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We study almost everywhere convergence for Riesz means related to Schrödinger operator with constant magnetic fields. Through
researching theweighted norm estimates for themaximal operatorwith power-weight functions, we obtain the desired result, which
is similar to the work given by Anthony Carbery, Jose L. Rubio de Francia, and Luis Vega.

1. Introduction

The magnetic Schrödinger operator (MSO) with constant
magnetic fields𝐻𝑏 in R𝑛 is of the form

𝐻𝑏 = −(∇ +
𝑖𝐵𝑧

2
)

2

, 𝑧 ∈ 𝑅
𝑛
, (1)

where 𝐵 is a real antisymmetric matrix. If 𝐵 is degenerated
(this requires 𝑛 = 2𝑑 + 𝑙 to be odd, and 2𝑑 is the
rank of the matrix 𝐵), then its eigenvalues have the form
±𝑖𝑏𝑗, 𝑗 = 1, 2, . . . , 𝑑. In properly chosen coordinates 𝑧 =

(𝑧1, 𝑧2, . . . , 𝑧𝑛) = (𝑥1, 𝑦1, 𝑥2, 𝑦2, . . . , 𝑥𝑑, 𝑦𝑑, 𝑧2𝑑+1, . . . , 𝑧2𝑑+𝑙),
the operator becomes

𝐻𝑏 = −

𝑑

∑

𝑗=1

((𝜕𝑥𝑗
+ 𝑖

𝑏𝑗

2
𝑦𝑗)

2

+ (𝜕𝑦𝑗
+ 𝑖

𝑏𝑗

2
𝑥𝑗)) − Δ 𝑙, (2)

where Δ 𝑙 = ∑
𝑙

𝑗=1
𝜕
2
/𝜕𝑧

2

2𝑑+𝑗
is the Laplacian in 𝑅

𝑙. The
spectrum of 𝐻𝑏 is in the semiaxis starting from the point
𝑐 = ∑ 𝑏𝑗, and its spectral expansion is continuous (see [1]).

Let 𝑏𝑗’s be positive. Denote by 𝐸𝑡 the spectral function of
𝐻𝑏. It is an integral operator with a kernel 𝑒𝑡(𝑧, 𝑧


), which

is skew-translation invariant; that is, 𝑒𝑡(𝑧 + 𝜔, 𝑧

+ 𝜔) =

𝑒𝑡(𝑧, 𝑧

) exp 𝑖⟨𝐵(𝑧 − 𝑧), 𝜔⟩.

For 𝛽 > 0, set the Riesz means of order 𝛽 as

𝑆
𝛽

𝜆
𝑓 (𝑥) = ∫

∞

0

(1 −
𝑡

𝜆
)

𝛽

+

𝑑𝐸𝑡𝑓 (𝑥) = ∫

∞

𝑐

(1 −
𝑡

𝜆
)

𝛽

+

𝑑𝐸𝑡𝑓 (𝑥) ,

(3)

and the kernel of 𝑆𝛽
𝜆
as

𝑠
𝛽

𝜆
(𝑧, 𝑧


) = 𝑠

𝛽
(𝜆, 𝑧, 𝑧


) = ∫

∞

0

(1 −
𝑡

𝜆
)

𝛽

+

𝑑𝑒𝑡 (𝑧, 𝑧

) ,

(4)

with the same skew-translation invariance.We will denote by
𝑆
𝛽

∗
the corresponding maximal operator; that is,

𝑆
𝛽

∗
𝑓 (𝑥) = sup

0<𝜆<∞


𝑆
𝛽

𝜆
𝑓 (𝑥)


. (5)

As an indispensable part in harmonic analysis, many
people investigate the convergence of Bochner-Riesz means
for Fourier transform in norm and almost everywhere, which
is defined as

(𝑇
𝛽

𝑅
𝑓)

∧

(𝜉) = (1 −
|𝜉|
2

𝑅
)

𝛽

+

�̂� (𝜉) . (6)

Since the convergence of 𝑇𝛽
𝑅
in 𝐿

𝑝-norm is equivalent to
the boundedness of 𝑇𝛽

1
in 𝐿

𝑃
(R𝑛), persons look for the 𝐿𝑝
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boundedness of it. For 2𝑛/(𝑛 + 1 + 2𝛽) < 𝑝 < 2𝑛/(𝑛 − 1 − 2𝛽)

and 0 ≤ 𝛽 ≤ (𝑛 − 1/2), Carleson, Cordoba, and Fefferman
turn out the boundedness in R2 (see [2–4]). When 𝑛 > 2, it
is only proven for 𝛽 ≥ (𝑛 − 1)/2(𝑛 + 1) (see [4, 5]). Returning
the problem about almost everywhere convergence of 𝑇𝛽

𝑅
,

Carbery has finished it for 𝛽 > 0 and 2𝑛/(𝑛 + 1 + 2𝛽) <

𝑝 < 2𝑛/(𝑛 − 1 − 2𝛽) in two dimensions in 1983 (see [6]).
For higher dimensions, it is completed by Christ only for
𝛽 ≥ (𝑛 − 1)/2(𝑛 + 1) (see [7]). In the special case, 𝛽 = 0,
Fefferman studies the 𝐿2-boundeness of 𝑆0

𝜆
for 𝑛 ≥ 2 (see [8]).

Not until 1988 was it solved by Carbery et al. for 𝛽 > 0, 𝑛 ≥ 2,
and 2 ≤ 𝑝 < 2𝑛/(𝑛 − 1 − 2𝛽) (see [9]).

In [1], Rozenblum and Tashchiyan investigated the 𝐿𝑝-
norm convergence for Riesz means for Schrödinger operator
with constant magnetic fields. They showed that under the
restriction theorem similar to one for Fourier transform in
[5], it is of the same results as Bochner-Riesz means in
R𝑛. However, very few results are considered for almost
everywhere convergence of Riesz means for Schrödinger
operator with constant magnetic fields. In the paper, we are
interested in it. Through researching the boundedness of the
maximal operator in 𝐿(R𝑛, |𝑥|𝛼𝑑𝑥), we get the desired result.

2. Main Results

Theorem 1. Set 𝛽 > 0 and 𝑛 ≥ 2. Write 𝑝𝛽 = 2𝑛/(𝑛 − 1 − 2𝛽).
If 𝑓 ∈ 𝐿

𝑝
(R𝑛) with 2 ≤ 𝑝 < 𝑝𝛽, then lim𝜆→∞𝑆

𝛽

𝜆
𝑓(𝑥) = 𝑓(𝑥)

almost everywhere.

Usually, we replace the almost everywhere convergence
of Riesz means with 𝐿𝑝 estimates for the maximal operator.
However, we only need to think about weighted 𝐿2 estimates
for the maximal operator 𝑆𝛽

∗
, as follows. In fact, based on the

idea in [9], for 2 ≤ 𝑝 < 𝑝𝛽, there exists a number 𝛼 with
0 ≤ 𝛼 < 1 + 2𝛽 such that 𝐿𝑝 ⊆ 𝐿

2
+ 𝐿

2
(|𝑥|

𝛼
). We have gotten

𝐿
2 boundedness of the maximal operator in another paper.

Theorem 2. Suppose that 𝛽 > 0 and 0 ≤ 𝛼 < 1 + 2𝛽 ≤ 𝑛.
Then,

∫

𝑆
𝛽

∗
𝑓 (𝑥)



2

|𝑥|
−𝛼
𝑑𝑥 ≤ 𝐶𝛼,𝛽 ∫

𝑓 (𝑥)


2
|𝑥|

−𝛼
𝑑𝑥. (7)

In order to prove the theorem, we introduce the following
lemmas, which are the essential tools. In the following lem-
mas, we reduce the maximal operator to the one generated
by a multiplier with compact support. Since it is easy to see
that the boundedness of the maximal operator generated by
the multipliers is independent of the index 𝛽, the dimension
𝑛 = 2𝑑 + 𝑙 will not play an important role in the following
estimates.

Lemma 3 (see [9]). If 0 < 𝜀 < 1/2, then

∫
||𝑥|−1|≤𝜀

𝑓 (𝑥)


2
𝑑𝑥 ≤ 𝐶𝛼𝐵𝛼 (𝜀) ∫

𝑓 (𝑥)


2
|𝑥|

𝛼
𝑑𝑥, (8)

where

𝐵𝛼 (𝜀) =

{{

{{

{

𝜀
𝛼
, 𝜀
log 𝜀

 , 0 ≤ 𝛼 < 1,

𝜀
log 𝜀

 , 𝛼 = 1,

𝜀, 1 < 𝛼 < 𝑛.

(9)

For a small 𝛿 > 0, let 𝑚𝛿(𝑡) be a 𝐶∞ function supported
in [1 − 𝛿, 1] and satisfy

0 ≤ 𝑚
𝛿
(𝑡) ≤ 1,


𝐷
𝑘
𝑚
𝛿
(𝑡)

≤ 𝐶𝛿

−𝑘
∀𝑘 ∈ N. (10)

Define

𝐾
𝛿

𝜆
𝑓 (𝑥) = ∫𝑚

𝛿
(𝜆𝑡) 𝑑𝐸𝑡𝑓 (𝑥) ,

𝐾
𝛿

∗
𝑓 (𝑥) = sup

𝜆>0


𝐾
𝛿

𝜆
𝑓 (𝑥)


.

(11)

Let 𝜙(𝑡) ∈ 𝐶
∞
(R) supported in [−1, 2] and 𝜙(𝑡) = 1 for 0 ≤

𝑡 ≤ 1. Set

ℎ𝑙 (𝑡) = {
𝜙 (𝑡) , 𝑙 = 0,

𝜙 (2
−𝑙
𝑡) − 𝜙 (2

1−𝑙
𝑡) , 𝑙 ≥ 1.

(12)

Denoting by 𝜒𝐸 the character function of the set 𝐸, write

𝐻𝑗 (𝑥, 𝑦) = {
𝜒[0,1) (

𝑥 − 𝑦
) , 𝑗 = 0,

𝜒[2𝑗−1 ,2𝑗) (
𝑥 − 𝑦

) , 𝑗 ≥ 1.
(13)

Let 𝑘𝛿(𝑡) be a function with Fourier transform as

�̂�
𝛿

𝜆
(𝑡) = 𝑚

𝛿
(𝜆𝑡) . (14)

Set

𝑘
𝛿,𝑙,𝑗

𝜆
(𝑡) = 𝑘

𝛿

𝜆
(𝑡) ℎ𝑙 (

𝛿
2
2
−𝑗
𝑡

𝜆
) ,

𝐸
𝑗

𝑡
𝑓 (𝑥) = ∫

R𝑛
𝑒𝑡 (𝑥, 𝑦)𝐻𝑗 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦.

(15)

Accordingly, define the operator 𝐾𝛿,𝑙,𝑗
𝜆

as

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓 (𝑥) = ∫ �̂�

𝛿,𝑙,𝑗

𝜆
(𝑡) 𝑑𝐸

𝑗

𝑡
𝑓 (𝑥) , (16)

where �̂�
𝛿,𝑙,𝑗

𝜆
is the Fourier transform of 𝑘𝛿,𝑙,𝑗

𝜆
. Apparently, since

𝐾
𝛿

𝜆
𝑓 (𝑥) = ∫ �̂�

𝛿

𝜆
(𝑡) 𝑑𝐸𝑡𝑓 (𝑥) , (17)

we decompose

𝐾
𝛿

𝜆
𝑓 (𝑥) = ∫ �̂�

𝛿

𝜆
(𝑡) 𝑑𝐸𝑡𝑓 (𝑥)

=

∞

∑

𝑗=0

∞

∑

𝑙=0

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓 (𝑥)

=

∞

∑

𝑗=0

∞

∑

𝑙=0

∫ �̂�
𝛿,𝑙,𝑗

𝜆
(𝑡) 𝑑𝐸

𝑗

𝑡
𝑓 (𝑥) .

(18)
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Lemma 4. For 𝜆 > 0, one has


𝐾
𝛿,𝑙,𝑗

𝜆
𝑓 (𝑥)



2

2
≤ 𝐶2

−2𝑀(𝑗+𝑙)
𝛿
2𝑀𝑓



2

2
, (19)

where the constant 𝐶 is independent of 𝜆 and 𝛿.

Proof. With the method similar to the proof of Lemma 4 in
[9], we write ℎ(𝑡) = 𝜙(𝑡) − 𝜙(2𝑡) and expand𝑚𝛿 into a Taylor
series around 𝜆𝑡. Then,

�̂�
𝛿,𝑙,𝑗

𝜆
(𝑡) = ∫𝑚

𝛿
(𝜆(𝑡 −

2
−(𝑗+𝑙)

𝛿
2
𝑟

𝜆
)) ℎ̂ (𝑟) 𝑑𝑟

= ∫𝑚
𝛿
(𝜆𝑡 − 2

−(𝑗+𝑙)
𝛿
2
𝑟) ℎ̂ (𝑟) 𝑑𝑟

= ∫𝑅𝑀 (𝑡, 𝑟) ℎ̂ (𝑟) 𝑑𝑟,

(20)

where the remainder 𝑅𝑀 satisfies

𝑅𝑀 (𝑡, 𝑟)


≤

𝐷
𝑀
𝑚
𝛿


2
−(𝑗+𝑙)

𝛿
2
𝑟


𝑀

≤ 2
−𝑀(𝑙+𝑗)

𝛿
𝑀
|𝑟|
𝑀
.

(21)

But ℎ̂ is a Schwartz function and can be integrated against
|𝑟|
𝑀. Hence,


�̂�
𝛿,𝑙,𝑗

𝜆
(𝑡)


≤ 𝐶𝑀2

−𝑀(𝑗+𝑙)
𝛿
𝑀
. (22)

Since 𝐸R is a resolution of the identity, we see

𝐸R𝑓 (𝑥) = ∫

∞

0

𝑑𝐸𝑡𝑓 (𝑥) = 𝑓 (𝑥) . (23)

Denote by 𝑒R(𝑥, 𝑦) the kernel of 𝐸R. For almost all 𝑥0 ∈
R𝑛, we let 𝑆 = {𝑦 ∈ R𝑛 : 𝑒R(𝑥0, 𝑦)𝑓(𝑦) > 0}. Decompose

𝑓 (𝑥) = 𝑓 (𝑥) 𝜒𝑆 (𝑥) + 𝑓 (𝑥) 𝜒R𝑛/𝑆 (𝑥)

= 𝑓1 (𝑥) + 𝑓2 (𝑥) .

(24)

We have


𝐸
𝑗

R𝑓 (𝑥0)

=


∫
R𝑛
𝑒R (𝑥0, 𝑦)𝐻𝑗 (𝑥0, 𝑦) 𝑓 (𝑦) 𝑑𝑦



=


∫

R𝑛
𝑒R (𝑥0, 𝑦)𝐻𝑗 (𝑥0, 𝑦) 𝑓1 (𝑦) 𝑑𝑦

+ ∫
R𝑛
𝑒R (𝑥0, 𝑦)𝐻𝑗 (𝑥0, 𝑦) 𝑓2 (𝑦) 𝑑𝑦



≤


∫
R𝑛
𝑒R (𝑥0, 𝑦)𝐻𝑗 (𝑥0, 𝑦) 𝑓1 (𝑦) 𝑑𝑦



+


∫

R𝑛
𝑒R (𝑥0, 𝑦)𝐻𝑗 (𝑥0, 𝑦) 𝑓2 (𝑦) 𝑑𝑦



= ∫
R𝑛


𝑒R (𝑥0, 𝑦)𝐻𝑗 (𝑥0, 𝑦) 𝑓1 (𝑦)


𝑑𝑦

+ ∫
R𝑛


𝑒R (𝑥0, 𝑦)𝐻𝑗 (𝑥0, 𝑦) 𝑓2 (𝑦)


𝑑𝑦

≤ ∫
R𝑛

𝑒R (𝑥0, 𝑦) 𝑓1 (𝑦)
 𝑑𝑦

+ ∫
R𝑛

𝑒R (𝑥0, 𝑦) 𝑓2 (𝑦)
 𝑑𝑦

=


∫
R𝑛
𝑒R (𝑥0, 𝑦) 𝑓1 (𝑦) 𝑑𝑦



+


∫

R𝑛
𝑒R (𝑥0, 𝑦) 𝑓2 (𝑦) 𝑑𝑦



≤
𝑓1 (𝑥0)

 +
𝑓2 (𝑥0)



≤ 𝐶
𝑓 (𝑥0)

 .

(25)

It is easy to show


𝐾
𝛿,𝑙,𝑗

𝜆
𝑓 (𝑥)



2

2

=


∫ �̂�

𝛿,𝑙,𝑗

𝜆
(𝑡) 𝑑𝐸

𝑗

𝑡
𝑓 (𝑥)



2

2

=


∫ 𝑑𝐸

𝑗

𝑡
(�̂�
𝛿,𝑙,𝑗

𝜆
(𝐻𝑏) 𝑓 (𝑥))



2

2

= ⟨𝐸
𝑗

R (�̂�
𝛿,𝑙,𝑗

𝜆
(𝐻𝑏) 𝑓) , 𝐸

𝑗

R (�̂�
𝛿,𝑙,𝑗

𝜆
(𝐻𝑏) 𝑓)⟩

≤


�̂�
𝛿,𝑙,𝑗

𝜆
(𝐻𝑏) 𝑓



2

2

≤ ∫

∞

0


�̂�
𝛿,𝑙,𝑗

𝜆
(𝑡)



2

𝑑 (𝐸𝑡𝑓, 𝑓)

≤ 𝐶𝑀2
−2𝑀(𝑗+𝑙)

𝛿
2𝑀

∫

∞

0

𝑑 (𝐸𝑡𝑓, 𝑓)

≤ 𝐶𝑀2
−2𝑀(𝑗+𝑙)

𝛿
2𝑀𝑓



2

2
.

(26)
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Lemma 5. If 0 < 𝛼 < 𝑛 and 𝜆 > 0, then

∫


∫ �̂�

𝛿

𝜆
(𝑡) 𝑑𝐸𝑡𝑓 (𝑥)



2
𝑑𝑥

|𝑥|
𝛼
≤ 𝐶𝛼𝛿∫

𝑓 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
, (27)

where 𝐶𝛼 is independent of 𝛿 and 𝜆.

Proof. Suppose that 𝑓 is supported in {|𝑥| ≤ 𝐶2
𝑗
}. Write 𝑓 =

𝜒{0≤|𝑥|≤1/4}(𝑥)𝑓(𝑥)+𝜒{𝐶<|𝑥|≤𝐶2𝑗}(𝑥)𝑓(𝑥)+𝜒{1/4<|𝑥|≤𝐶}(𝑥)𝑓(𝑥) =

𝑓1 + 𝑓2 + 𝑓3. If 𝐶 ≤ 1/4, then 𝑓3 = 0. Since

(∫

𝐾
𝛿

𝜆
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|𝛼
)

1/2

= (∫

𝐾
𝛿

𝜆
(𝑓1 + 𝑓2 + 𝑓3) (𝑥)



2 𝑑𝑥

|𝑥|𝛼
)

1/2

≤ (∫

𝐾
𝛿

𝜆
𝑓1



2 𝑑𝑥

|𝑥|𝛼
)

1/2

+ (∫

𝐾
𝛿

𝜆
𝑓2



2 𝑑𝑥

|𝑥|𝛼
)

1/2

+ (∫

𝐾
𝛿

𝜆
𝑓3



2 𝑑𝑥

|𝑥|𝛼
)

1/2

,

(28)

we only need to prove that

∫


∫ �̂�

𝛿

𝜆
(𝑡) 𝑑𝐸𝑡𝑓𝑖 (𝑥)



2
𝑑𝑥

|𝑥|
𝛼

≤ 𝐶𝛼𝛿∫
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼
, (𝑖 = 1, 2, 3) .

(29)

For the case of 𝑖 = 2, with Lemma 4, it follows that

∫

𝐾
𝛿,𝑗,𝑙

𝜆
𝑓2 (𝑥)



2

𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀𝑓2



2

2

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
∫
𝐶≤|𝑥|≤𝐶2𝑗

𝑓 (𝑥)


2
𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀

×

𝑗−1

∑

𝑘=0

∫
𝐶2𝑘≤|𝑥|≤𝐶2𝑘+1

𝑓 (𝑥)


2
𝑑𝑥.

(30)

It is easy to see that
𝑗−1

∑

𝑘=0

∫
𝐶2𝑘<|𝑥|≤𝐶2𝑘+1

𝑓 (𝑥)


2
𝑑𝑥

≤ 𝐶

𝑗−1

∑

𝑘=0

2
−𝑘𝛼

∫
𝐶2𝑘<|𝑥|≤𝐶2𝑘+1

𝑓 (𝑥)


2
|𝑥|

𝛼
𝑑𝑥

≤ 𝐶∫
𝑓 (𝑥)



2
|𝑥|

𝛼
𝑑𝑥.

(31)

Thus, we have

∫

𝐾
𝛿,𝑗,𝑙

𝜆
𝑓2 (𝑥)



2

𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
∫
𝑓 (𝑥)



2
|𝑥|

𝛼
𝑑𝑥.

(32)

Choosing𝑀 > 1, we get

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓2 (𝑥)



2

𝑑𝑥

≤ 𝐶𝛼2
−𝑙
2
−𝑗𝑀

𝛿∫
𝑓 (𝑥)



2
|𝑥|

𝛼
𝑑𝑥.

(33)

On the other hand, 𝐸𝑡 is self-adjoint. So,

⟨𝐸𝑡𝑓, 𝑔⟩

= ∫∫ 𝑒𝑡 (𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦𝑔 (𝑥) 𝑑𝑥

= ∫𝑓 (𝑦)∫ 𝑒𝑡 (𝑥, 𝑦) 𝑔 (𝑥) 𝑑𝑥𝑑𝑦

= ⟨𝑓, 𝐸𝑡𝑔⟩

= ∫𝑓 (𝑦)∫ 𝑒𝑡 (𝑦, 𝑥) 𝑔 (𝑥) 𝑑𝑥 𝑑𝑦.

(34)

Hence,

𝑒𝑡 (𝑥, 𝑦) = 𝑒𝑡 (𝑦, 𝑥) . (35)

With

𝐻𝑗 (𝑥, 𝑦) = 𝐻𝑗 (𝑦, 𝑥) , (36)

we get

𝑒
𝑗

𝑡
(𝑥, 𝑦) = 𝑒𝑡 (𝑥, 𝑦)𝐻𝑗 (𝑥, 𝑦)

= 𝑒𝑡 (𝑦, 𝑥)𝐻𝑗 (𝑦, 𝑥) = 𝑒
𝑗

𝑡
(𝑦, 𝑥) ,

(37)

and it implies that𝐾𝛿,𝑙,𝑗
𝜆

is also self-adjoint; that is,

⟨𝐸
𝑗

𝑡
𝑓, 𝑔⟩ = ⟨𝑓, 𝐸

𝑗

𝑡
𝑔⟩. (38)

Therefore, by duality,

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓2 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

≤ 𝐶𝛼2
−𝑙
2
−𝑗𝑀

𝛿∫
𝑓 (𝑥)



2
𝑑𝑥

≤ 𝐶𝛼2
−𝑙
2
𝑗(𝛼−𝑀)

𝛿∫
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼
.

(39)

Taking𝑀 > 𝛼 + 1, we can establish the inequality

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓2 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

≤ 𝐶𝛼2
−𝑙
2
−𝑗
𝛿∫

𝑓 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
.

(40)

Nextly, we consider 𝑖 = 1. By the definition of 𝐾𝛿,𝑙,𝑗
𝜆

and
𝑓1, we see that the kernel of𝐾

𝛿,𝑙,𝑗

𝜆
is supported in

{(𝑥, 𝑦) : 2
𝑗−1

≤
𝑥 − 𝑦

 ≤ 2
𝑗
} (41)
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and 𝑓(𝑦) is supported in

0 ≤
𝑦
 ≤

1

4
. (42)

So, the support of𝐾𝛿,𝑙,𝑗
𝜆

𝑓(𝑥) is contained in

{𝑥 ∈ R
𝑛
: 2
𝑗
+
1

4
≥ |𝑥| ≥ 2

𝑗−1
−
1

4
≥ 2

0−1
−
1

4
=
1

4
} . (43)

With Lemma 4, we have

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓1 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

≤ ∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓1 (𝑥)



2

4
𝛼
𝑑𝑥

≤ 𝐶∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓1 (𝑥)



2

𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀𝑓1



2

2

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀𝑓



2

2

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
(2
𝑗
)
𝛼

∫
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

≤ 𝐶2
−𝑙
2
−𝑗
𝛿∫

𝑓 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
,

(44)

where𝑀 > 𝛼 + 1.
At last, we turn to the case of 𝑖 = 3. Similar to the

aforementioned, we have

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓3 (𝑥)



2

𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀𝑓3



2

2

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
∫
1/4≤|𝑥|≤𝐶

𝑓 (𝑥)


2
𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
(
1

4
)

−𝛼

∫
1/4≤|𝑥|≤𝐶

𝑓 (𝑥)


2
(
1

4
)

𝛼

𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
4
𝛼
∫
1/4≤|𝑥|≤𝐶

𝑓 (𝑥)


2
|𝑥|

𝛼
𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
∫
𝑓 (𝑥)



2
|𝑥|

𝛼
𝑑𝑥.

(45)

By duality again, we see

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓3 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
∫
𝑓 (𝑥)



2
𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗𝑀

𝛿
𝑀
(2
𝑗
)
𝛼

∫
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

≤ 𝐶2
−𝑙
2
−𝑗(𝑀−𝛼)

𝛿
𝑀
∫
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼
.

(46)

Through we choose𝑀 > 𝛼 + 1, it is not difficult to get

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓3 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

≤ 𝐶2
−𝑙
2
−𝑗
𝛿∫

𝑓 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
.

(47)

Combining (28), (40), (44) with (47), when 𝑓 is supported in
{|𝑥| ≤ 𝐶2

𝑗
}, we come to the conclusion

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

≤ 𝐶2
−𝑙
2
−𝑗
𝛿∫

𝑓 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
.

(48)

Now, we hope to establish (48) for all 𝑓 ∈ 𝐿
2
(R𝑛).

Decompose 𝑓 = ∑
𝑖∈Z𝑛 𝜒𝑄𝑖

𝑓 = ∑
𝑖∈Z𝑛 𝑓𝑖, where {𝑄𝑖} are

disjoint cubes of common side 10 ⋅ 2𝑗 with 𝑄0 centered at 0.
Since {𝐾𝛿,𝑙,𝑗

𝜆
𝑓𝑖(𝑥)} have essentially disjoint supports, it suffices

to prove (48) for every 𝑓𝑖. When 𝑖 = 0, we have proved it. If
𝑖 > 1, then

0 < (
1

2
+ 𝑙) 10 ⋅ 2

𝑗

< |𝑥|
−𝛼

< (
1

2
+ 𝑙 + 1) 10 ⋅ 2

𝑗
(𝑙 ≥ 0) .

(49)

Therefore, we only need to confirm

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓 (𝑥)



2

𝑑𝑥 ≤ 𝐶𝛼2
−𝑙
2
−𝑗
𝛿∫

𝑓 (𝑥)


2
𝑑𝑥. (50)

In fact, it follows from Lemma 4 that

∫

𝐾
𝛿,𝑙,𝑗

𝜆
𝑓 (𝑥)



2

𝑑𝑥

≤ 𝐶2
−2𝑀(𝑗+𝑙)

𝛿
2𝑀

∫
𝑓 (𝑥)



2
𝑑𝑥

≤ 𝐶2
−𝑙
2
−𝑗
𝛿∫

𝑓 (𝑥)


2
𝑑𝑥.

(51)

At present, we complete the proof of Lemma 5.

Lemma 6. For 𝛿 > 0, 𝑘 ∈ Z, and 0 ≤ 𝛼 < 𝑛, one gets

∫
R𝑛
∫

2
𝑘

2𝑘−1


𝐾
𝛿

𝜆
𝑓 (𝑥)



2 𝑑𝜆

𝜆

𝑑𝑥

|𝑥|
𝛼
≤ 𝐶𝛼𝛿∫

𝑓 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
. (52)
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Proof. Applying Minkowski and Cauchy-Schwartz’s inequal-
ities into the left hand side of (52), we get

∫
R𝑛



∫

2
𝑘

2𝑘−1
𝐾
𝛿

𝜆
𝑓 (𝑥)

𝑑𝜆

𝜆



2

|𝑥|
−𝛼
𝑑𝑥

≤ 𝐶(∫

2
𝑘

2𝑘−1
(∫

R𝑛


𝐾
𝛿

𝜆
𝑓 (𝑥)



2

|𝑥|
−𝛼
𝑑𝑥)

1/2
𝑑𝜆

𝜆
)

2

≤ 𝐶((∫

2
𝑘

2𝑘−1
∫
R𝑛


𝐾
𝛿

𝜆
𝑓 (𝑥)



2

|𝑥|
−𝛼
𝑑𝑥

𝑑𝜆

𝜆
)

1/2

× (∫

2
𝑘

2𝑘−1

𝑑𝜆

𝜆
)

1/2

)

2

≤ 𝐶∫

2
𝑘

2𝑘−1
∫
R𝑛


𝐾
𝛿

𝜆
𝑓 (𝑥)



2

|𝑥|
−𝛼
𝑑𝑥

𝑑𝜆

𝜆
.

(53)

Now, it suffices to prove that

∫
R𝑛


𝐾
𝛿

𝜆
𝑓 (𝑥)



2

|𝑥|
−𝛼
𝑑𝑥

≤ 𝐶𝛼𝛿∫
R𝑛

𝑓 (𝑥)


2
|𝑥|

−𝛼
𝑑𝑥,

(54)

where 𝐶𝛼𝛿 is uniform in 2𝑘−1 ≤ 𝜆 ≤ 2
𝑘. For 0 ≤ 𝛼 < 𝑛, it is

equivalent to

∫
R𝑛


𝐾
𝛿

𝜆
𝑔 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼
≤ 𝐶𝛼𝛿∫

R𝑛

𝑔 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
. (55)

It is just as the result of Lemma 5.

Now, we come back to the proof of Theorem 2.

Proof. As in [3], we can decompose

(1 −
𝑡

𝜆
)

𝛽

+

=

∞

∑

𝑘=0

2
−𝑘𝛽

𝑚
2
−𝑘

(
𝑡

𝜆
) . (56)

Thus,

𝑆
𝛽

∗
𝑓 (𝑥) ≤

∞

∑

𝑘=0

2
−𝑘𝛽

𝐾
2
−𝑘

∗
𝑓 (𝑥) . (57)

Consequently, we consider

∫
R𝑛


𝐾
𝛿

∗
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼
≤ 𝐶𝛼𝛿∫

R𝑛

𝑓 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
. (58)

Let

𝐺
𝛿
𝑓 (𝑥) = (∫

∞

0


𝐾
𝛿

𝜆
𝑓 (𝑥)



2 𝑑𝜆

𝜆
)

1/2

(59)

and 𝐺𝛿 be defined in the same way but using instead of 𝑚𝛿
the function

𝑚
𝛿
(𝜆) = 𝛿𝜆

𝑑𝑚
𝛿
(𝜆)

𝜆
, (60)

which satisfies the same estimates as 𝑚
𝛿. Then, by the

fundamental theorem in calculus and Hölder’s inequality, we
have


𝐾
𝛿

∗
𝑓 (𝑥)



2

≤ ∫

∞

0

2



𝐾
𝛿

𝜆
𝑓 (𝑥)

𝑑𝐾
𝛿

𝜆
𝑓 (𝑥)

𝑑𝜆



𝑑𝜆

≤ 2𝛿
−1
∫

∞

0


𝐾
𝛿

𝜆
𝑓 (𝑥)



𝜆1/2
𝜆𝛿


𝑑𝐾

𝛿

𝜆
𝑓 (𝑥) /𝑑𝜆



𝜆1/2
𝑑𝜆

≤ 2𝛿
−1
(∫

∞

0


𝐾
𝛿

𝜆
𝑓 (𝑥)



2 𝑑𝜆

𝜆
)

1/2

× (∫

∞

0



𝜆𝛿
𝑑𝐾

𝛿

𝜆
𝑓 (𝑥)

𝑑𝜆



2

𝑑𝜆

𝜆
)

1/2

= 2𝛿
−1
𝐺
𝛿
𝑓 (𝑥)𝐺𝑓 (𝑥) .

(61)

Take a Schwartz function𝜓 such that𝜓(0) = 0 and𝜓(𝑡) =
1 if 1/2 ≤ 𝑡 ≤ 2 and 𝜓𝑘(𝑡) = 𝜓(2

𝑘
𝑡). Then, when 2𝑘−1 ≤ 𝜆 ≤

2
𝑘, we have

𝐾
𝛿

𝜆
𝑓 (𝑥) = ∫𝑚

𝛿
(𝜆𝑡) 𝜓𝑘 (𝑡) 𝑑𝐸𝑡𝑓 (𝑥) . (62)

Using Lemma 6, we get

∫
R𝑛
∫

2
𝑘

2𝑘−1


𝐾
𝛿

𝜆
𝑓 (𝑥)



2 𝑑𝜆

𝜆

𝑑𝑥

|𝑥|
𝛼

= ∫
R𝑛
∫

2
𝑘

2𝑘−1


∫𝑚

𝛿
(𝜆𝑡) 𝜓𝑘 (𝑡) 𝑑𝐸𝑡𝑓 (𝑥)



2
𝑑𝜆

𝜆

𝑑𝑥

|𝑥|
𝛼

= ∫
R𝑛
∫

2
𝑘

2𝑘−1


∫𝑚

𝛿
(𝜆𝑡) 𝑑𝐸𝑡 (𝜓𝑘 (𝐻𝑏) 𝑓) (𝑥)



2
𝑑𝜆

𝜆

𝑑𝑥

|𝑥|
𝛼

≤ 𝐶𝛼𝛿∫
𝜓𝑘 (𝐻𝑏) 𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼

= 𝐶𝛼𝛿∫


∫𝜓𝑘 (𝑡) 𝑑𝐸𝑡𝑓 (𝑥)



2
𝑑𝑥

|𝑥|
𝛼
.

(63)

From Theorem 3.1 in page 411 of [10] and the density of
𝐿
∞

𝑐
in 𝐿𝑝(𝑤), we induce that

(

∞

∑

𝑘=−∞


∫𝜓𝑘 (𝑡) 𝑑𝐸𝑡𝑓 (𝑥)



2

)

1/2

(64)
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is bounded in 𝐿2(𝑑𝑥/|𝑥|𝛼). As a result,

∫(𝐺
𝛿
𝑓 (𝑥))

2 𝑑𝑥

|𝑥|
𝛼
= ∫∫

∞

0


𝐾
𝛿

𝜆
𝑓 (𝑥)



2 𝑑𝜆

𝜆

𝑑𝑥

|𝑥|
𝛼

= ∫

∞

∑

𝑘=−∞

∫

2
𝑘

2𝑘−1


𝐾
𝛿

𝜆
𝑓 (𝑥)



2 𝑑𝜆

𝜆

𝑑𝑥

|𝑥|
𝛼

=

∞

∑

𝑘=−∞

∫∫

2
𝑘

2𝑘−1


𝐾
𝛿

𝜆
𝑓 (𝑥)



2 𝑑𝜆

𝜆

𝑑𝑥

|𝑥|
𝛼

≤

∞

∑

𝑘=−∞

𝐶𝛼𝛿∫


∫𝜓𝑘 (𝑡) 𝑑𝐸𝑡𝑓 (𝑥)



2
𝑑𝑥

|𝑥|
𝛼

≤ 𝐶𝛼𝛿∫

∞

∑

𝑘=−∞


∫𝜓𝑘 (𝑡) 𝑑𝐸𝑡𝑓 (𝑥)



2
𝑑𝑥

|𝑥|
𝛼

≤ 𝐶𝛼𝛿∫
𝑓 (𝑥)



2 𝑑𝑥

|𝑥|
𝛼
.

(65)

At last, with (61) andHölder’s inequality, we come to the result
that

∫ (𝐾
𝛿

∗
𝑓 (𝑥))

2 𝑑𝑥

|𝑥|
𝛼
≤ 𝐶𝛼 ∫

𝑓 (𝑥)


2 𝑑𝑥

|𝑥|
𝛼
. (66)
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