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We give the greatest values 𝑟
1
, 𝑟
2
and the least values 𝑠

1
, 𝑠
2
in (1/2, 1) such that the double inequalities𝐶(𝑟

1
𝑎+(1−𝑟

1
)𝑏, 𝑟
1
𝑏+(1−𝑟

1
)𝑎) <

𝛼𝐴(𝑎, 𝑏) + (1 − 𝛼)𝑇(𝑎, 𝑏) < 𝐶(𝑠
1
𝑎 + (1 − 𝑠

1
)𝑏, 𝑠
1
𝑏 + (1 − 𝑠

1
)𝑎) and 𝐶(𝑟

2
𝑎 + (1 − 𝑟

2
)𝑏, 𝑟
2
𝑏 + (1 − 𝑟

2
)𝑎) < 𝛼𝐴(𝑎, 𝑏) + (1 − 𝛼)𝑀(𝑎, 𝑏) <

𝐶(𝑠
2
𝑎 + (1 − 𝑠

2
)𝑏, 𝑠
2
𝑏 + (1 − 𝑠

2
)𝑎) hold for any 𝛼 ∈ (0, 1) and all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where 𝐴(𝑎, 𝑏),𝑀(𝑎, 𝑏), 𝐶(𝑎, 𝑏), and 𝑇(𝑎, 𝑏) are

the arithmetic, Neuman-Sándor, contraharmonic, and second Seiffert means of 𝑎 and 𝑏, respectively.

1. Introduction

For 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, the Neuman-Sándor mean 𝑀(𝑎, 𝑏)

[1], second Seiffert mean 𝑇(𝑎, 𝑏) [2] are defined by

𝑀(𝑎, 𝑏) =

𝑎 − 𝑏

2sinh−1 ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

𝑇 (𝑎, 𝑏) =

𝑎 − 𝑏

2 arctan ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

(1)

respectively. Herein, sinh−1(𝑥) = log(𝑥 + √1 + 𝑥
2
) is the

inverse hyperbolic sine function.
Let 𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏), 𝐺(𝑎, 𝑏) = √𝑎𝑏, 𝐿(𝑎, 𝑏) =

(𝑎 − 𝑏)/(log 𝑎 − log 𝑏), 𝑃(𝑎, 𝑏) = (𝑎 − 𝑏)/[4 arctan(√𝑎/𝑏) − 𝜋],
𝐼(𝑎, 𝑏) = 1/𝑒(𝑏

𝑏
/𝑎
𝑎
)
1/(𝑏−𝑎), 𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2, 𝑄(𝑎, 𝑏) =

√(𝑎
2
+ 𝑏
2
)/2, and𝐶(𝑎, 𝑏) = (𝑎

2
+𝑏
2
)/(𝑎+𝑏) be the harmonic,

geometric, logarithmic, first Seiffert, identric, arithmetic,
quadratic, and contraharmonicmeans of two distinct positive

real numbers 𝑎 and 𝑏, respectively. Then it is well known that
the inequalities

𝐻(𝑎, 𝑏) < 𝐺 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏)

< 𝐼 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) < 𝑄 (𝑎, 𝑏) < 𝐶 (𝑎, 𝑏)

(2)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Among means of two variables, the Neuman-Sándor,

contraharmonic, and second Seiffert means have attracted
the attention of several researchers. In particular, many
remarkable inequalities and applications for these means can
be found in the literature [3–15].

Neuman and Sándor [1, 16] proved that the inequalities

𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <

𝐴 (𝑎, 𝑏)

log (1 + √2)
,

𝜋

4

𝑇 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) ,

𝑀 (𝑎, 𝑏) <

2𝐴 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

3

,

𝑃 (𝑎, 𝑏)𝑀 (𝑎, 𝑏) < 𝐴
2
(𝑎, 𝑏) ,
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𝐴 (𝑎, 𝑏) 𝑇 (𝑎, 𝑏) < 𝑀
2
(𝑎, 𝑏)

<

(𝐴
2
(𝑎, 𝑏) + 𝑇

2
(𝑎, 𝑏))

2

(3)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Let 0 < 𝑎, 𝑏 < 1/2 with 𝑎 ̸= 𝑏, 𝑎


= 1 − 𝑎 and 𝑏 = 1 − 𝑏.

Then the Ky Fan inequalities

𝐺 (𝑎, 𝑏)

𝐺 (𝑎

, b)

<

𝐿 (𝑎, 𝑏)

𝐿 (𝑎

, 𝑏

)

<

𝑃 (𝑎, 𝑏)

𝑃 (𝑎

, 𝑏

)

<

𝐴 (𝑎, 𝑏)

𝐴 (𝑎

, 𝑏

)

<

𝑀 (𝑎, 𝑏)

𝑀 (𝑎

, 𝑏

)

<

𝑇 (𝑎, 𝑏)

𝑇 (𝑎

, 𝑏

)

(4)

can be found in [1].
Li et al. [17] proved that the double inequality 𝐿

𝑝0
(𝑎, 𝑏) <

𝑀(𝑎, 𝑏) < 𝐿
2
(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, where

𝐿
𝑝
(𝑎, 𝑏) = [(𝑏

𝑝+1
− 𝑎
𝑝+1

)/((𝑝 + 1)(𝑏 − 𝑎))]
1/𝑝

(𝑝 ̸= − 1, 0),
𝐿
0
(𝑎, 𝑏) = 𝐼(𝑎, 𝑏) and 𝐿

−1
(𝑎, 𝑏) = 𝐿(𝑎, 𝑏) is the 𝑝th

generalized logarithmicmean of 𝑎 and 𝑏, and𝑝
0
= 1.843 ⋅ ⋅ ⋅ is

the unique solution of the equation (𝑝+1)1/𝑝 = 2 log(1+√2).
In [18], Neuman proved that the inequalities

𝛼𝑄 (𝑎, 𝑏) + (1 − 𝛼)𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽𝑄 (𝑎, 𝑏) + (1 − 𝛽)𝐴 (𝑎, 𝑏) ,

𝜆𝐶 (𝑎, 𝑏) + (1 − 𝜆)𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝜇𝐶 (𝑎, 𝑏) + (1 − 𝜇)𝐴 (𝑎, 𝑏)

(5)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ [1 − log(1 +
√2)]/[(√2 − 1) log(1 + √2)] = 0.3249 ⋅ ⋅ ⋅, 𝜆 ≤ [1 − log(1 +
√2)]/ log(1 + √2) = 0.1345 ⋅ ⋅ ⋅, 𝛽 ≥ 1/3 and 𝜇 ≥ 1/6.

Zhao et al. [19] found the least values 𝛼
1
, 𝛼
2
, 𝛼
3
and the

greatest values 𝛽
1
, 𝛽
2
, 𝛽
3
such that the double inequalities

𝛼
1
𝐻(𝑎, 𝑏) + (1 − 𝛼

1
) 𝑄 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽
1
𝐻(𝑎, 𝑏) + (1 − 𝛽

1
) 𝑄 (𝑎, 𝑏) ,

𝛼
2
𝐺 (𝑎, 𝑏) + (1 − 𝛼

2
) 𝑄 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽
2
𝐺 (𝑎, 𝑏) + (1 − 𝛽

2
) 𝑄 (𝑎, 𝑏) ,

𝛼
3
𝐻(𝑎, 𝑏) + (1 − 𝛼

3
) 𝐶 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝛽
3
𝐻(𝑎, 𝑏) + (1 − 𝛽

3
) 𝐶 (𝑎, 𝑏)

(6)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

In [20, 21], the authors proved that the double inequalities

𝛼
1
𝑇 (𝑎, 𝑏) + (1 − 𝛼

1
) 𝐺 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏)

< 𝛽
1
𝑇 (𝑎, 𝑏) + (1 − 𝛽

1
) 𝐺 (𝑎, 𝑏) ,

𝛼
2
𝑄 (𝑎, 𝑏) + (1 − 𝛼

2
) 𝐴 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏)

< 𝛽
2
𝑄 (𝑎, 𝑏) + (1 − 𝛽

2
) 𝐴 (𝑎, 𝑏) ,

𝑄
𝛼3
(𝑎, 𝑏) 𝐴

1−𝛼3
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏)

< 𝑄
𝛽3
(𝑎, 𝑏) 𝐴

1−𝛽3
(𝑎, 𝑏)

(7)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only of 𝛼
1
≤ 3/5, 𝛽

1
≥

4/𝜋, 𝛼
2
≤ (4 − 𝜋)/[(√2 − 1)𝜋], 𝛽

2
≥ 2/3, 𝛼

3
≤ 2/3, and

𝛽
3
≥ 4 − 2 log𝜋/ log 2.
For 𝛼, 𝛽, 𝜆, 𝜇 ∈ (1/2, 1), Chu et al. [22, 23] proved that the

inequalities

𝐶 (𝛼𝑎 + (1 − 𝛼) 𝑏, 𝛼𝑏 + (1 − 𝛼) 𝑎) < 𝑇 (𝑎, 𝑏)

< 𝐶 (𝛽𝑎 + (1 − 𝛽) 𝑏, 𝛽𝑏 + (1 − 𝛽) 𝑎) ,

𝑄 (𝜆𝑎 + (1 − 𝜆) 𝑏, 𝜆𝑏 + (1 − 𝜆) 𝑎) < 𝑇 (𝑎, 𝑏)

< 𝑄 (𝜇𝑎 + (1 − 𝜇) 𝑏, 𝜇𝑏 + (1 − 𝜇) 𝑎)

(8)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ (1 +

√4/𝜋 − 1)/2, 𝛽 ≥ (3 + √3)/6, 𝜆 ≤ (1 + √16/𝜋
2
− 1)/2 and

𝜇 ≥ (3 + √6)/6.
The aim of this paper is to find the greatest values 𝑟

1
, 𝑟
2

and the least values 𝑠
1
, 𝑠
2
such that the double inequalities

𝐶 (𝑟
1
𝑎 + (1 − 𝑟

1
) 𝑏, 𝑟
1
𝑏 + (1 − 𝑟

1
) 𝑎)

< 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼) 𝑇 (𝑎, 𝑏)

< 𝐶 (𝑠
1
𝑎 + (1 − 𝑠

1
) 𝑏, 𝑠
1
𝑏 + (1 − 𝑠

1
) 𝑎) ,

(9)

𝐶 (𝑟
2
𝑎 + (1 − 𝑟

2
) 𝑏, 𝑟
2
𝑏 + (1 − 𝑟

2
) 𝑎)

< 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼)𝑀 (𝑎, 𝑏)

< 𝐶 (𝑠
2
𝑎 + (1 − 𝑠

2
) 𝑏, 𝑠
2
𝑏 + (1 − 𝑠

2
) 𝑎)

(10)

hold for any 𝛼 ∈ (0, 1) and all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

2. Lemmas

In order to prove our main results, we need three lemmas,
which we present in this section.

Lemma 1 (see [24, Theorem 1.25]). For −∞ < 𝑎 < 𝑏 < +∞,
let 𝑓, 𝑔 : [𝑎, 𝑏] → R be continuous on [𝑎, 𝑏] and differentiable
on (𝑎, 𝑏), let 𝑔(𝑥) ̸= 0 on (𝑎, 𝑏). If 𝑓(𝑥)/𝑔(𝑥) is increasing
(decreasing) on (𝑎, 𝑏), then so are

𝑓 (𝑥) − 𝑓 (𝑎)

𝑔 (𝑥) − 𝑔 (𝑎)

,

𝑓 (𝑥) − 𝑓 (𝑏)

𝑔 (𝑥) − 𝑔 (𝑏)

. (11)
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If 𝑓(𝑥)/𝑔(𝑥) is strictly monotone, then the monotonicity in
the conclusion is also strict.

Lemma 2. Let 𝑢, 𝛼 ∈ (0, 1) and

𝑓
𝑢,𝛼

(𝑥) = 𝑢𝑥
2
− (1 − 𝛼) (

𝑥

arctan𝑥
− 1) . (12)

Then 𝑓
𝑢,𝛼
(𝑥) > 0 for all 𝑥 ∈ (0, 1) if and only if 𝑢 ≥ (1 − 𝛼)/3

and𝑓
𝑢,𝛼
(𝑥) < 0 for all𝑥 ∈ (0, 1) if and only if 𝑢 ≤ (1−𝛼)(4/𝜋−

1).

Proof. From (12), one has

𝑓
𝑢,𝛼

(0
+
) = 0, (13)

𝑓
𝑢,𝛼

(1
−
) = 𝑢 − (1 − 𝛼) (

4

𝜋

− 1) , (14)

𝑓


𝑢,𝛼
(𝑥) = 2𝑥 [𝑢 −

1 − 𝛼

2

𝑔 (𝑥)] , (15)

where

𝑔 (𝑥) =

(1 + 𝑥
2
) arctan𝑥 − 𝑥

𝑥 (1 + 𝑥
2
) (arctan𝑥)2

. (16)

Let𝑔
1
(𝑥) = arctan𝑥−𝑥/(1+𝑥2) and𝑔

2
(𝑥) = 𝑥(arctan𝑥)2,

then

𝑔 (𝑥) =

𝑔
1
(𝑥)

𝑔
2
(𝑥)

, 𝑔
1
(0) = 𝑔

2
(0) = 0, (17)

𝑔
1


(𝑥)

𝑔
2


(𝑥)

=

2𝑥
2

2𝑥 (1 + 𝑥
2
) arctan𝑥 + (1 + 𝑥2)2(arctan𝑥)2

=

1

((1 + 𝑥
2
) arctan𝑥/𝑥) + (1/2) [(1 + 𝑥2) arctan𝑥/𝑥]2

.

(18)

It is not difficult to verify that the function (1 + 𝑥
2
)

arctan𝑥/𝑥 is strictly increasing on (0, 1). Then (17) and (18)
together with Lemma 1 lead to the conclusion that 𝑔(𝑥)
is strictly decreasing on (0, 1). Moreover, making use of
L’Hôpital’s rule, we get

𝑔 (0
+
) =

2

3

, (19)

𝑔 (1
−
) =

4 (𝜋 − 2)

𝜋
2

. (20)

We divide the proof into four cases.

Case 1. 𝑢 ≥ (1 − 𝛼)/3. Then from (15) and (19) together with
themonotonicity of 𝑔(𝑥), we clearly see that𝑓

𝑢,𝛼
(𝑥) is strictly

increasing on (0, 1). Therefore, 𝑓
𝑢,𝛼
(𝑥) > 0 for all 𝑥 ∈ (0, 1)

follows from (13) and the monotonicity of 𝑓
𝑢,𝛼
(𝑥).

Case 2. 𝑢 ≤ 2(1 − 𝛼)(𝜋 − 2)/𝜋
2. Then from (15) and (20)

together with the monotonicity of 𝑔(𝑥), we clearly see that

𝑓
𝑢,𝛼
(𝑥) is strictly decreasing on (0, 1). Therefore, 𝑓

𝑢,𝛼
(𝑥) < 0

for all 𝑥 ∈ (0, 1) follows from (13) and the monotonicity of
𝑓
𝑢,𝛼
(𝑥).

Case 3. 2(1 − 𝛼)(𝜋 − 2)/𝜋2 < 𝑢 ≤ (1 − 𝛼)(4/𝜋 − 1). Then (14)
leads to

𝑓
𝑢,𝛼

(1
−
) ≤ 0. (21)

From (15), (19), and (20) together with the monotonicity
of 𝑔(𝑥), we clearly see that there exists unique 𝑥

0
∈ (0, 1)

such that 𝑓
𝑢,𝛼
(𝑥) is strictly decreasing on (0, 𝑥

0
] and strictly

increasing on [𝑥
0
, 1). Therefore, 𝑓

𝑢,𝛼
(𝑥) < 0 for all 𝑥 ∈

(0, 1) follows from (13) and (21) together with the piecewise
monotonicity of 𝑓

𝑢,𝛼
(𝑥).

Case 4. (1 − 𝛼)(4/𝜋 − 1) < 𝑢 ≤ (1 − 𝛼)/3. Then (14) leads to

𝑓
𝑢,𝛼

(1
−
) > 0. (22)

It follows from (15), (19), and (20) together with the
monotonicity of𝑔(𝑥), there exists unique𝑥

1
∈ (0, 1) such that

𝑓
𝑢,𝛼
(𝑥) is strictly decreasing on (0, 𝑥

1
] and strictly increasing

on [𝑥
1
, 1). Equation (13) and inequality (22) together with the

piecewise monotonicity of 𝑓
𝑢,𝛼
(𝑥) lead to the conclusion that

there exists 𝑥
2
∈ (𝑥
1
, 1) such that 𝑓

𝑢,𝛼
(𝑥) < 0 for 𝑥 ∈ (0, 𝑥

2
)

and 𝑓
𝑢,𝛼
(𝑥) > 0 for 𝑥 ∈ (𝑥

2
, 1).

Lemma 3. Let 𝜆, 𝛼 ∈ (0, 1) and

𝜑
𝜆,𝛼

(𝑥) = 𝜆𝑥
2
− (1 − 𝛼)(

𝑥

sinh−1 (𝑥)
− 1) . (23)

Then 𝜑
𝜆,𝛼
(𝑥) > 0 for all 𝑥 ∈ (0, 1) if and only if 𝜆 ≥ (1 − 𝛼)/6

and 𝜑
𝜆,𝛼
(𝑥) < 0 for all 𝑥 ∈ (0, 1) if and only if 𝜆 ≤ (1 − 𝛼)(1 −

log(1 + √2))/ log(1 + √2).

Proof. From (23) we get

𝜑
𝜆,𝛼

(0
+
) = 0, (24)

𝜑
𝜆,𝛼

(1
−
) = 𝜆 −

(1 − 𝛼) [1 − log (1 + √2)]

log (1 + √2)
, (25)

𝜑


𝜆,𝛼
(𝑥) = 2𝑥 [𝜆 −

1 − 𝛼

2

𝜓 (𝑥)] , (26)

where

𝜓 (𝑥) =

sinh−1 (𝑥) − 𝑥/√1 + 𝑥2

𝑥(sinh−1 (𝑥))
2

. (27)

Let 𝜓
1
(𝑥) = sinh−1(𝑥) − 𝑥/√1 + 𝑥

2 and 𝜓
2
(𝑥) =

𝑥(sinh−1(𝑥))2, then

𝜓 (𝑥) =

𝜓
1
(𝑥)

𝜓
2
(𝑥)

, 𝜓
1
(0) = 𝜓

2
(0) = 0,
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𝜓
1


(𝑥)

𝜓
2


(𝑥)

= 𝑥
2
× ((1 + 𝑥

2
)

3/2

(sinh−1 (𝑥))
2

+ 2𝑥 (1 + 𝑥
2
) sinh−1 (𝑥) )

−1

= (((1 + 𝑥
2
)

3/4

sinh−1 (𝑥) /𝑥)
2

+ 2(1+𝑥
2
)

1/4

((1+𝑥
2
)

3/4

sinh−1 (𝑥) /𝑥))
−1

.

(28)

It is not difficult to verify that the function (1 + 𝑥
2
)
3/4

sinh−1(𝑥)/𝑥 is strictly increasing on (0, 1).Then (28) together
with Lemma 1 leads to the conclusion that 𝜓(𝑥) is strictly
decreasing on (0, 1). Moreover,making use of L’Hôpital’s rule,
we have

𝜓 (0
+
) =

1

3

, (29)

𝜓 (1
−
) =

√2 log (1 + √2) − 1
√2log2 (1 + √2)

. (30)

We divide the proof into four cases.

Case 1. 𝜆 ≥ (1 − 𝛼)/6. Then from (26) and (29) together with
themonotonicity of𝜓(𝑥), we clearly see that 𝜑

𝜆,𝛼
(𝑥) is strictly

increasing on (0, 1). Therefore, 𝜑
𝜆,𝛼
(𝑥) > 0 for all 𝑥 ∈ (0, 1)

follows from (24) and the monotonicity of 𝜑
𝜆,𝛼
(𝑥).

Case 2. 𝜆 ≤ (1 − 𝛼)[√2 log(1 + √2) − 1]/[2√2log2(1 + √2)].
Then from (26) and (30) together with the monotonicity of
𝜓(𝑥), we clearly see that𝜑

𝜆,𝛼
(𝑥) is strictly decreasing on (0, 1).

Therefore, 𝜑
𝜆,𝛼
(𝑥) < 0 for all 𝑥 ∈ (0, 1) follows from (24) and

the monotonicity of 𝜑
𝜆,𝛼
(𝑥).

Case 3. ((1 − 𝛼)[√2 log(1 +√2) − 1]/2√2log2(1 +√2)) < 𝜆 ≤

((1 − 𝛼)[1 − log(1 + √2)]/ log(1 + √2)). Then (25) leads to

𝜑
𝜆,𝛼

(1
−
) ≤ 0. (31)

From (26), (29), and (30) together with the monotonicity
of 𝜓(𝑥), we clearly see that there exists 𝑥

3
∈ (0, 1) such that

𝜑
𝜆,𝛼
(𝑥) is strictly decreasing on (0, 𝑥

3
] and strictly increasing

on [𝑥
3
, 1). Therefore, 𝜑

𝜆,𝛼
(𝑥) < 0 for all 𝑥 ∈ (0, 1) follows

from (24) and (31) together with the piecewise monotonicity
of 𝜑
𝜆,𝛼
(𝑥).

Case 4. ((1−𝛼)[1−log(1+√2)]/ log(1+√2)) < 𝜆 < ((1−𝛼)/6).
Then (25) leads to

𝜑
𝜆,𝛼

(1
−
) > 0. (32)

It follows from (26), (29), and (30) together with the
monotonicity of 𝜓(𝑥), there exists 𝑥

4
∈ (0, 1) such that

𝜑
𝜆,𝛼
(𝑥) is strictly decreasing on (0, 𝑥

4
] and strictly increasing

on [𝑥
4
, 1). Equation (24) and inequality (32) together with the

piecewise monotonicity of 𝜑
𝜆,𝛼
(𝑥) lead to the conclusion that

there exists 𝑥
5
∈ (𝑥
4
, 1) such that 𝜑

𝜆,𝛼
(𝑥) < 0 for 𝑥 ∈ (0, 𝑥

5
)

and 𝜑
𝜆,𝛼
(𝑥) > 0 for 𝑥 ∈ (𝑥

5
, 1).

3. Main Results

Theorem 4. If 𝛼 ∈ (0, 1) and 𝑟
1
, 𝑠
1
∈ (1/2, 1), then the double

inequality

𝐶 (𝑟
1
𝑎 + (1 − 𝑟

1
) 𝑏, 𝑟
1
𝑏 + (1 − 𝑟

1
) 𝑎)

< 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼) 𝑇 (𝑎, 𝑏)

< 𝐶 (𝑠
1
𝑎 + (1 − 𝑠

1
) 𝑏, 𝑠
1
𝑏 + (1 − 𝑠

1
) 𝑎)

(33)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑟
1
≤ [1 +

√(1 − 𝛼)(4 − 𝜋)/𝜋]/2 and 𝑠
1
≥ [1 + √(1 − 𝛼)/3]/2.

Proof. Since 𝐴(𝑎, 𝑏), 𝑇(𝑎, 𝑏), and 𝐶(𝑎, 𝑏) are symmetric and
homogeneous of degree one, without loss of generality, we
assume that 𝑎 > 𝑏. Let 𝑝 ∈ (1/2, 1) and 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏),
then 𝑥 ∈ (0, 1) and

𝐶 (𝑝𝑎 + (1 − 𝑝) 𝑏, 𝑝𝑏 + (1 − 𝑝) 𝑎)

− [𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼) 𝑇 (𝑎, 𝑏)]

= 𝐴 (𝑎, 𝑏) [(2𝑝 − 1)
2

𝑥
2
− (1 − 𝛼) (

𝑥

arctan𝑥
− 1)] .

(34)

Therefore, Theorem 4 follows easily from Lemma 2 and
(34).

Theorem 5. If 𝛼 ∈ (0, 1) and 𝑟
2
, 𝑠
2
∈ (1/2, 1), then the double

inequality

𝐶 (𝑟
2
𝑎 + (1 − 𝑟

2
) 𝑏, 𝑟
2
𝑏 + (1 − 𝑟

2
) 𝑎)

< 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼)𝑀 (𝑎, 𝑏)

< 𝐶 (𝑠
2
𝑎 + (1 − 𝑠

2
) 𝑏, 𝑠
2
𝑏 + (1 − 𝑠

2
) 𝑎)

(35)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only
if 𝑠
2

≥ [1 + √(1 − 𝛼)/6]/2 and 𝑟
2

≤ [1 +

√(1 − 𝛼)(1 − log(1 + √2))/ log(1 + √2)]/2.

Proof. Since 𝐴(𝑎, 𝑏),𝑀(𝑎, 𝑏), and 𝐶(𝑎, 𝑏) are symmetric and
homogeneous of degree one, without loss of generality, we
assume that 𝑎 > 𝑏. Let 𝑞 ∈ (1/2, 1) and 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏),
then 𝑥 ∈ (0, 1) and

𝐶 (𝑞𝑎 + (1 − 𝑞) 𝑏, 𝑞𝑏 + (1 − 𝑞) 𝑎)

− [𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼)𝑀 (𝑎, 𝑏)]

= 𝐴 (𝑎, 𝑏) [(2𝑞 − 1)
2

𝑥
2
− (1 − 𝛼)(

𝑥

sinh−1 (𝑥)
− 1)] .

(36)

Therefore, Theorem 5 follows easily from Lemma 3 and
(36).
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Remark 6. If 𝛼 = 0, then Theorem 4 reduces to the first
double inequality in (8).

Corollary 7. If 𝜆, 𝜇 ∈ (1/2, 1), then the double inequality

𝐶 (𝜆𝑎 + (1 − 𝜆) 𝑏, 𝜆𝑏 + (1 − 𝜆) 𝑎)

< 𝑀 (𝑎, 𝑏) < 𝐶 (𝜇𝑎 + (1 − 𝜇) 𝑏, 𝜇𝑏 + (1 − 𝜇) 𝑎)

(37)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝜆 ≤ [1 +

√1/ log(1 + √2) − 1]/2 and 𝜇 ≥ (6 + √6)/12.

Proof. Corollary 7 follows easily from Theorem 5 with 𝛼 =

0.
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