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Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related
formulas are developed.The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional
form of Lagrange’s expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange’s
expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant
vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of𝑁-dimensional polyadics
is derived. A fractional 𝑁-dimensional Lagrange inversion theorem is proved.

1. Introduction

The fractional calculus (FC) may be considered as an old
and yet novel topic. It dates back to the end of the sev-
enteenth century through the pioneering works of Leibniz,
Euler, Lagrange, Abel, Liouville, and many others. In a
letter to L’Hospital in 1695, Leibniz raised the possibility of
generalizing the operation of differentiation to noninteger
orders, and L’Hospital asked what would be the result of
half-differentiating 𝑥. Leibniz replied: It leads to a paradox,
from which one day useful consequences will be drawn. The
paradoxical aspects are due to the fact that there are several
different ways of generalizing the differentiation operator to
non-integer powers, leading to inequivalent results.

The fractional calculus (FC) generalizes the ordinary
differentiation and integration so as to include any arbitrary
real or even complex order instead of being only the positive
integers (see, e.g., Samko et al. [1], Kilbas, et al. [2], Magin [3],
and Podlubny [4]).

During the second half of the twentieth century till now,
FC gained considerable popularity and importance. Many
authors have explored the world of FC giving new insight
into many areas of scientific research in physics, mechanics,
and mathematics. Miller and Ross [5] pointed out that there
is hardly a field of science or engineering that has remained
untouched by the new concepts of FC.

Fractional derivatives provide an excellent as well as very
powerful tool for the description and modeling of many
phenomena in nature. There are many applications where
the fractional calculus can be widely used, for example,
viscoelasticity, electrochemistry, diffusion processes, control
theory, heat conduction, electricity, mechanics, chaos and
fractals, turbulence, fluid dynamics, stochastic dynamical
system, plasma physics and controlled thermonuclear fusion,
nonlinear control theory, image processing, nonlinear biolog-
ical systems, astrophysics, and so forth, see for details [2–12]
and the references therein.

In a very good book by Baleanu et al. [13], readers were
given the possibility of finding very important mathemat-
ical tools for working with fractional models and solving
fractional differential equations, such as a generalization of
Stirling numbers in the framework of fractional calculus
and a set of efficient numerical methods. Moreover, they
introduced some applied topics, in particular, fractional
variational methods which are used in physics, engineering,
or economics. They also discussed the relationship between
semi-Markov continuous-time random walks and the space-
time fractional diffusion equation, which generalized the
usual theory relating randomwalks to the diffusion equation.

Debbouche and Baleanu [14] introduced a new concept
called implicit evolution system to establish the existence
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results of mild and strong solutions of a class of frac-
tional nonlocal nonlinear integrodifferential system; then
they proved the exact null controllability result of a class
of fractional evolution nonlocal integrodifferential control
systems in Banach space. As an application that illustrates
their abstract results, they provided two examples.

Babakhani and Baleanu [15] considered a class of nonlin-
ear fractional order differential equations involving Caputo
fractional derivative with lower terminal at 0 in order to study
the existence solution satisfying the boundary conditions or
satisfying the initial conditions.They derived unique solution
under Lipschitz condition. In order to illustrate their results
they presented several examples.

Finally and roughly speaking, the fractional calculus
may improve the smoothness properties of functions rather
than the calculus with integer orders. The development
of the FC theory is due to the contributions of many
mathematicians such as Euler, Liouville, Riemann, and Let-
nikov. Several definitions of a fractional derivative have
been proposed.These definitions include Riemann-Liouville,
Grunwald-Letnikov,Weyl, Caputo,Marchaud, andRiesz frac-
tional derivatives, see Miller and Ross [5] and Riewe [16].
Riemann-Liouville derivative is the most used generalization
of the derivatives. It is based on the direct generalization
of Cauchy’s formula for calculating an 𝑛-fold or repeated
integral, see Oldham and Spanier [17].

In 1770, Lagrange (1736–1813) published his power series
solution of the implicit equation. However, his solution used
cumbersome series expansions of logarithms. [18, 19]. This
expansion was generalized by Bürmann [20–22]. There is
a straightforward derivation using complex analysis and
contour integration; the complex formal power series version
is clearly a consequence of knowing the formula for poly-
nomials; so the theory of analytic functions may be applied.
Actually, the machinery from analytic function theory enters
only in a formal way in this proof. In 1780, Laplace (1749–
1827) published a simpler proof of the theorem, based on
the relations between partial derivatives with respect to the
variable and the parameter, see [23, 24], Hermite (1822–1901)
presented the most straightforward proof of the theorem by
using contour integration [25–27].

In mathematical analysis, this series expansions is known
as Lagrange inversion theorem, also known as the Lagrange-
Bürmann formula, giving the Taylor series expansion of the
inverse function. Suppose that 𝑧 = 𝑓(𝑤), where 𝑓 is analytic
function at a point 𝑎 and 𝑓(𝑎) ̸= 0. Then, it is possible to
invert or solve the equation for 𝑤 such that 𝑤 = 𝑔(𝑧) on a
neighborhood of 𝑓(𝑎), where 𝑔 is analytic at the point 𝑓(𝑎).
This is also called reversion of series. The series expansion of
𝑔 is given by

𝑤 = 𝑔 (𝑧)

= 𝑎 +

∞

∑

𝑛=1

(lim
𝑤→𝑎

(
(𝑧 − 𝑓 (𝑎))

𝑛

𝑛!

𝑑
𝑛−1

𝑑𝑤𝑛−1
(

𝑤 − 𝑎

𝑓(𝑤) − 𝑓(𝑎)
)

𝑛

)) .

(1)

In this work, we will apply the concepts of fractional calculus

to obtain a fractional form of the Lagrange expansion and
some generalizations.

2. Basic Definitions and Theorems

Definition 1. By 𝐷, we denote the operator that maps a
differentiable function onto its integer derivative; that is,
𝐷𝑓(𝑥) = 𝑓

; by 𝐽
𝑎
, we denote the integer integration operator

that maps a function 𝑓, assumed to be (Riemann) integrable
on the compact interval [𝑎, 𝑏], onto its primitive centered at
𝑎; that is, 𝐽

𝑎
𝑓(𝑥) = ∫

𝑥

𝑎

𝑓(𝑡)𝑑𝑡 for all 𝑎 ≤ 𝑥 ≤ 𝑏.

Definition 2. By 𝐷
𝑛 and 𝐽

𝑛

𝑎
, 𝑛 ∈ N, we denote the 𝑛-fold

iterates of 𝐷 and 𝐽
𝑎
, respectively. Note that 𝐷

𝑛 is the left
inverse of 𝐽𝑛

𝑎
in a suitable space of functions.

Lemma 3. Let 𝑓 be Riemann integrable on [𝑎, 𝑏]. Then, for
𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑛 ∈ N, one has

𝐽
𝑛

𝑎
𝑓(𝑥) =

1

(𝑛 − 1)!
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝑛−1

𝑓(𝑡)𝑑𝑡, 𝑛 ∈ N. (2)

Definition 4. The operator J𝛼
𝑎
, defined on Lebesgue space

𝐿
1
[𝑎, 𝑏], denotes the Riemann-Liouville fractional operator

of order 𝛼. That is,

J
𝛼

𝑎
𝑓(𝑥) =

1

Γ (𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1

𝑓(𝑡)𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝛼 ∈ R.

(3)

Remark 5. It is evident that J𝛼
𝑎

≡ 𝐽
𝑛

𝑎
, for all 𝛼 ∈ N, except

for the fact that we have extended the domain from Riemann
integrable functions to Lebesgue integrable functions (which
will not lead to any problems in our development). Moreover,
in the case 𝛼 ≥ 1, it is obvious that the integralJ𝛼

𝑎
𝑓(𝑥) exists

for every 𝑥 ∈ [𝑎, 𝑏] because the integrand is the product of an
integrable function𝑓 and the continuous function (𝑥 − ∙)

𝛼−1.
One important property of integer-order integral operators, is
preserved by this generalization. That is,

J
𝛼

𝑎
(J
𝛽

𝑎
𝑓(𝑥)) = J

𝛽

𝑎
(J
𝛼

𝑎
𝑓(𝑥))

= J
𝛼+𝛽

𝑎
𝑓(𝑥) , 𝛼, 𝛽 > 0, 𝑓(𝑥) ∈ 𝐿

1
[𝑎, 𝑏] .

(4)

Definition 6. Let 𝛼 ∈ R+ and let 𝑚 = ⌈𝛼⌉, The Riemann-
Liouville fractional differential operator of order 𝛼 is defined
as such that. Then,D𝛼

𝑎
= 𝐷
𝑚

𝑎
J𝑚−𝛼
𝑎

. That is,

D
𝛼

𝑎
𝑓(𝑥) =

1

Γ (𝑚 − 𝛼)
(

𝑑

𝑑𝑥
)

𝑚

∫

𝑥

𝑎

(𝑥 − 𝑡)
𝑚−𝛼−1

× 𝑓(𝑡) 𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝛼 ∈ R.

(5)

Lemma 7. Let 𝛼 ∈ R+ and let m ∈ N such that > 𝛼. Then,
D𝛼
𝑎
= D𝑚
𝑎
J𝑚−𝛼
𝑎

.

Proof. Since 𝑚 > 𝛼 yields 𝑚 ≥ ⌈𝛼⌉.
Thus,

𝐷
𝑚

J
𝑚−𝛼

𝑎
= 𝐷
⌈𝛼⌉

𝐷
𝑚−⌈𝛼⌉

𝐽
𝑚−⌈𝛼⌉

𝐽
⌈𝛼⌉−𝛼

= 𝐷
⌈𝛼⌉+𝑚−⌈𝛼⌉−𝑚+⌈𝛼⌉−⌈𝛼⌉+𝛼

= 𝐷
𝛼

= D
𝛼

𝑎
.

(6)
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Theorem8. Let (𝛼 ≥ 0) ∈ R+.Then, for every𝑓(𝑥) ∈ 𝐿
1
[𝑎, 𝑏],

D𝛼
𝑎
J𝛼
𝑎
𝑓(𝑥) = 𝑓(𝑥).

Proof. For 𝛼 = 0, both operator, are the identity. For 𝛼 > 0,
let 𝑚 ≥ ⌈𝛼⌉; then,

D
𝛼

𝑎
J
𝛼

𝑎
𝑓 (𝑥) = 𝐷

𝑚

𝑎
J
𝑚−𝛼

𝑎
J
𝛼

𝑎
𝑓 (𝑥) = 𝐷

𝑚

𝑎
J
𝑚

𝑎
𝑓 (𝑥)

= 𝐷
𝑚

𝑎
𝐽
𝑚

𝑎
𝑓(𝑥) = 𝑓(𝑥) .

(7)

Corollary 9. Let𝑓 be analytic in (𝑎−ℎ, 𝑎+ℎ) for some ℎ > 0,
and let (𝛼 ≥ 0) ∈ R+.

Then,

(𝐼-1) J
𝛼

𝑎
𝑓(𝑥) =

∞

∑

𝑘=0

(−1)
𝑚

(𝑥 − 𝑎)
𝑘+𝛼

𝑘! (𝛼 + 𝑘) Γ(𝛼)
𝐷
𝑘

𝑎
𝑓(𝑥) ,

∀𝑎 ≤ 𝑥 < 𝑎 +
ℎ

2
,

(𝐼-2)J𝛼
𝑎
𝑓(𝑥) =

∞

∑

𝑘=0

(𝑥 − 𝑎)
𝑘+𝛼

Γ (𝑘 + 1 + 𝛼)
𝐷
𝑘

𝑎
𝑓(𝑎) ,

∀𝑎 ≤ 𝑥 < 𝑎 + ℎ,

(𝐷-1)D𝛼
𝑎
𝑓(𝑥) =

∞

∑

𝑘=0

(
𝛼

𝑘
)

(𝑥 − 𝑎)
𝑘−𝛼

(𝑘 + 1 − 𝛼)
𝐷
𝑘

𝑎
𝑓(𝑥) ,

∀𝑎 ≤ 𝑥 < 𝑎 +
ℎ

2
,

(𝐷-2)D𝛼
𝑎
𝑓(𝑥) =

∞

∑

𝑘=0

(𝑥 − 𝑎)
𝑘−𝛼

(𝑘 + 1 − 𝛼)
𝐷
𝑘

𝑎
𝑓(𝑎) ,

∀𝑎 ≤ 𝑥 < 𝑎 + ℎ.

(8)

The binomial coefficients for 𝛼 ∈ R and 𝑘 ∈ N are defined as

(
𝛼

𝑘
) =

𝛼 (𝛼 − 1) (𝛼 − 2) ⋅ ⋅ ⋅ (𝛼 − 𝑘 + 1)

𝑘!

=
𝛼!

𝑘! (𝛼 − 𝑘)!
.

(9)

Proof. For the first two statements (𝐼-1), (𝐼-2) and we use the
definition of the Riemann-Liouville integral operatorJ𝛼

𝑎
and

expand𝑓(𝑡) into a power series about𝑥. Since𝑥 ∈ [𝑎, 𝑎+ℎ/2),
the power series converges in the entire interval of integration
and exchanges summation and integration. Then, we use the
explicit representation for the fractional integral of the power
function:

J
𝛼

𝑎
(𝑥 − 𝑎)

𝑘

=
Γ(𝑘 + 1)

(𝛼 + 𝑘 + 1)
(𝑥 − 𝑎)

𝑘+𝛼

. (10)

(𝐼-1) follows immediately. For the second statement, we pro-
ceed in a similar way; but we now expand the power series at 𝑎
and not at𝑥.This allows us again to conclude the convergence
of the series in the required interval. The analyticity of J𝛼

𝑎

follows immediately from the second statement.

To prove (𝐷-1) we use the relation

D
𝛼

𝑎
= 𝐷
⌈𝛼⌉

J
⌈𝛼⌉−𝛼

𝑎
,

𝑘!Γ(𝛼) (𝛼 + 𝑘) (
−𝛼

𝑘
) = (−1)

𝑘

Γ (𝑘 + 1 + 𝛼) .

(11)

This allows us to rewrite the statement (𝐼-1) as

J
⌈𝛼⌉−𝛼

𝑎
𝑓(𝑥) =

∞

∑

𝑘=0

(
⌈𝛼⌉ − 𝛼

𝑘
)

(𝑥 − 𝑎)
𝑘+⌈𝛼⌉−𝛼

Γ (𝑘 + 1 + ⌈𝛼⌉ − 𝛼)
𝐷
𝑘

𝑎
𝑓 (𝑥) .

(12)

Differentiating ⌈𝛼⌉ times with respect to 𝑥, we find

𝐷
⌈𝛼⌉

𝑎
J
⌈𝛼⌉−𝛼

𝑎
𝑓(𝑥) = D

𝛼

𝑎
𝑓(𝑥) =

∞

∑

𝑘=0

(
⌈𝛼⌉ − 𝛼

𝑘
)

×
1

Γ(𝑘 + 1 + ⌈𝛼⌉ − 𝛼)

× 𝐷
⌈𝛼⌉

𝑎
[(∙ − 𝑎)

𝑘+⌈𝛼⌉−𝛼

𝐷
𝑘

𝑎
𝑓](𝑥) .

(13)

The classical version of Leibniz’ formula yields

D
𝛼

𝑎
𝑓(𝑥) =

∞

∑

𝑘=0

(
⌈𝛼⌉ − 𝛼

𝑘
)

1

Γ (𝑘 + 1 + ⌈𝛼⌉ − 𝛼)

⌈𝛼⌉

∑

𝑗=0

(
⌈𝛼⌉

𝑗
)

× 𝐷
⌈𝛼⌉−𝑗

𝑎
[(∙ − 𝑎)

𝑘+⌈𝛼⌉−𝛼

] (𝑥)𝐷
𝑘+𝑗

𝑎
𝑓,

(14)

which yields

D
𝛼

𝑎
𝑓(𝑥) =

∞

∑

𝑘=0

(
𝛼 − ⌈𝛼⌉

𝑘
)

⌈𝛼⌉

∑

𝑗=0

(
⌈𝛼⌉

𝑗
)

[(𝑥 − 𝑎)
𝑘+𝑗−𝛼

]

Γ(𝑘 + 1 + 𝑗 − 𝛼)

× (𝑥)𝐷
𝑘+𝑗

𝑎
𝑓.

(15)

By definition, (
𝜇

𝑗
) = 0 if 𝜇 ∈ N and 𝜇 < 𝑗. Thus, we

may replace the upper limit in the inner sum by ∞ without
changing the expression. The substitution 𝑗 = 𝑙 − 𝑘 gives

D
𝛼

𝑎
𝑓(𝑥) =

∞

∑

𝑙=0

∞

∑

𝑘=0

(
𝛼 − ⌈𝛼⌉

𝑘
)(

⌈𝛼⌉

𝑙 − 𝑘
)

[(𝑥 − 𝑎)
𝑙−𝛼

]

Γ(𝑙 + 1 − 𝛼)
(𝑥)𝐷
𝑙

𝑎
𝑓.

(16)

Using the fact that ∑∞
𝑙=0

∑
∞

𝑘=0
= ∑
∞

𝑙=0
∑
𝑙

𝑘=0
,

D
𝛼

𝑎
𝑓(𝑥) =

∞

∑

𝑙=0

𝑙

∑

𝑘=0

(
𝛼 − ⌈𝛼⌉

𝑘
) (

⌈𝛼⌉

𝑙 − 𝑘
)

[(𝑥 − 𝑎)
𝑙−𝛼

]

Γ(𝑙 + 1 − 𝛼)
(𝑥)𝐷
𝑙

𝑎
𝑓.

(17)

And the explicit calculation yields

𝑙

∑

𝑘=0

(
𝛼 − ⌈𝛼⌉

𝑘
)(

⌈𝛼⌉

𝑙 − 𝑘
) = (

⌈𝛼⌉

𝑙
) , (18)

thus, (𝐷-1) follows directly.
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3. Fractional Form of Lagrange’s Expansion in
One Variable

We can use the standard form of Lagrange’s expansion for one
implicitly defined independent variable and the Definition 6
to obtain the fractional form of Lagrange’s expansion as
follows.

Let 𝑧 be a function of (𝜁, 𝜀) and in terms of another
function 𝜇 such that

𝑧 = 𝑧 (𝜁, 𝜀) ≡ 𝜁 + 𝜀𝜇 (𝑧) . (19)

Then, for any function 𝑓

𝑓(𝑧) = 𝑓(𝜁) +

∞

∑

𝑛=1

𝜀
𝑛

𝑛!

𝑑
𝑛−1

𝑑𝜁𝑛−1
[𝜇
𝑛

(𝜁)
𝑑𝑓 (𝜁)

𝑑𝜁
] (20)

for small 𝜀. If 𝑓 is the identity

𝑧 = 𝜁 +

∞

∑

𝑛=1

𝜀
𝑛

𝑛!

𝑑
𝑛−1

𝑑𝜁𝑛−1
[𝜇
𝑛

(𝜁)] , (21)

then

𝑓(𝑧) = 𝑓(𝜁) +

∞

∑

𝑛=1

𝜀
𝑛

𝑛!

𝑑
𝑛−1

𝑑𝜁𝑛−1
[𝜇
𝑛

(𝜁)
𝑑𝑓 (𝜁)

𝑑𝜁
] . (22)

This classical result can be obtained using the following
integral:

𝑓(𝑧) = ∫ 𝛿 (𝜀𝜇 (𝜏) − 𝜏 + 𝜁) 𝑓(𝜏) (1 − 𝜀𝜇


(𝜏)) 𝑑𝜏 (23)

Now we are going to introduce a fractional form of the
Lagrange inversion formula.

Rewrite the integral (23) in the fractional form as

𝑓(𝑧) =
𝑧
J
𝛼

𝑎
𝛿 (𝜀𝜇 (𝑧) − 𝑧 + 𝜁)

× 𝑓(𝑧) (1 − 𝜀
𝑧
D
𝛼

𝑎
𝜇 (𝑧))

=
1

Γ (𝛼)
∫

𝑧

𝑎

(𝑧 − 𝜏)
𝛼−1

𝛿 (𝜀𝜇 (𝜏) − 𝜏 + 𝜁)

× 𝑓(𝜏) (1 − 𝜀
𝜏
D
𝛼

𝑎
𝜇 (𝜏)) 𝑑𝜏.

(24)

Writing the delta function as an integral, we have

𝑓(𝑧) =
1

2𝜋Γ (𝛼)
∫

𝑧

𝑎

∫

𝜋

−𝜋

(𝑧 − 𝜏)
𝛼−1

𝑒
(𝑖𝜉[𝜀𝜇(𝜏)−𝜏+𝜁])

× 𝑓 (𝜏) (1 − 𝜀
𝜏
D
𝛼

𝑎
𝜇 (𝜏)) 𝑑𝜉𝑑𝜏

=
1

2𝜋Γ (𝛼)

∞

∑

𝑛=0

∫

𝑧

𝑎

∫

𝜋

−𝜋

(𝑖𝜉𝜀𝜇 (𝜏))
𝑛

𝑒
𝑖𝑘(𝜁−𝜏)

𝑛!
(𝑧 − 𝜏)

𝛼−1

× 𝑓(𝜏) (1 − 𝜀
𝜏
D
𝛼

𝑎
𝜇 (𝜏)) 𝑑𝜉 𝑑𝜏

=
1

2𝜋Γ (𝛼)

∞

∑

𝑛=0

(
𝑧
D
𝛼

𝑎
)
𝑛

∫

𝑧

𝑎

∫

𝜋

−𝜋

(𝜀𝜇 (𝜏))
𝑛

𝑒
𝑖𝜉(𝜁−𝜏)

𝑛!
(𝑧 − 𝜏)

𝛼−1

× 𝑓 (𝜏) (1 − 𝜀
𝜏
D
𝛼

𝑎
𝜇 (𝜏)) 𝑑𝜉 𝑑𝜏.

(25)

The integral over 𝜉 then gives 𝛿(𝜁 − 𝜏) = 0 for all 𝜁 − 𝜏 = 0

and we have

𝑓 (𝑧) =
1

Γ (𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛 (𝜀𝜇 (𝜁))

𝑛

𝑛!
𝑓(𝜁) (1 − 𝜀

𝜁
D
𝛼

𝑎
𝜇 (𝜁))

=
1

𝑛!Γ (𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛

[𝜀
𝑛

(𝜇 (𝜁))
𝑛

𝑓(𝜁) − 𝜀
𝑛+1

× 𝑓(𝜁) (𝜇 (𝜁))
𝑛

(
𝜁
D
𝛼

𝑎
𝜇 (𝜁))]

=
1

𝑛!Γ(𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛

[𝜀
𝑛

(𝜇 (𝜁))
𝑛

𝑓(𝜁) − 𝜀
𝑛+1

𝑓(𝜁) Γ

× (1 + 𝛼) (𝜇 (𝜁))
𝑛

(𝜇(𝜁)
1−𝛼

)]

=
1

𝑛!Γ (𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛

[𝜀
𝑛

(𝜇 (𝜁))
𝑛

𝑓(𝜁) − 𝜀
𝑛+1

× 𝑓(𝜁) Γ(1 + 𝛼) (𝜇(𝜁)
𝑛+1−𝛼

)]

=
1

Γ (𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛

[
𝜀
𝑛

𝑛!
(𝜇 (𝜁))

𝑛

𝑓(𝜁) −
𝜀
𝑛+1

Γ(1 + 𝛼)

Γ(𝑛 + 1 + 𝛼)

× {
𝜁
D
𝛼

𝑎
[𝑓(𝜁) (𝜇 (𝜁))

𝑛+1

]

−
𝜁
D
𝛼

𝑎
𝑓(𝜁) (𝜇 (𝜁))

𝑛+1

} ] .

(26)

On extracting the first termout of summation, set 𝑛+1 = 𝑘 ⇒

𝑛 = 𝑘 − 1, and rearranging the terms then gives the result:

𝑓(𝑧) =
1

Γ(𝛼)
𝑓(𝜁) +

∞

∑

𝑘=0

(
𝜁
D
𝛼

𝑎
)
𝑘−1

𝛼 (𝜀
𝑘

)

Γ (𝑘 + 𝛼)

× [(𝜇 (𝜁))
𝑘

𝜁
D
𝛼

𝑎
𝑓(𝜁)] .

(27)

4. Generalized Fractional Lagrange’s
Expansion in One Variable

We can the Lagrange’s expansion in more than one unknown
function 𝜇

𝑖
(𝑧) as

𝑧 = 𝑧 (𝜁, 𝜀
𝑖
) ≡ 𝜁 +

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝑧) . (28)

This classical result can be obtained using the following
integral:

𝑓(𝑧) = ∫ 𝛿(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜏) − 𝜏 + 𝜁)𝑓(𝜏)(1 −

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇


𝑖
(𝜏)) 𝑑𝜏.

(29)

Now, we are going to introduce a fractional form of the
Lagrange inversion formula.
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Rewrite the integral (29) in the fractional form as

𝑓(𝑧) =
𝑧
J
𝛼

𝑎
𝛿(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝑧) − 𝑧 + 𝜁)

× 𝑓(𝑧)(1 −
𝑧
D
𝛼

𝑎

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝑧))

=
1

Γ (𝛼)
∫

𝑧

𝑎

(𝑧 − 𝜏)
𝛼−1

𝛿(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜏) − 𝜏 + 𝜁)

× 𝑓(𝜏)(1 −
𝜏
D
𝛼

𝑎

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜏)) 𝑑𝜏.

(30)

Writing the delta function as an integral, we have

𝑓(𝑧) =
1

2𝜋Γ (𝛼)
∫

𝑧

𝑎

∫

𝜋

−𝜋

(𝑧 − 𝜏)
𝛼−1

𝑒
(𝑖𝜉[∑
𝑛

𝑖=1
𝜀
𝑖
𝜇
𝑖
(𝜏)−𝜏+𝜁])

𝑓(𝜏)

× (1 −
𝜏
D
𝛼

𝑎

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜏)) 𝑑𝜉 𝑑𝜏

=
1

2𝜋Γ(𝛼)

∞

∑

𝑛=0

∫

𝑧

𝑎

∫

𝜋

−𝜋

1

𝑛!
(𝑖𝜉

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜏))

𝑛

× 𝑒
𝑖𝑘(𝜁−𝜏)

(𝑧 − 𝜏)
𝛼−1

𝑓(𝜏)

× (1 −
𝜏
𝐷
𝛼

𝑎

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜏)) 𝑑𝜉 𝑑𝜏

=
1

2𝜋Γ(𝛼)

∞

∑

𝑛=0

(
𝑧
D
𝛼

𝑎
)
𝑛

∫

𝑧

𝑎

∫

𝜋

−𝜋

1

𝑛!
(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜏))

𝑛

× 𝑒
𝑖𝜉(𝜁−𝜏)

(𝑧 − 𝜏)
𝛼−1

𝑓(𝜏)

× (1 −
𝜏
D
𝛼

𝑎

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜏)) 𝑑𝜉 𝑑𝜏.

(31)

The integral over 𝜉 then gives 𝛿(𝜁 − 𝜏) = 0 for all 𝜁 − 𝜏 = 0

and we have

𝑓(𝑧) =
1

Γ (𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛 1

𝑛!
(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛

× 𝑓(𝜁)(1 −
𝜁
D
𝛼

𝑎

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

=
1

𝑛!Γ(𝛼)

∞

∑

𝑛=0

(
𝜁
𝐷
𝛼

𝑎
) [(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛

𝑓 (𝜁) − 𝑓 (𝜁)

×(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛

× (
𝜁
𝐷
𝛼

𝑎
)

∞

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁)]

=
1

𝑛!Γ (𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛

[(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛

𝑓(𝜁)

−𝑓 (𝜁) Γ(1 + 𝛼)(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛

(

𝑛

∑

𝑖=1

𝜀
𝑖
[𝜇
𝑖
(𝜁)]
1−𝛼

)]

=
1

𝑛!Γ(𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛

[(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛

𝑓(𝜁) − 𝑓 (𝜁)

× Γ (1 + 𝛼)

× (

𝑛

∑

𝑖=1

𝜀
𝑖
[𝜇
𝑖
(𝜁)]
𝑛+1−𝛼

)]

=
1

Γ (𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛

[

[

1

𝑛!
(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛

𝑓(𝜁)

−
Γ (1 + 𝛼)

Γ (𝑛 + 1 + 𝛼)

×
{

{

{

𝜁
D
𝛼

𝑎

[

[

𝑓(𝜁)(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛+1

]

]

−
𝜁
D
𝛼

𝑎
𝑓(𝜁)(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛+1

}

}

}

]

]

=
1

Γ (𝑛 + 1) Γ (𝛼) Γ (𝑛 + 1 + 𝛼)

∞

∑

𝑛=0

(
𝜁
D
𝛼

𝑎
)
𝑛

× [

[

Γ (𝑛 + 1 + 𝛼)(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛

𝑓(𝜁) − Γ (𝑛 + 1)

× Γ (1 + 𝛼)

{

{

{

𝜁
D
𝛼

𝑎

[

[

𝑓(𝜁)(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛+1

]

]

−
𝜁
D
𝛼

𝑎
𝑓(𝜁)(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑛+1

}

}

}

]

]

.

(32)

On extracting the first termout of summation, set 𝑛+1 = 𝑘 ⇒

𝑛 = 𝑘 − 1, and rearranging the terms then gives the result

𝑓(𝑧) =
1

Γ (𝛼)
𝑓(𝜁) +

∞

∑

𝑘=0

(
𝜁
D
𝛼

𝑎
)
𝑘−1 𝛼

Γ (𝑘 + 𝛼)

× [

[

(

𝑛

∑

𝑖=1

𝜀
𝑖
𝜇
𝑖
(𝜁))

𝑘

𝜁
D
𝛼

𝑎
𝑓 (𝜁)]

]

.

(33)
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5. Vector and Tensor Definitions and Notation

For the treatment in higher dimensions, consider the 𝑁-
dimensional space with orthogonal unit base vectors �̂�

𝑘
, (𝑘 =

1, 2, . . . , 𝑛):

�̂�
𝑖
⋅ �̂�
𝑗
= 𝛿
𝑖𝑗
{
= 1 for 𝑖 = 𝑗

= 0 for 𝑖 ̸= 𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) . (34)

Let 𝜁, 𝑧 , and the function 𝜇(𝑧) be 𝑁-dimensional vectors in
this space such that

𝑧 = 𝑧 (𝜁, 𝜀) = 𝜁 + 𝜀𝜇 (𝑧) , (35)

where

𝜁 =

𝑛

∑

𝑘=1

�̂�
𝑘
𝜁
𝑘
, 𝑧 =

𝑛

∑

𝑘=1

�̂�
𝑘
𝑧
𝑘
, 𝜇 (𝑧) =

𝑛

∑

𝑘=1

�̂�
𝑘
𝜇
𝑘
. (36)

For any arbitrary differentiable function 𝐹(𝜁, 𝜀), we can
introduce the following fractional gradient operator as ∇

𝛼

𝜁
.

Definition 10. LetΩ be a domain ofR𝑛. Let 𝐹(𝜁, 𝜀) ∈ 𝐴𝐶
𝑛

(Ω)

is a scalar function that has absolutely continuous derivatives
up to order (𝑛 − 1) on; then fractional gradient is defined as

∇
𝛼

𝜁
𝐹 (𝜁, 𝜀) =

𝜁
D
𝛼

𝑎
𝐹 (𝜁, 𝜀) =

𝜁
𝑠

D
𝛼

𝑎

𝐹 (𝜁
𝑠
, 𝜀) �̂�
𝑠

= �̂�
𝑠

1

Γ (𝑚 − 𝛼)
(

𝜕

𝜕𝜁
𝑠

)

𝑚

∫

𝜁

𝑎

(𝜁 − 𝑡)
𝑚−𝛼−1

𝑓(𝜏) 𝑑𝜏,

𝑎 ≤ 𝜁 ≤ 𝑏, 𝛼 ∈ R,

(37)

where the partial derivatives are taken holding all other
components of the argument fixed.

6. The 𝑁-Dimensional Polyadics
(𝑛th-Order Tensors)

For arbitrary 𝑛-dimensional vectors

𝐴 ≡

𝑛

∑

𝑘=1

�̂�
𝑘
𝐴
𝑘
, 𝐵 ≡

𝑛

∑

𝑘=1

�̂�
𝑘
𝐵
𝑘
, (38)

we use an extension of the notion of an 𝑛-dimensional dyadic
(second-order tensor):

𝐴𝐵 ≡

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

�̂�
𝑖
�̂�
𝑗
𝐴
𝑖
𝐵
𝑗 (39)

to define the 𝑛th-order tensors:

𝐴
(𝑛)

≡ 𝐴𝐴𝐴 ⋅ ⋅ ⋅ 𝐴⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
, 𝐵

(𝑛)

≡ 𝐵𝐵𝐵 ⋅ ⋅ ⋅ 𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times
. (40)

We might call 𝐴
(𝑛) and 𝐵

(𝑛) “polyadics,” since the special
cases for 𝑛 = 2, 3, and 4 are known, respectively, as dyadics,

triadics, and tetradics [21]. The following defined scalar
products then follow quite naturally from (34):

𝐴 ⋅ 𝐵 ≡

𝑛

∑

𝑖=1

𝐴
𝑖
𝐵
𝑖

𝐴𝐴 : 𝐵𝐵 ≡ 𝐴 ⋅ (𝐴 ⋅ 𝐵𝐵) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝐴
𝑖
𝐴
𝑗
𝐵
𝑗
𝐵
𝑖
,

𝐴𝐴𝐴 : 𝐵𝐵𝐵 ≡ 𝐴 ⋅ [𝐴 ⋅ (𝐴 ⋅ 𝐵𝐵𝐵)] =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝐴
𝑖
𝐴
𝑗
𝐴
𝐾
𝐵
𝑘
𝐵
𝑗
𝐵
𝑖
,

(41)

and, in general, define the 𝑛th scalar product:

𝐴
(𝑛)

(
𝑛

⋅
) 𝐵
(𝑛)

≡

𝑛

∑

𝑖
1
=1

𝑛

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑛

∑

𝑖
𝑛
=1

𝐴
𝑖
1

𝐴
𝑖
2

⋅ ⋅ ⋅ 𝐴
𝑖
𝑛

𝐵
𝑖
𝑛

𝐵
𝑖
𝑛−1

⋅ ⋅ ⋅ 𝐵
𝑖
1

.

(42)

Particular examples of 𝑛th order tensors to be used are

[𝜇 (𝜁)]
(𝑛)

≡ 𝜇 (𝜁) 𝜇 (𝜁) ⋅ ⋅ ⋅ 𝜇 (𝜁)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 times

=

𝑛

∑

𝑖
1
=1

𝑛

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑛

∑

𝑖
𝑛
=1

�̂�
𝑖
1

⋅ ⋅ ⋅ �̂�
𝑖
𝑛

𝜇
𝑖
1

(𝜁) ⋅ ⋅ ⋅ 𝜇
𝑖
𝑛

(𝜁) .

(43)

Theorem 11. Assume that 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
≥ 0, and let Ψ ∈

𝐿
1
[𝑎, 𝑏]. Then,

J
𝛼
1

𝑎
J
𝛼
2

𝑎
⋅ ⋅ ⋅J
𝛼
𝑛

𝑎
𝐹(𝑥) = J

𝛼
1
+𝛼
2
+⋅⋅⋅+𝛼

𝑛𝐹(𝑥) (44)

holds almost everywhere on [𝑎, 𝑏]. If additionally Ψ ∈ 𝐶[𝑎, 𝑏]

or 𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
≥ 1, then the identity holds everywhere

on [𝑎, 𝑏].

Proof. We have

J
𝛼

𝑎
𝐹(𝑥) =

1

Γ(𝛼)
∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1

𝐹(𝑡) 𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝛼 ∈ R

(45)

Thus, we can write

J
𝛼
1

𝑎
J
𝛼
2

𝑎
⋅ ⋅ ⋅J
𝛼
𝑛

𝑎
𝐹(𝑥) =

1

Γ (𝛼
1
)

1

Γ (𝛼
2
)
⋅ ⋅ ⋅

1

Γ (𝛼
𝑛
)
∫

𝑥

𝑎

(𝑥 − 𝑡
1
)
𝛼
1
−1

× ∫

𝑡
1

𝑎

(𝑡
1
− 𝑡
2
)
𝛼
2
−1

⋅ ⋅ ⋅

× ∫

𝑡
𝑛−2

𝑎

(𝑡
𝑛−2

− 𝑡
𝑛−1

)
𝛼
𝑛−1
−1

× ∫

𝑡
𝑛−1

𝑎

(𝑡
𝑛−1

− 𝑡
𝑛
)
𝛼
𝑛
−1

× 𝐹(𝑡
𝑛
) 𝑑𝑡
𝑛
𝑑𝑡
𝑛−1

⋅ ⋅ ⋅ 𝑑𝑡
2
𝑑𝑡
1
.

(46)



Abstract and Applied Analysis 7

Using Fubini’s theorem to interchange the order of integra-
tion yields

J
𝛼
1

𝑎
J
𝛼
2

𝑎
⋅ ⋅ ⋅J
𝛼
𝑛

𝑎
𝐹 (𝑥) =

1

Γ(𝛼
1
) Γ(𝛼
2
) ⋅ ⋅ ⋅ Γ(𝛼

𝑛
)

× ∫

𝑥

𝑎

∫

𝑥

𝑡
1

⋅ ⋅ ⋅ ∫

𝑥

𝑡
𝑛−1

∫

𝑥

𝑡
𝑛

(𝑥 − 𝑡
1
)
𝛼
1
−1

× (𝑡
1
− 𝑡
2
)
𝛼
2
−1

⋅ ⋅ ⋅

× (𝑡
𝑛−2

− 𝑡
𝑛−1

)
𝛼
𝑛−1
− 1

× (𝑡
𝑛−1

− 𝑡
𝑛
)
𝛼
𝑛
−1

× 𝐹 (𝑡
𝑛
) 𝑑𝑡
1
𝑑𝑡
2
⋅ ⋅ ⋅ 𝑑𝑡
𝑛−1

𝑑𝑡
𝑛

=
1

Γ (𝛼
1
) Γ (𝛼
2
) ⋅ ⋅ ⋅ Γ (𝛼

𝑛
)

× ∫

𝑥

𝑎

𝐹(𝑡
𝑛
)

𝑛

∏

𝑠=2

∫

𝑥

𝑡
𝑠−1

(𝑥 − 𝑡
1
)
𝛼
1
−1

× (𝑡
𝑠−1

− 𝑡
𝑠
)
𝛼
𝑠
−1

𝑑𝑡
𝑠
𝑑𝑡
𝑛
.

(47)

The substitutions 𝑡
𝑠
= 𝑡
𝑛
+𝑦
𝑠−1

(𝑥−𝑡
𝑛
), 𝑠 = 2, 3, . . . , 𝑛, and 𝑛 =

1, 2, 3, . . . yields the new limits of integration as follows: when
𝑡
𝑠

= 𝑥 ⇒ 𝑥 − 𝑡
𝑛

= 𝑦
𝑠−1

(𝑥 − 𝑡
𝑛
) ⇒ 𝑦

𝑠−1
= 1, and when

𝑡
𝑠
= 𝑡
𝑛
⇒ 𝑡
𝑛
− 𝑡
𝑛
= 𝑦
𝑠−1

(𝑥 − 𝑡
𝑛
) ⇒ 𝑦

𝑠−1
= 0:

J
𝛼
1

𝑎
J
𝛼
2

𝑎
⋅ ⋅ ⋅J
𝛼
𝑛

𝑎
𝐹 (𝑥) =

1

Γ(𝛼
1
) Γ(𝛼
2
) ⋅ ⋅ ⋅ Γ(𝛼

𝑛
)
∫

𝑥

𝑎

𝐹 (𝑡
𝑛
)

×

𝑛

∏

𝑠=2

[∫

1

0

((𝑥 − 𝑡
2
) (1 − 𝑦

1
))
𝛼
1
−1

×(𝑦
𝑠−1

(𝑥 − 𝑡
𝑛
))
𝛼
𝑠
−1

(𝑥 − 𝑡
𝑛
)𝑑𝑦
𝑠−1

]𝑑𝑡
𝑛

=
1

Γ(𝛼
1
) Γ(𝛼
2
) ⋅ ⋅ ⋅ Γ(𝛼

𝑛
)
∫

𝑥

𝑎

𝐹(𝑡
𝑛
)

×

𝑛

∏

𝑠=2

[∫

1

0

((𝑥 − 𝑡
2
) (1 − 𝑦

1
))
𝛼
1
−1

×(𝑦
𝑠−1

(𝑥 − 𝑡
𝑛
))
𝛼
𝑠
−1

(𝑥 − 𝑡
𝑛
)𝑑𝑦
𝑠−1

]𝑑𝑡
𝑛

=
1

Γ(𝛼
1
) Γ(𝛼
2
) ⋅ ⋅ ⋅ Γ(𝛼

𝑛
)

×

𝑛

∏

𝑠=2

∫

𝑥

𝑎

𝐹(𝑡
𝑛
) (𝑥 − 𝑡

2
)
𝛼
1
−1

(𝑥 − 𝑡
𝑛
)
𝛼
𝑠

× [∫

1

0

(1 − 𝑦
1
)
𝛼
1
−1

𝑦
𝑠−1

𝛼
𝑠
−1

𝑑𝑦
𝑠−1

] 𝑑𝑡
𝑛
.

(48)

Iterating the Euler Beta integral ∫
1

0

(1 − 𝑥)
𝛼
1
−1

𝑥
𝛼
2
− 1

𝑑𝑥 =

Γ(𝛼
1
)Γ(𝛼
2
)/Γ(𝛼
1
+ 𝛼
2
) yields

J
𝛼
1

𝑎
J
𝛼
2

𝑎
⋅ ⋅ ⋅J
𝛼
𝑛

𝑎
𝐹 (𝑥) =

1

Γ(𝛼
1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
)

× ∫

𝑥

𝑎

𝐹(𝑡
𝑛
) (𝑥 − 𝑡

𝑛
)
𝛼
1
+𝛼
2
+⋅⋅⋅+𝛼

𝑛

𝑑𝑡
𝑛

= J
𝛼
1
+𝛼
2
+⋅⋅⋅+𝛼

𝑛𝐹(𝑥) .

(49)

hold almost everywhere on [𝑎, 𝑏].
Moreover, by the classical theorems on parameter inte-

grals, if Ψ ∈ 𝐶[𝑎, 𝑏], then also J𝛼
𝑎
Ψ ∈ 𝐶[𝑎, 𝑏], and therefore

J𝛼1
𝑎
J𝛼2
𝑎

⋅ ⋅ ⋅J𝛼𝑛
𝑎

Ψ ∈ 𝐶[𝑎, 𝑏], and J𝛼1+𝛼2+⋅⋅⋅+𝛼𝑛
𝑎

Ψ ∈ 𝐶[𝑎, 𝑏] too.
Thus, since these two continuous functions coincide almost
everywhere, they must coincide everywhere. Finally, if Ψ ∈

𝐿
1
[𝑎, 𝑏] and 𝛼

1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
≥ 1, we have, by the result

above

J
𝛼
1

𝑎
J
𝛼
2

𝑎
⋅ ⋅ ⋅J
𝛼
𝑛

𝑎
𝐹 (𝑥) = J

𝛼
1
+𝛼
2
+⋅⋅⋅+𝛼

𝑛
−1

𝐽
1

𝐹(𝑥) (50)

almost everywhere. Since 𝐽
1

𝐹(𝑥) is continuous, and once
again we may conclude that the two functions on either side
of the equality almost everywhere are continuous, thus they
must be identical everywhere.

Theorem12. Assume that𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑛
≥ 0.Moreover letΨ ∈

𝐿
1
[𝑎, 𝑏]. Then,

D
𝛼
1

a D
𝛼
2

a ⋅ ⋅ ⋅D
𝛼n
a 𝐹 = D

𝛼
1
+𝛼n+⋅⋅⋅𝛼n

a 𝐹. (51)

Proof. The key for proof is using the semigroup property
of the integral operators, the assumption on 𝐹, and the
definition of the Riemann-Liouville differential operator:

D
𝛼
1

𝑎
D
𝛼
2

𝑎
⋅ ⋅ ⋅D
𝛼
𝑛

𝑎
𝐹

= D
𝛼
1

𝑎
D
𝛼
2

𝑎
⋅ ⋅ ⋅D
𝛼
𝑛

𝑎
J
𝛼
1
+𝛼
2
+⋅⋅⋅+ 𝛼

𝑛

𝑎
Ψ

= 𝐷
⌈𝛼
1
⌉

J
⌈𝛼
1
⌉−𝛼
1

𝑎
𝐷
⌈𝛼
2
⌉

J
⌈𝛼
2
⌉−𝛼
2

𝑎
⋅ ⋅ ⋅ 𝐷
⌈𝛼
𝑛
⌉

J
⌈𝛼
𝑛
⌉−𝛼
𝑛

𝑎

× J
𝛼
1
+𝛼
2
+⋅⋅⋅+ 𝛼

𝑛

𝑎
Ψ

= 𝐷
⌈𝛼
1
⌉

J
⌈𝛼
1
⌉−𝛼
1

𝑎
𝐷
⌈𝛼
2
⌉

J
⌈𝛼
2
⌉−𝛼
2

𝑎
⋅ ⋅ ⋅ 𝐷
⌈𝛼
𝑛
⌉

J
⌈𝛼
𝑛
⌉

𝑎

× J
𝛼
1
+𝛼
2
+⋅⋅⋅+ 𝛼

𝑛−1

𝑎
Ψ

= 𝐷
⌈𝛼
1
⌉

J
⌈𝛼
1
⌉−𝛼
1

𝑎
𝐷
⌈𝛼
2
⌉

J
⌈𝛼
2
⌉−𝛼
2

𝑎
⋅ ⋅ ⋅ 𝐷
⌈𝛼
𝑛−1
⌉

J
⌈𝛼
𝑛−1
⌉−𝛼
𝑛−1

𝑎

× J
𝛼
1
+𝛼
2
+⋅⋅⋅+ 𝛼

𝑛−1

𝑎
Ψ

= 𝐷
⌈𝛼
1
⌉

J
⌈𝛼
1
⌉−𝛼
1

𝑎
𝐷
⌈𝛼
2
⌉

J
⌈𝛼
2
⌉−𝛼
2

𝑎
⋅ ⋅ ⋅ 𝐷
⌈𝛼
𝑛−1
⌉

J
⌈𝛼
𝑛−1
⌉

𝑎

× J
𝛼
1
+𝛼
2
+⋅⋅⋅+ 𝛼

𝑛−2

𝑎
Ψ
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= 𝐷
⌈𝛼
1
⌉

J
⌈𝛼
1
⌉−𝛼
1

𝑎
𝐷
⌈𝛼
2
⌉

J
⌈𝛼
2
⌉−𝛼
2

𝑎
⋅ ⋅ ⋅ 𝐷
⌈𝛼
𝑛−2
⌉

J
⌈𝛼
𝑛−2
⌉−𝛼
𝑛−2

𝑎

× J
𝛼
1
+𝛼
2
+⋅⋅⋅+ 𝛼

𝑛−2

𝑎
Ψ

...

= 𝐷
⌈𝛼
1
⌉

J
⌈𝛼
1
⌉

𝑎
Ψ = Ψ.

(52)

The proof thatD𝛼1+𝛼𝑛+⋅⋅⋅+𝛼𝑛
𝑎

𝐹 = Ψ is quite straightforward

D
𝛼
1
+𝛼
𝑛
+⋅⋅⋅𝛼
𝑛

𝑎
𝐹 = 𝐷

⌈𝛼
1
+𝛼
𝑛
+⋅⋅⋅𝛼
𝑛
⌉

× J
⌈𝛼
1
+𝛼
𝑛
+⋅⋅⋅𝛼
𝑛
⌉−𝛼
1
−𝛼
𝑛
−⋅⋅⋅−𝛼

𝑛

𝑎

× J
𝛼
1
+𝛼
2
+⋅⋅⋅+𝛼

𝑛

𝑎
Ψ

D
𝛼
1
+𝛼
𝑛
+....𝛼
𝑛

𝑎
𝐹 = 𝐷

⌈𝛼
1
+𝛼
𝑛
+....𝛼
𝑛
⌉

× J
⌈𝛼
1
+𝛼
𝑛
+....𝛼
𝑛
⌉

𝑎
Ψ = Ψ.

(53)

Thus,

D
𝛼
1
+𝛼
𝑛
+⋅⋅⋅+𝛼

𝑛

𝑎
𝐹 = D

𝛼
1

𝑎
D
𝛼
2

𝑎
⋅ ⋅ ⋅D
𝛼
𝑛

𝑎
𝐹. (54)

Theorem 13. Assume that 𝛼
1
, 𝛼
2
, . . . 𝛼
𝑛

≥ 0. Moreover, let
Ψ ∈ 𝐿

1
[𝑎, 𝑏] and 𝐹 = J𝛼1+𝛼2+⋅⋅⋅+ 𝛼𝑛

𝑎
Ψ. And let ∇

𝛼

𝜁
be the

fractional gradient operator. Then,

∇
𝛼(𝑛)

𝜁
𝐹 (𝜁)

=

𝑛

∑

𝑖
1
=1

𝑛

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑛

∑

𝑖
𝑛
=1

�̂�
𝑖
1

�̂�
𝑖
2

⋅ ⋅ ⋅ �̂�
𝑖
𝑛

1

Γ (𝑛𝑚 − 𝛼
1
− 𝛼
2
⋅ ⋅ ⋅ − 𝛼

𝑛
)

× (
𝜕
𝑛

𝜕𝜁
𝑖
1

⋅ ⋅ ⋅ 𝜕𝜁
𝑖
2

)

𝑚

∫

𝜁

𝑎

𝐹(𝜏
𝑛
) (𝜁 − 𝜏

𝑛
)
𝑛𝑚−𝛼

1
−𝛼
2
−⋅⋅⋅−𝛼

𝑛

𝑑𝜏
𝑛
.

(55)

Proof. By the assumption on 𝐹 and the successive applica-
tion of fractional gradient operator, we have ∇

𝛼(𝑛)

𝜁
𝐹(𝜁) ≡

∇
𝛼
1

𝜁
∇
𝛼
2

𝜁
⋅ ⋅ ⋅ ∇
𝛼
𝑛

𝜁
𝐹(𝜁):

∇
𝛼(𝑛)

𝜁
𝐹 (𝜁) =

𝑛

∑

𝑖
1
=1

�̂�
𝑖
1

1

Γ (𝑚 − 𝛼
1
)
(

𝜕

𝜕𝜁
𝑖
1

)

𝑚

× ∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
1
−1

𝐹 (𝜏) 𝑑𝜏

×

𝑛

∑

𝑖
2
=1

�̂�
𝑖
2

1

Γ (𝑚 − 𝛼
2
)
(

𝜕

𝜕𝜁
𝑖
2

)

𝑚

× ∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
2
−1

𝐹 (𝜏) 𝑑𝜏 ⋅ ⋅ ⋅

×

𝑛

∑

𝑖
𝑛
=1

�̂�
𝑖
𝑛

1

Γ (𝑚 − 𝛼
𝑛
)

× (
𝜕

𝜕𝜁
𝑖
𝑛

)

𝑚

∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
𝑛
−1

𝐹 (𝜏) 𝑑𝜏

=

𝑛

∑

𝑖
1
=1

𝑛

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑛

∑

𝑖
𝑛
=1

�̂�
𝑖
1

�̂�
𝑖
2

⋅ ⋅ ⋅ �̂�
𝑖
𝑛

×
1

Γ (𝑚 − 𝛼
1
) Γ (𝑚 − 𝛼

2
) ⋅ ⋅ ⋅ Γ (𝑚 − 𝛼

𝑛
)

× (
𝜕

𝜕𝜁
𝑖
1

)

𝑚

(
𝜕

𝜕𝜁
𝑖
2

)

𝑚

⋅ ⋅ ⋅ (
𝜕

𝜕𝜁
𝑖
𝑛

)

𝑚

× ∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
1
−1

𝐹(𝜏) 𝑑𝜏

× ∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
2
−1

𝐹(𝜏) 𝑑𝜏 ⋅ ⋅ ⋅

× ∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
𝑛
−1

𝐹(𝜏) 𝑑𝜏

=

𝑛

∑

𝑖
1
=1

𝑛

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑛

∑

𝑖
𝑛
=1

�̂�
𝑖
1

�̂�
𝑖
2

⋅ ⋅ ⋅ �̂�
𝑖
𝑛

×
1

Γ (𝑛𝑚 − 𝛼
1
− 𝛼
2
⋅ ⋅ ⋅ − 𝛼

𝑛
)
(

𝜕
𝑛

𝜕𝜁
𝑖
1

⋅ ⋅ ⋅ 𝜕𝜁
𝑖
2

)

𝑚

× ∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
1
−1

𝐹(𝜏) 𝑑𝜏∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
2
−1

× 𝐹(𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ ∫

𝜁

𝑎

(𝜁 − 𝜏)
𝑚−𝛼
𝑛
−1

𝐹(𝜏) 𝑑𝜏.

(56)

Thus using the theorem, the results follow directly:

∇
𝛼(𝑛)

𝜁
𝐹 (𝜁) =

𝑛

∑

𝑖
1
=1

𝑛

∑

𝑖
2
=1

⋅ ⋅ ⋅

𝑛

∑

𝑖
𝑛
=1

�̂�
𝑖
1

�̂�
𝑖
2

⋅ ⋅ ⋅ �̂�
𝑖
𝑛

×
1

Γ (𝑛𝑚 − 𝛼
1
− 𝛼
2
⋅ ⋅ ⋅ − 𝛼

𝑛
)
(

𝜕
𝑛

𝜕𝜁
𝑖
1

⋅ ⋅ ⋅ 𝜕𝜁
𝑖
2

)

𝑚

× ∫

𝜁

𝑎

𝐹 (𝜏
𝑛
) (𝜁 − 𝜏

𝑛
)
𝑛𝑚−𝛼

1
−𝛼
2
−⋅⋅⋅−𝛼

𝑛

𝑑𝜏
𝑛
.

(57)

7. Fractional Taylor Expansion of a Function
of 𝑁-Dimensional Polyadics

Wehave the classical Taylor expansion for the𝑚-independent
variables as

𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

=

∞

∑

𝑛=1

1

𝑛!
(

𝑚

∑

𝑖=1

(𝑥
𝑖
− 𝑥
𝑖
0

)
𝜕

𝜕𝑥
𝑖

)

𝑛

× 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)

𝑥
1
=𝑥
1
0

, 𝑥
2
=𝑥
2
0

, ⋅⋅⋅𝑥
𝑚
=𝑥
𝑚
0

(58)
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In the light of the above definitions and theorems,we can state
the following theorem.

Definition 14. Let 𝑓(𝑥
𝑖
) = 𝑓(𝑥

1
, . . . , 𝑥

𝑛
) ∈ 𝐴

𝑚

(Ω), where
Ω = ∏

𝑛

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⊂ R𝑛; then the fractional Riemann-Liouville

multiple integrals and partial derivatives with respect to 𝑥
𝑖

are;

J
𝛼

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓 (𝑥
𝑖
) = (

1

Γ (𝛼)
)

𝑠

∫

𝑥
𝑘
1

𝑎
𝑘
1

⋅ ⋅ ⋅

× ∫

𝑥
𝑘𝑠

𝑎
𝑘𝑠

𝑓 (𝑡
𝑖
)

𝑠

∏

𝑖=1

∫

𝑥

𝑡
𝑠−1

(𝑥
𝑘
𝑖

− 𝑡
𝑘
𝑖

)
𝛼−1

× 𝑑𝑡
𝑘
1

⋅ ⋅ ⋅ 𝑑𝑡
𝑘
𝑠

D
𝛼

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓(𝑥
𝑖
) = (

1

Γ (𝑛 − 𝛼)
)(

𝜕

𝜕𝑥
𝑖

)

𝑛

× ∫

𝑥
𝑖

𝑎
𝑖

𝑓(𝑡
𝑖
) (𝑥
𝑖
− 𝑡
𝑖
)
𝑛−𝛼−1

𝑑𝑡
𝑖
.

(59)

Theorem 15. Let 𝑛 > 0 and𝑚 = ⌊𝑛⌋ + 1. Assume that 𝑓(𝑥
𝑖
) is

such that J𝑛−𝑚
𝑎

𝑓(𝑥
𝑖
) ∈ 𝐴

𝑚

(Ω), where Ω = ∏
𝑛

𝑖=1
(𝑎
𝑖
, 𝑏
𝑖
) ⊂ R𝑛

is the domain of 𝑓. Then,

𝑓(𝑥
𝑖
) =

(𝑥
𝑖
− 𝑎
𝑖
)
𝑛−𝑚

Γ (𝑛 − 𝑚 − 1)
lim
𝑧
𝑖
→𝑎
+

𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝑓(𝑧
𝑖
)

+

𝑚−1

∑

𝑘=0

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘+𝑛−𝑚

Γ (𝑘 + 𝑛 − 𝑚 − 1)
lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

× 𝑓(𝑧
𝑖
) + J
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

D
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓(𝑥
𝑖
) .

(60)

Proof. Because of our assumption about 𝑓 that implies the
continuity of𝐷𝑚−1

𝑥
𝑘
𝑖

J𝑚−𝑛
𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓, there exists someΨ ∈ 𝐿
1
(Ω) such

that

𝐷
𝑚−1

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓 (𝑥
𝑖
) = 𝐷

𝑚−1

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓 (𝑎
𝑖
) + 𝐽
1

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

Ψ (𝑥
𝑖
) .

(61)

This is a classical partial differential equation of order 𝑚 − 1

forJ𝑚−𝑛
𝑎

𝑓(𝑥
𝑖
); its solution is easily seen to be of the form:

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓(𝑥
𝑖
) =

𝑚−1

∑

𝑘=0

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘

𝑘!
lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝑓 (𝑧
𝑖
) + 𝐽
𝑚

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

Ψ (𝑥
𝑖
) .

(62)

Thus, by definition ofD𝑛
𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

,

J
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

D
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝑓(𝑥
𝑖
) = J

𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝐷
𝑚

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓(𝑥
𝑖
)

= J
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝐷
𝑚

𝑥
𝑘
𝑖

[

𝑚−1

∑

𝑘=0

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘

𝑘!
lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

× J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓 (𝑧
𝑖
)

+𝐽
𝑚

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

Ψ (𝑥
𝑖
) ] ,

J
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

D
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝑓 (𝑥
𝑖
) =

𝑚−1

∑

𝑘=0

J𝑛
𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝐷
𝑚

𝑥
𝑘
𝑖

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘

𝑘!

× lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓(𝑧
𝑖
)

+ J
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝐷
𝑚

𝑥
𝑘
𝑖

𝐽
𝑚

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

Ψ (𝑥
𝑖
) .

(63)

𝐷
𝑚

𝑥
𝑘
𝑖

annihilates every summand in the sum. And due to
Theorem 8, we obtain

J
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

D
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓 (𝑥
𝑖
) = J

𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= Ψ (𝑥
𝑖
) . (64)

Next, we apply the operatorD𝑚−𝑛
𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

to (63), finding

𝑓 (𝑥
𝑖
) =

𝑚−1

∑

𝑘=0

D𝑚−𝑛
𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘

𝑘!
lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝑓 (𝑧
𝑖
) + D

𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝐽
𝑚

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

Ψ (𝑥
𝑖
)

=

𝑚−1

∑

𝑘=0

D𝑚−𝑛
𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘

𝑘!
lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝑓 (𝑧
𝑖
) + 𝐷
1

𝑥
𝑘
𝑖

J
1−𝑚+𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝐽
𝑚

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

Ψ (𝑥
𝑖
)

=

𝑚−1

∑

𝑘=0

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘+𝑛−𝑚

Γ (𝑘 + 𝑛 − 𝑚 − 1)
lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝑓 (𝑧
𝑖
) + J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

Ψ (𝑥
𝑖
) .

(65)

Using (64), we obtain

J
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

Ψ (𝑥
𝑖
) = J

𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

D
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓 (𝑥
𝑖
)

= 𝑓 (𝑥
𝑖
) −

𝑚−1

∑

𝑘=0

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘+𝑛−𝑚

Γ (𝑘 + 𝑛 − 𝑚 − 1)
lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

× J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓 (𝑧
𝑖
) .

(66)
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Upon extracting the first termout of summation, we canwrite

𝑓 (𝑥
𝑖
) =

(𝑥
𝑖
− 𝑎
𝑖
)
𝑛−𝑚

Γ (𝑛 − 𝑚 − 1)
lim
𝑧
𝑖
→𝑎
+

𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

𝑓 (𝑧
𝑖
)

+

𝑚−1

∑

𝑘=1

(𝑥
𝑖
− 𝑎
𝑖
)
𝑘+𝑛−𝑚

Γ(𝑘 + 𝑛 − 𝑚 − 1)
lim
𝑧
𝑖
→𝑎
+

𝑖

𝐷
𝑘

𝑥
𝑘
𝑖

J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

× 𝑓 (𝑧
𝑖
) + J
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

D
𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

× 𝑓 (𝑥
𝑖
) .

(67)

This result can be written conveniently in the Polyadics
notation 𝐴

(𝑛), extending the upper limit of summation to ∞

to absorb the remainder, as

𝐹 (𝑟
(𝑛)

) =

∞

∑

𝑘=0

1

Γ (𝑘 + 𝑛 − 𝑚 − 1)

× lim
𝑧
(𝑛)
→𝑎
(𝑛)
+

((𝑟
(𝑛)

− 𝑎
(𝑛)

)
𝑛−𝑚

(
𝑛

⋅
)∇
𝛼(𝑛)

𝜁
)

𝑘

× J
𝑚−𝑛

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝐹 (𝑧
(𝑛)

) .

(68)

8. Fractional 𝑁-Dimensional Lagrange
Expansion

Theorem 16. Let 𝐹(𝑧) = 𝐹(𝑤) + 𝜇(𝑧, 𝜀), 𝐹, 𝜇 ∈ 𝐴
𝑚

(Ω) such
that

𝐹(𝑧) = 𝐹(𝑤) +

∞

∑

𝑛=1

𝜀
𝑛

𝑛!
[𝜇 (𝑧)]

(𝑛)

(
𝑛

⋅
)∇
(𝑛)

𝑤
𝐹 (𝑤) , (69)

then it is still possible to invert or solve the equation for 𝐹(𝑧)

such that 𝑤 = 𝐹(𝑧), 𝐹 ∈ 𝐴
𝑚

(Ω) on a neighborhood of 𝑓(𝑎)

using the fractional calculus as follows:

𝐹 (𝑧) =
1

Γ (𝛼 − 𝑚 − 1)
J
𝑚−𝛼

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝐹(𝑎)

+

∞

∑

𝑘=1

∞

∑

𝑛=0

𝜀
𝑛

Γ (𝑘 + 𝛼 − 𝑚 − 1)

× lim
𝑤→𝑎

+

([𝜇(𝑤 − 𝑎)
𝑛−𝑚

]
(𝑛)

(
𝑛

⋅
)∇
𝛼(𝑛)

𝜁
)

𝑘

× J
𝑚−𝛼

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝐹 (𝑤) ,

(70)

where 𝛼 > 0 and 𝑚 = ⌊𝛼⌋ + 1.

Proof. It is possible to invert or solve the equation for𝐹(𝑧) in a
neighborhood of𝐹(𝑎). Using the fractional Taylor expansion.

𝐹(𝑧) =

∞

∑

𝑘=0

∞

∑

𝑛=0

𝜀
𝑛

Γ (𝑘 + 𝛼 − 𝑚 − 1)

× lim
𝑤→𝑎

+

([𝜇(𝑤 − 𝑎)
𝑛−𝑚

]
(𝑛)

(
𝑛

⋅
)∇
𝛼(𝑛)

𝜁
)

𝑘

J
𝑚−𝛼

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

× 𝐹 (𝑤) .

(71)

Extracting the first term out of the summations, we obtain the
result directly

𝐹 (𝑧) =
1

Γ (𝛼 − 𝑚 − 1)
J
𝑚−𝛼

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

= 𝐹(𝑎)

+

∞

∑

𝑘=1

∞

∑

𝑛=0

𝜀
𝑛

Γ (𝑘 + 𝛼 − 𝑚 − 1)

× lim
𝑤→𝑎

+

([𝜇(𝑤 − 𝑎)
𝑛−𝑚

]
(𝑛)

(
𝑛

⋅
)∇
𝛼(𝑛)

𝜁
)

𝑘

J
𝑚−𝛼

𝑎
𝑘
𝑖

,𝑥
𝑘
𝑖

× 𝐹 (𝑤) .

(72)
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eines Auszuges von Herrn Bürmann [Attempt at a Simplified
Analysis; an Extract of an Abridgement by Mr. Bürmann], C.
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mémoires d’analyse du professeur Burmann,” Mémoires de
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