝜙𝑌)

− 𝑆 (𝜙𝑋, 𝛼 {𝑔 (𝑌,𝑊) 𝜉 + 2𝜂 (𝑌) 𝜂 (𝑊) 𝜉 + 𝜂 (𝑌)𝑊})

− 𝑆 (𝜙𝑋, 𝜙∇
𝑊
𝑌) + 𝑆 (∇

𝑊
𝑋,𝑌)

+ 𝑆 (𝑋, ∇
𝑊
𝑌) + (𝑛 − 1)𝑊(𝛼

2

− 𝜌) 𝜂 (𝑋) 𝜂 (𝑌)

− 𝑆 (𝜙∇
𝑊
𝑋, 𝜙𝑌) + (𝑛 − 1) (𝛼

2

− 𝜌) 𝜂 (𝑌)

× {𝜂 (∇
𝑊
𝑋) + 𝛼𝑔 (𝑋, 𝜙𝑊)} + (𝑛 − 1) (𝛼

2

− 𝜌) 𝜂 (𝑋)

× {𝜂 (∇
𝑊
𝑌) + 𝛼𝑔 (𝑌, 𝜙𝑊)}

= −𝛼 {𝑔 (𝑋,𝑊) 𝑆 (𝜉, 𝜙𝑌) + 2𝜂 (𝑋) 𝜂 (𝑊) 𝑆 (𝜉, 𝜙𝑌)

+𝜂 (𝑋) 𝑆 (𝑊, 𝜙𝑌)}

− 𝛼 {𝑔 (𝑌,𝑊) 𝑆 (𝜙𝑋, 𝜉) + 2𝜂 (𝑌) 𝜂 (𝑊) 𝑆 (𝜙𝑋, 𝜉)

+𝜂 (𝑌) 𝑆 (𝜙𝑋,𝑊)}

− 𝑆 (𝜙𝑋, 𝜙∇
𝑊
𝑌) + 𝑆 (∇

𝑊
𝑋,𝑌) + 𝑆 (𝑋, ∇

𝑊
𝑌)

− 𝑆 (𝜙∇
𝑊
𝑋, 𝜙𝑌) + (𝑛 − 1)𝑊(𝛼

2

− 𝜌) 𝜂 (𝑋) 𝜂 (𝑌)

+ (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑌) {𝜂 (∇
𝑊
𝑋) + 𝛼𝑔 (𝑋, 𝜙𝑊)}

+ (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑋) {𝜂 (∇
𝑊
𝑌) + 𝛼𝑔 (𝑌, 𝜙𝑊)} .

(42)

Again, by using (13), (18), and (19), we reach

(∇
𝑊
𝑆) (𝜙𝑋, 𝜙𝑌) − (∇

𝑊
𝑆) (𝑋, 𝑌)

= −𝛼𝜂 (𝑋) 𝑆 (𝑊, 𝜙𝑌) − 𝛼𝜂 (𝑌) 𝑆 (𝜙𝑋,𝑊)

− (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑋) 𝜂 (∇
𝑊
𝑋)

− (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (𝑌) 𝜂 (∇
𝑊
𝑋)
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+ (𝑛 − 1)𝑊(𝛼
2

− 𝜌) 𝜂 (𝑋) 𝜂 (𝑌)

+ (𝑛 − 1) (𝛼
2

− 𝜌)

× {𝜂 (∇
𝑊
𝑋) 𝜂 (𝑌) + 𝛼𝜂 (𝑌) 𝑔 (𝑋, 𝜙𝑊)

+𝜂 (∇
𝑊
𝑌) 𝜂 (𝑋) + 𝛼𝜂 (𝑋) 𝑔 (𝑌, 𝜙𝑊)}

= −𝛼𝜂 (𝑋) 𝑆 (𝑊, 𝜙𝑌) − 𝛼𝜂 (𝑌) 𝑆 (𝜙𝑋,𝑊)

+ 𝛼 (𝑛 − 1) (𝛼
2

− 𝜌)

× {𝜂 (𝑌) 𝑔 (𝑋, 𝜙𝑊) + 𝜂 (𝑋) 𝑔 (𝑌, 𝜙𝑊)}

+ (𝑛 − 1)𝑊(𝛼
2

− 𝜌) 𝜂 (𝑋) 𝜂 (𝑌) .

(43)

Thus we have the following theorem.

Theorem7. If an (LCS)
𝑛
-manifold𝑀 is Ricci-symmetric; then

𝛼
2

− 𝜌 is constant.

Proof. If 𝑛 > 1-dimensional (LCS)
𝑛
-manifold 𝑀 is Ricci-

symmetric, then from (43) we conclude that

𝛼 (𝑛 − 1) (𝛼
2

− 𝜌) {𝜂 (𝑌) 𝑔 (𝑋, 𝜙𝑊) + 𝜂 (𝑋) 𝑔 (𝑌, 𝜙𝑊)}

+ (𝑛 − 1)𝑊(𝛼
2

− 𝜌) 𝜂 (𝑋) 𝜂 (𝑌)

− 𝛼𝜂 (𝑋) 𝑆 (𝑊, 𝜙𝑌) − 𝛼𝜂 (𝑌) 𝑆 (𝜙𝑋,𝑊) = 0.

(44)

It follows that

𝛼 (𝑛 − 1) (𝛼
2

− 𝜌) {𝑔 (𝑋, 𝜙𝑊) 𝜉 − 𝜂 (𝑋) 𝜙𝑊}

+ (𝑛 − 1)𝑊(𝛼
2

− 𝜌) 𝜂 (𝑋) 𝜉

− 𝛼𝜂 (𝑋) 𝜙𝑄𝑊 − 𝛼𝑆 (𝜙𝑋,𝑊) 𝜉 = 0,

(45)

from which

− 𝛼 (𝑛 − 1) (𝛼
2

− 𝜌) 𝑔 (𝑋, 𝜙𝑊)

− (𝑛 − 1)𝑊(𝛼
2

− 𝜌) 𝜂 (𝑋) + 𝑆 (𝜙𝑋,𝑊) = 0,

(46)

which is equivalent to

− 𝛼 (𝑛 − 1) (𝛼
2

− 𝜌) 𝜙𝑊 − (𝑛 − 1)𝑊(𝛼
2

− 𝜌) 𝜉

+ 𝛼𝜙𝑄𝑊 = 0,

(47)

that is,

𝑊(𝛼
2

− 𝜌) = 0, (48)

which proves our assertion.

Since ∇𝑅 = 0 implies that ∇𝑆 = 0, we can give the follow-
ing corollary.

Corollary 8. If an 𝑛-dimensional (𝐿𝐶𝑆)
𝑛
-manifold 𝑀 is

locally symmetric, then 𝛼2 − 𝜌 is constant.

Now, taking the covariant derivation of the both sides of
(18) with respect to 𝑌, we have

𝑌𝑆 (𝑋, 𝜉) = (𝑛 − 1)𝑊 [(𝛼
2

− 𝜌) 𝜂 (𝑋)] . (49)

From the definition of the covariant derivation of Ricci-
tensor, we have

(∇
𝑌
𝑆) (𝑋, 𝜉) = ∇

𝑌
𝑆 (𝑋, 𝜉) − 𝑆 (∇

𝑌
𝑋, 𝜉) − 𝑆 (𝑋, ∇

𝑌
𝜉)

= (𝑛 − 1) {𝑌 (𝛼
2

− 𝜌) 𝜂 (𝑋) + (𝛼
2

− 𝜌)

× [𝜂 (∇
𝑌
𝑋) + 𝛼𝑔 (𝑋, 𝜙𝑌)] }

− (𝑛 − 1) (𝛼
2

− 𝜌) 𝜂 (∇
𝑌
𝑋) − 𝛼𝑆 (𝑋, 𝜙𝑌)

= (𝑛 − 1) 𝑌 (𝛼
2

− 𝜌) 𝜂 (𝑋)

+ 𝛼 (𝑛 − 1) (𝛼
2

− 𝜌) 𝑔 (𝑋, 𝜙𝑌) − 𝛼𝑆 (𝑋, 𝜙𝑌) .

(50)

If an (𝐿𝐶𝑆)
𝑛
-manifold 𝑀 Ricci symmetric, then Theorem 7

and (43) imply that

𝑆 (𝑋, 𝜙𝑌) = (𝑛 − 1) (𝛼
2

− 𝜌) 𝑔 (𝜙𝑌,𝑋) . (51)

This leads us to state the following.

Theorem9. If an (LCS)
𝑛
-manifold𝑀 is Ricci symmetric, then

it is an Einstein manifold.

Corollary 10. If an (LCS)
𝑛
-manifold𝑀 is locally symmetric,

then it is an Einstein manifold.

In this section, an example is used to demonstrate that the
method presented in this paper is effective. But this example
is a special case of Example 6.1 of [6].

Example 11. Now, we consider the 3-dimensional manifold

𝑀 = {(𝑥, 𝑦, 𝑧) ∈ R
3

, 𝑧 ̸= 0} , (52)

where (𝑥, 𝑦, 𝑧) denote the standard coordinates in R3. The
vector fields

𝑒
1
= 𝑒
𝑧

(𝑥

𝜕

𝜕𝑥

+ 𝑦

𝜕

𝜕𝑦

) , 𝑒
2
= 𝑒
𝑧
𝜕

𝜕𝑦

,

𝑒
3
=

𝜕

𝜕𝑧

(53)

are linearly independent of each point of 𝑀. Let 𝑔 be the
Lorentzian metric tensor defined by

𝑔 (𝑒
1
, 𝑒
1
) = 𝑔 (𝑒

2
, 𝑒
2
) = −𝑔 (𝑒

3
, 𝑒
3
) = 1,

𝑔 (𝑒
𝑖
, 𝑒
𝑗
) = 0, 𝑖 ̸= 𝑗,

(54)
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for 𝑖, 𝑗 = 1, 2, 3. Let 𝜂 be the 1-formdefined by 𝜂(𝑍) = 𝑔(𝑍, 𝑒
3
)

for any 𝑍 ∈ Γ(𝑇𝑀). Let 𝜙 be the (1,1)-tensor field defined by

𝜙𝑒
1
= 𝑒
1
, 𝜙𝑒

2
= 𝑒
2
, 𝜙𝑒

3
= 0. (55)

Then using the linearity of 𝜙 and 𝑔, we have 𝜂(𝑒
3
) = −1,

𝜙
2

𝑍 = 𝑍 + 𝜂 (𝑍) 𝑒
3
,

𝑔 (𝜙𝑍, 𝜙𝑊) = 𝑔 (𝑍,𝑊) + 𝜂 (𝑍) 𝜂 (𝑊) ,

(56)

for all 𝑍,𝑊 ∈ Γ(𝑇𝑀). Thus for 𝜉 = 𝑒
3
, (𝜙, 𝜉, 𝜂, 𝑔) defines a

Lorentzian paracontact structure on𝑀.
Now, let ∇ be the Levi-Civita connection with respect

to the Lorentzian metric 𝑔, and let 𝑅 be the Riemannian
curvature tensor of 𝑔. Then we have

[𝑒
1
, 𝑒
2
] = −𝑒

𝑧

𝑒
2
, [𝑒

1
, 𝑒
3
] = −𝑒

1
, [𝑒

2
, 𝑒
3
] = −𝑒

2
.

(57)

Making use of the Koszul formulae for the Lorentzian metric
tensor 𝑔, we can easily calculate the covariant derivations as
follows:

∇
𝑒
1

𝑒
1
= −𝑒
3
, ∇

𝑒
2

𝑒
1
= 𝑒
𝑧

𝑒
2
, ∇

𝑒
1

𝑒
3
= −𝑒
1
,

∇
𝑒
2

𝑒
3
= −𝑒
2
, ∇

𝑒
2

𝑒
2
= −𝑒
𝑧

𝑒
1
− 𝑒
3
,

∇
𝑒
1

𝑒
2
= ∇
𝑒
3

𝑒
1
= ∇
𝑒
3

𝑒
2
= ∇
𝑒
3

𝑒
3
= 0.

(58)

From the previously mentioned, it can be easily seen that
(𝜙, 𝜉, 𝜂, 𝑔) is an (LCS)

3
-structure on 𝑀, that is, 𝑀 is an

(LCS)
3
-manifold with 𝛼 = −1 and 𝜌 = 0. Using the

previous relations, we can easily calculate the components of
the Riemannian curvature tensor as follows:

𝑅 (𝑒
1
, 𝑒
2
) 𝑒
1
= (𝑒
2𝑧

− 1) 𝑒
2
, 𝑅 (𝑒

1
, 𝑒
2
) 𝑒
2
= (1 − 𝑒

2𝑧

) 𝑒
1
,

𝑅 (𝑒
1
, 𝑒
3
) 𝑒
1
= −𝑒
3
, 𝑅 (𝑒

1
, 𝑒
3
) 𝑒
3
= −𝑒
1
,

𝑅 (𝑒
2
, 𝑒
3
) 𝑒
2
= −𝑒
3
, 𝑅 (𝑒

2
, 𝑒
3
) 𝑒
3
= −𝑒
2
,

𝑅 (𝑒
1
, 𝑒
2
) 𝑒
3
= 𝑅 (𝑒

1
, 𝑒
3
) 𝑒
2
= 𝑅 (𝑒

2
, 𝑒
3
) 𝑒
1
= 0.

(59)

By using the properties of𝑅 and definition of the Ricci tensor,
we obtain

𝑆 (𝑒
1
, 𝑒
1
) = 𝑆 (𝑒

2
, 𝑒
2
) = −𝑒

2𝑧

, 𝑆 (𝑒
3
, 𝑒
3
) = −2,

𝑆 (𝑒
1
, 𝑒
2
) = 𝑆 (𝑒

1
, 𝑒
3
) = 𝑆 (𝑒

2
, 𝑒
3
) = 0.

(60)

Thus the scalar curvature 𝜏 of𝑀 is given by

𝜏 =

3

∑

𝑖=1

𝑔 (𝑒
𝑖
, 𝑒
𝑖
) 𝑆 (𝑒
𝑖
, 𝑒
𝑖
) = 2 (1 − 𝑒

2𝑧

) . (61)

On the other hand, for any 𝑍,𝑊 ∈ Γ(𝑇𝑀), 𝑍 and𝑊 can be
written as 𝑍 = ∑3

𝑖=1
𝑓
𝑖
𝑒
𝑖
and𝑊 = ∑

3

𝑗=1
𝑔
𝑗
𝑒
𝑗
, where 𝑓

𝑖
and 𝑔

𝑖

are smooth functions on𝑀. By direct calculations, we have

𝑆 (𝑍,𝑊) = − 𝑒
2𝑧

(𝑓
1
𝑔
1
+ 𝑓
2
𝑔
2
) − 2𝑓

3
𝑔
3

= −𝑒
2𝑧

(𝑓
1
𝑔
1
+ 𝑓
2
𝑔
2
− 𝑓
3
𝑔
3
) − 𝑓
3
𝑔
3
(𝑒
2𝑧

+ 2) .

(62)

Since 𝜂(𝑍) = −𝑓
3
and 𝜂(𝑊) = −𝑔

3
and 𝑔(𝑍,𝑊) = 𝑓

1
𝑔
1
+

𝑓
2
𝑔
2
− 𝑓
3
𝑔
3
, we have

𝑆 (𝑍,𝑊) = −𝑒
2𝑧

𝑔 (𝑍,𝑊) − (𝑒
2𝑧

+ 2) 𝜂 (𝑍) 𝜂 (𝑊) . (63)

This tell us that𝑀 is an 𝜂-Einstein manifold.
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