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By introducing the fractional derivative in the sense of Caputo and combining the pretreatment technique to deal with long
nonlinear items, the generalized two-dimensional differential transform method is proposed for solving the time-fractional
Hirota-Satsuma coupled KdV equation and coupled MKdV equation. The presented method is a numerical method based on
the generalized Taylor series expansion which constructs an analytical solution in the form of a polynomial. The numerical results
show that the generalized two-dimensional differential transform method is very effective for the fractional coupled equations.

1. Introduction

In the last past decade, the fractional differential equations
have been widely used in various fields of physics and engi-
neering. The analytical approximation of such problems has
attracted great attention and became a considbased onerable
interest in mathematical physics. Some powerful methods
including the homotopy perturbation method [1], Adomian
decomposition method [2, 3], variational iteration method
[4, 5], homotopy analysis method [6, 7], fractional complex
transformmethod [8], and generalized differential transform
method [9] have been developed to obtain exact and approx-
imate analytic solutions. These solution techniques are more
clear and realistic methods for fractional differential equa-
tions, because they give the approximate solutions of the con-
sidered problems without any linearization or discretization.

The variational iteration method and the homotopy
perturbation method were first proposed by Professor He
in [10, 11], respectively. The idea of the variational iteration
method is to construct correction functionals using general
Lagrange multipliers identified optimally via the variational
theory, and the initial approximations can be freely chosen
with unknown constants. Recently, Wu and Lee proposed a
fractional variational iteration method for fractional differ-

ential equation based on the modified Riemann CLiouville
derivative, which is more effective to solve fractional dif-
ferential equation [12]. This method has been developed by
many authors, see [13–16] and the references cited therein.
The homotopy perturbation method, which does not require
a small parameter in an equation, has a significant advantage
that it provides an analytical approximate solution to a wide
range of nonlinear problems in applied sciences. Recently,
the fractional complex transform is developed to convert
the fractional differential equation to its differential partner
and gave a geometrical explanation [8]. These methods are
more effective for solving the linear and nonlinear fractional
differential equations.

The differential transform method was used firstly by
Zhou in 1986 to study electric circuits [17]. The differential
transform is an iterative procedure based on the Taylor series
expansion which constructs an analytic solution in the form
of a polynomial. The method is well addressed in [18–23].
Recently, the generalized differential transform method is
developed for obtaining approximate analytic solutions for
some linear and nonlinear differential equations of fractional
order [24, 25].

The aim of this paper is to directly extend the gen-
eralized two-dimensional differential transform method to
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obtain the approximate analytic solutions of a time-fractional
Hirota-Satsuma coupled KdV equation,
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and a time-fractional coupled MKdV equation,
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where 𝜆 is a constant and 𝛼 and 𝛽 are parameters describing
the order of the time-fractional derivatives of 𝑢(𝑥, 𝑡), V(𝑥, 𝑡),
and 𝑤(𝑥, 𝑡), respectively. The fractional derivatives are con-
sidered in the Caputo sense. In the case of 𝛼 = 1 and𝛽 = 1, (1)
and (2) reduce to the classical Hirota-Satsuma coupled KdV
equation and coupled MKdV equation [26], respectively.

The Caputo fractional derivative is considered here
because it allows traditional initial and boundary conditions
to be included in the formulation of the problem.

Definition 1 (see [27]). The fractional derivative of𝑓(𝑥) in the
Caputo sense is defined as
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for 𝑚 − 1 < ] < 𝑚 and 𝑚 ∈ 𝑁, 𝑥 > 0. Here, 𝐽𝜇
0
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Riemann-Liouville integral operator of order 𝜇 > 0, defined
by
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Definition 2 (see [28]). For 𝑚 to be the smallest integer that
exceeds 𝛼, the Caputo time-fractional derivative of order 𝛼 >
0 is defined as
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and the space-fractional derivatives of Caputo type can be
defined analogously.

Lemma 3 (see [29]). The Caputo fractional derivative of the
power function satisfies
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2. Generalized Two-Dimensional Differential
Transform Method (GDTM)

Consider a function of two variables 𝑢(𝑥, 𝑡) and suppose that
it can be represented as a product of two single variable
functions, that is, 𝑢(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡). Based on the properties
of generalized two-dimensional differential transform, the
function 𝑢(𝑥, 𝑡) can be represented as
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where 0 < 𝛼, 𝛽 ≤ 1, 𝑈
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spectrum of 𝑢(𝑥, 𝑡). The generalized two-dimensional differ-
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1 and 𝛽 = 1, the generalized two-dimensional differential
transform (8) reduces to two-dimensional differential trans-
form.

The fundamental theorems of the generalized two-
dimensional differential transform are as follows.
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Some details of the aformentioned theorems can be found
in [30].

3. Applications of GDTM

3.1. Fractional Hirota-Satsuma Coupled KdV Equation. Con-
sider the following time-fractional Hirota-Satsuma coupled
KdV equation:

𝐷
𝛼

𝑡
𝑢 =

1

2
𝑢
𝑥𝑥𝑥

− 3𝑢𝑢
𝑥
+ 3(V𝑤)

𝑥
,

𝐷
𝛼

𝑡
V = −V

𝑥𝑥𝑥
+ 3𝑢V

𝑥
,

𝐷
𝛼

𝑡
𝑤 = −𝑤

𝑥𝑥𝑥
+ 3𝑢𝑤

𝑥
, 𝑡 > 0, 0 < 𝛼 ≤ 1,

(11)

subject to the initial conditions

𝑢 (𝑥, 0) =
1

3
(𝛽 − 8𝛾

2

) + 4𝛾
2tanh2 (𝛾𝑥) ,

V (𝑥, 0) =
−4 (3𝛾

4

𝑐
0
− 2𝛽𝛾

2

𝑐
2
+ 4𝛾
4

𝑐
2
)

3𝑐
2

2

+
4𝛾
2

𝑐
2

tanh2 (𝛾𝑥) ,

𝑤 (𝑥, 0) = 𝑐
0
+ 𝑐
2
tanh2 (𝛾𝑥) ,

(12)

where 𝑐
0
, 𝑐
2
, 𝛽, and 𝛾 are arbitrary constants.

The exact solutions of (11) and (12), for the special case of
𝛼 = 1, given in [26], are

𝑢 (𝑥, 𝑡) =
1

3
(𝛽 − 8𝛾

2

) + 4𝛾
2tanh2 [𝛾 (𝑥 + 𝛽𝑡)] ,

V (𝑥, 𝑡) =
−4 (3𝛾

4

𝑐
0
− 2𝛽𝛾

2

𝑐
2
+ 4𝛾
4

𝑐
2
)

3𝑐
2

2

+
4𝛾
2

𝑐
2

tanh2 [𝛾 (𝑥 + 𝛽𝑡)] ,

𝑤 (𝑥, 𝑡) = 𝑐
0
+ 𝑐
2
tanh2 [𝛾 (𝑥 + 𝛽𝑡)] .

(13)

Suppose that the solutions 𝑢(𝑥, 𝑡), V(𝑥, 𝑡), and 𝑤(𝑥, 𝑡) can
be represented as the products of single-valued functions,
respectively. Applying the generalized two-dimensional dif-
ferential transform to both sides of (11) and using the related
theorems, we have
Γ (𝛼 (ℎ + 1) + 1)

Γ (𝛼ℎ + 1)
𝑈
1,𝛼
(𝑘, ℎ + 1)

=
1

2
(𝑘 + 1) (𝑘 + 2) (𝑘 + 3)𝑈

1,𝛼
(𝑘 + 3, ℎ)

− 3

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

(𝑘 + 1 − 𝑟)𝑈
1,𝛼
(𝑟, ℎ − 𝑠)𝑈

1,𝛼
(𝑘 + 1 − 𝑟, 𝑠)

+ 3 (𝑘 + 1)

𝑘+1

∑

𝑟=0

ℎ

∑

𝑠=0

𝑉
1,𝛼
(𝑟, ℎ − 𝑠)𝑊

1,𝛼
(𝑘 + 1 − 𝑟, 𝑠) ,

Γ (𝛼 (ℎ + 1) + 1)

Γ (𝛼ℎ + 1)
𝑉
1,𝛼
(𝑘, ℎ + 1)

= − (𝑘 + 1) (𝑘 + 2) (𝑘 + 3)𝑉
1,𝛼
(𝑘 + 3, ℎ)

− 3

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

(𝑘 + 1 − 𝑟)𝑈
1,𝛼
(𝑟, ℎ − 𝑠) 𝑉

1,𝛼
(𝑘 + 1 − 𝑟, 𝑠) ,

Γ (𝛼 (ℎ + 1) + 1)

Γ (𝛼ℎ + 1)
𝑊
1,𝛼
(𝑘, ℎ + 1)

= − (𝑘 + 1) (𝑘 + 2) (𝑘 + 3)𝑊
1,𝛼
(𝑘 + 3, ℎ)

− 3

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

(𝑘 + 1 − 𝑟)𝑈
1,𝛼
(𝑟, ℎ − 𝑠)𝑊

1,𝛼
(𝑘 + 1 − 𝑟, 𝑠) .

(14)

The generalized two-dimensional differential transforms
of the initial conditions can be obtained as follows:

𝑈
1,𝛼
(𝑘, 0) = 𝑉

1,𝛼
(𝑘, 0) = 𝑊

1,𝛼
(𝑘, 0) = 0

if 𝑘 = 1, 3, 5, . . . ,

𝑈
1,𝛼
(0, 0) =

1

3
(𝛽 − 8𝛾

2

) , 𝑈
1,𝛼
(2, 0) = 4𝛾

4

,

𝑈
1,𝛼
(4, 0) = −

8

3
𝛾
6

, 𝑈
1,𝛼
(6, 0) =

68

45
𝛾
8

, . . . ,

𝑉
1,𝛼
(0, 0) = −

4 (3𝛾
4

𝑐
0
− 2𝛽𝛾

2

𝑐
2
+ 4𝛾
4

𝑐
2
)

3𝑐
2

2

,

𝑉
1,𝛼
(2, 0) =

4𝛾
4

𝑐
2

,

𝑉
1,𝛼
(4, 0) = −

8𝛾
6

3𝑐
2

, 𝑉
1,𝛼
(6, 0) =

68𝛾
8

45𝑐
2

, . . . ,

𝑊
1,𝛼
(0, 0) = 𝑐

0
, 𝑊

1,𝛼
(2, 0) = 𝑐

2
𝛾
2

,

𝑊
1,𝛼
(4, 0) = −

2𝑐
2

3
𝛾
4

, 𝑊
1,𝛼
(6, 0) =

17𝑐
2

45
𝛾
6

, . . . .

(15)



4 Abstract and Applied Analysis

Utilizing the recurrence relations (14) and the trans-
formed initial conditions, we can obtain all the 𝑈
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𝑐
2

+

16𝛾
6

(51𝑐
0
𝛾
2

(−1 +𝛾
2

)−2𝑐
2
(𝛽
2

−54𝛾
2

(−1 + 𝛾
2

)))

𝑐
2

𝑥
2

−

8𝛾
8

(744𝑐
0
𝛾
2

(−1+𝛾
2

) +𝑐
2
(−17𝛽

2

+2016𝛾
2

(−1+𝛾
2

)))

3𝑐
2

𝑥
4

+⋅ ⋅ ⋅ )}
𝑡
2𝛼

Γ (1 + 2𝛼)
, . . . .

(17)

The closed forms of 𝑢
0
(𝑥, 𝑡), 𝑢

1
(𝑥, 𝑡), and 𝑢

2
(𝑥, 𝑡) are

𝑢
0
(𝑥, 𝑡) =

1

3
(𝛽 − 8𝛾

2

) + 4𝛾
2tanh2 (𝛾𝑥) ,

𝑢
1
(𝑥, 𝑡) =

𝛾
3sec2 (𝛾𝑥)

𝑐
2

× [24𝑐
0
+8𝑐
2
𝛽−24𝑐

0
𝛾
2

+48𝑐
2
(𝛾
2

−1) tanh2 (𝛾𝑥)]

×
tanh (𝛾𝑥) 𝑡𝛼

Γ (1 + 𝛼)
,

𝑢
2
(𝑥, 𝑡) =

𝛾
6

(1 − 𝛾
2

)

𝑐
2

× {96 (𝑐
0
+ 2𝑐
2
) sec2 (𝛾𝑥)

+
8𝑐
2
𝛽
2

𝛾2 (1 − 𝛾2)
(2 − cosh (2𝛾𝑥)) sec4 (𝛾𝑥)

+ 6 [15𝑐
0
+ 94𝑐
2
− 88𝑐
2
cosh (2𝛾𝑥)

− (15𝑐
0
+ 14𝑐
2
) cosh (4𝛾𝑥)] sec8 (𝛾𝑥) }

×
𝑡
2𝛼

Γ (1 + 2𝛼)
.

(18)

Similarly, substituting all 𝑉
1,𝛼
(𝑘, ℎ) and all𝑊

1,𝛼
(𝑘, ℎ) into

(7), respectively, we obtain the series form solutions

V (𝑥, 𝑡) = V
0
(𝑥, 𝑡) + V

1
(𝑥, 𝑡) + V

2
(𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

𝑤 (𝑥, 𝑡) = 𝑤
0
(𝑥, 𝑡) + 𝑤

1
(𝑥, 𝑡) + 𝑤

2
(𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(19)

The closed forms of V
0
(𝑥, 𝑡), V

1
(𝑥, 𝑡) and V

2
(𝑥, 𝑡) are

V
0
(𝑥, 𝑡) =

−4 (3𝛾
4

𝑐
0
− 2𝛽𝛾

2

𝑐
2
+ 4𝛾
4

𝑐
2
)

3𝑐
2

2

+
4𝛾
2

𝑐
2

tanh2 (𝛾𝑥) ,

V
1
(𝑥, 𝑡) =

8𝑐
0
𝛽𝛾
3sec2 (𝛾𝑥) tanh (𝛾𝑥)

𝑐
2

𝑡
𝛼

Γ (1 + 𝛼)
,

V
2
(𝑥, 𝑡)

= [

8𝛽
2

𝛾
4

(3sec2 (𝛾𝑥) − 2)

𝑐
2
cosh2 (𝛾𝑥)

+

576𝛾
6

(1 − 𝛾
2

) (𝑐
0
+ 2𝑐
2
tanh2 (𝛾𝑥)) tanh2 (𝛾𝑥)

𝑐
2

2
cosh4 (𝛾𝑥)

]

×
𝑡
2𝛼

Γ (1 + 2𝛼)
.

(20)

The closed forms of 𝑤
0
(𝑥, 𝑡), 𝑤

1
(𝑥, 𝑡), and 𝑤

2
(𝑥, 𝑡) are

𝑤
0
(𝑥, 𝑡) = 𝑐

0
+ 𝑐
2
tanh2 (𝛾𝑥) ,

𝑤
1
(𝑥, 𝑡) =

2𝑐
2
𝛽𝛾sec2 (𝛾𝑥) tanh (𝛾𝑥)

𝑐
2

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑤
2
(𝑥, 𝑡) = [2𝑐

2
𝛽
2

𝛾
2sec2 (𝛾𝑥) (3sec2 (𝛾𝑥) − 2)

+ 144 (𝑐
0
+ 2𝑐
2
) 𝛾
4

(1 − 𝛾
2

)

× sec4 (𝛾𝑥) tanh2 (𝛾𝑥) − 288𝑐
2
𝛾
4

(1 − 𝛾
2

)

× sec6 (𝛾𝑥) tanh2 (𝛾𝑥)] 𝑡
2𝛼

Γ (1 + 2𝛼)
.

(21)
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Figure 1: The surface shows the solution 𝑢(𝑥, 𝑡) of (11): (a) exact
solution; (b) approximate solution of (22) when 𝛼 = 𝑐

0
= 𝑐
2
= 1,

𝛾 = 0.1, and 𝛽 = 0.08.

The approximate solutions of (11) in finite series forms are
given by

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) + 𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡) , (22)

V (𝑥, 𝑡) = V
0
(𝑥, 𝑡) + V

1
(𝑥, 𝑡) + V

2
(𝑥, 𝑡) , (23)

𝑤 (𝑥, 𝑡) = 𝑤
0
(𝑥, 𝑡) + 𝑤

1
(𝑥, 𝑡) + 𝑤

2
(𝑥, 𝑡) . (24)

In order to verify whether the approximate solutions of
(22)–(24) lead to higher accuracy, we draw the figures of the
approximate solutions of (22)–(24) with 𝛼 = 1, as well as the
exact solutions (13) when 𝑐

0
= 𝑐
2
= 1, 𝛾 = 0.1, and 𝛽 =

0.08. It can be seen from Figures 1(a) to 3(b) that the solutions
obtained by the presented method is nearly identical with the
exact solutions. So, we conclude that a good approximation is
achieved by using the GDTM.

In the following, we will construct an approximate solu-
tion of (11) with the new initial conditions,

𝑢 (𝑥, 0) =
𝛽 − 2𝛾

2

3
+ 2𝛾
2tanh2 (𝛾𝑥) ,

V (𝑥, 0) = −
4𝛾
2

𝑐
0
(𝛽 + 𝛾

2

)

3𝑐
2

1

+

4𝛾
2

(𝛽 + 𝛾
2

)

3𝑐
1

tanh (𝛾𝑥) ,

𝑤 (𝑥, 0) = 𝑐
0
+ 𝑐
1
tanh (𝛾𝑥) ,

(25)

where 𝑐
0
, 𝑐
1
, 𝛾, and 𝛽 are arbitrary constants.
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Figure 2: The surface shows the solution V(𝑥, 𝑡) of (11): (a) exact
solution; (b) approximate solution of (23) when 𝛼 = 𝑐

0
= 𝑐
2
= 1,

𝛾 = 0.1, and 𝛽 = 0.08.

The generalized two-dimensional differential transforms
of the initial conditions of (25) are given by

𝑈
1,𝛼
(𝑘, 0) = 0, if 𝑘 = 1, 3, 5, . . . ,

𝑉
1,𝛼
(𝑘, 0) = 𝑊

1,𝛼
(𝑘, 0) = 0 if 𝑘 = 2, 4, 6, . . . ,

𝑈
1,𝛼
(0, 0) =

1

3
(𝛽 − 2𝛾

2

) , 𝑈
1,𝛼
(2, 0) = 2𝛾

4

,

𝑈
1,𝛼
(4, 0) = −

4

3
𝛾
6

, 𝑈
1,𝛼
(6, 0) =

34

45
𝛾
8

, . . . ,

𝑉
1,𝛼
(0, 0) = −

4𝑐
0
𝛾
2

(𝛽 + 𝛾
2

)

3𝑐
2

1

,

𝑉
1,𝛼
(1, 0) =

4𝛾
3

(𝛽 + 𝛾
2

)

3𝑐
1

,

𝑉
1,𝛼
(3, 0) = −

4𝛾
5

(𝛽 + 𝛾
2

)

9𝑐
1

, . . . ,

𝑊
1,𝛼
(0, 0) = 𝑐

0
, 𝑊

1,𝛼
(1, 0) = 𝑐

1
𝛾,

𝑊
1,𝛼
(3, 0) = −

𝑐
1

3
𝛾
3

, 𝑊
1,𝛼
(5, 0) =

2𝑐
1

15
𝛾
5

, . . . .

(26)
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Utilizing the recurrence relations in (14) and the trans-
formed initial conditions, we can obtain the following
approximate solutions:

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) + 𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡) + 𝑢

3
(𝑥, 𝑡) ,

V (𝑥, 𝑡) = V
0
(𝑥, 𝑡) + V

1
(𝑥, 𝑡) + V

2
(𝑥, 𝑡) + V

3
(𝑥, 𝑡) ,

𝑤 (𝑥, 𝑡) = 𝑤
0
(𝑥, 𝑡) + 𝑤

1
(𝑥, 𝑡) + 𝑤

2
(𝑥, 𝑡) + 𝑤

3
(𝑥, 𝑡) ,

(27)

where the closed forms of 𝑢
𝑖
(𝑥, 𝑡), V

𝑖
(𝑥, 𝑡), and 𝑤

𝑖
(𝑥, 𝑡) (𝑖 =

0, 1, 2, 3) are

𝑢
0
(𝑥, 𝑡) =

𝛽 − 2𝛾
2

3
+ 2𝛾
2tanh2 (𝛾𝑥) ,

𝑢
1
(𝑥, 𝑡) = 4𝛽𝛾

3sech2 (𝛾𝑥) tanh (𝛾𝑥) 𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢
2
(𝑥, 𝑡) = −4𝛽

2

𝛾
4

(cosh (2𝛾𝑥) − 2) sech4 (𝛾𝑥) 𝑡
2𝛼

Γ (1 + 2𝛼)
,

𝑢
3
(𝑥, 𝑡) = {2𝛾

2sech2 (𝛾𝑥) tanh (𝛾𝑥)

× (64𝛽
2

𝛾
5sech2 (𝛾𝑥) + 144𝛽2𝛾5tanh4 (𝛾𝑥))

− 2𝛾
5

(144𝛽
2

𝛾
2

− 8𝛽
3

) sech2 (𝛾𝑥) tanh3 (𝛾𝑥)

−
1

88
𝛽
2

𝛾
5

(878𝛽 + 3626𝛾
2

+ (179𝛽 + 2921𝛾
2

) cosh (2𝛾𝑥)

+ (386𝛽 − 922𝛾
2

) cosh (4𝛾𝑥)

+7 (−5𝛽 + 𝛾
2

) cosh (6𝛾𝑥))

× sech8 (𝛾𝑥) tanh (𝛾𝑥)

×
Γ (1 + 2𝛼)

Γ2 (1 + 𝛼)
}

𝑡
3𝛼

Γ (1 + 3𝛼)
,

V
0
(𝑥, 𝑡) = −

4𝛾
2

𝑐
0
(𝛽 + 𝛾

2

)

3𝑐
2

1

+

4𝛾
2

(𝛽 + 𝛾
2

)

3𝑐
1

tanh (𝛾𝑥) ,

V
1
(𝑥, 𝑡) =

4𝛽𝛾
3

(𝛽 + 𝛾
2

) sech2 (𝛾𝑥)
3𝑐
1

𝑡
𝛼

Γ (1 + 𝛼)
,

V
2
(𝑥, 𝑡) = −

8𝛽
2

𝛾
4

(𝛽 + 𝛾
2

) sech2 (𝛾𝑥) tanh (𝛾𝑥)
3𝑐
1

𝑡
2𝛼

Γ (1 + 2𝛼)
,

V
3
(𝑥, 𝑡) = {

𝛽
2

𝛾
5

30𝑐
1

(𝛽 + 𝛾
2

)

× (40 (8𝛾
2

− 𝛽) − 15 (3𝛽 + 56𝛾
2

) cosh (2𝛾𝑥)

+ 576𝛾
2 cosh (4𝛾𝑥)

+ (5𝛽 − 56𝛾
2

) cosh (6𝛾𝑥)) sech8 (𝛾𝑥)

− (16𝛽
2

𝛾
6

(𝛽 + 𝛾
2

)

× (5 + cosh (2𝛾𝑥)) sech4 (𝛾𝑥) tanh3 (𝛾𝑥))

× (3𝑐
1
)
−1 Γ (1 + 2𝛼)

Γ2 (1 + 𝛼)
}

𝑡
3𝛼

Γ (1 + 3𝛼)
,

𝑤
0
(𝑥, 𝑡) = 𝑐

0
+ 𝑐
1
tanh (𝛾𝑥) ,

𝑤
1
(𝑥, 𝑡) = 𝑐

1
𝛽𝛾 sech2 (𝛾𝑥) 𝑡

𝛼

Γ (1 + 𝛼)
,

𝑤
2
(𝑥, 𝑡) = −2𝑐

1
𝛽
2

𝛾
2sech2 (𝛾𝑥) tanh (𝛾𝑥) 𝑡

2𝛼

Γ (1 + 2𝛼)
,

𝑤
3
(𝑥, 𝑡) = {

𝑐
1
𝛽
2

𝛾
3

40
(40 (8𝛾

2

− 𝛽)

− 15 (3𝛽 + 56𝛾
2

) cosh (2𝛾𝑥)

+ 576𝛾
2 cosh (4𝛾𝑥)

+ (5𝛽 − 56𝛾
2

) cosh (6𝛾𝑥))

× sech8 (𝛾𝑥) +
2𝑐
1
𝛽
2

5
𝛾
5

× (7 cosh (4𝛾𝑥) − 9 − 58 cosh (2𝛾𝑥))

× sech6 (𝛾𝑥) tanh2 (𝛾𝑥) Γ (1 + 2𝛼)
Γ2 (1 + 𝛼)

}

×
𝑡
3𝛼

Γ (1 + 3𝛼)
.

(28)

3.2. Fractional Coupled MKdV Equation. Consider the fol-
lowing time-fractional coupled MKdV equation:

𝐷
𝛽

𝑡
𝑢 =

1

2
𝑢
𝑥𝑥𝑥

− 3𝑢
2

𝑢
𝑥
+
3

2
V
𝑥𝑥
+ 3𝑢V

𝑥
+ 3𝑢
𝑥
V − 3𝜆𝑢

𝑥
,

𝐷
𝛽

𝑡
V = − V

𝑥𝑥𝑥
− 3VV
𝑥
− 3𝑢
𝑥
V
𝑥
+ 3𝑢
2

V
𝑥

+ 3𝜆V
𝑥
, 𝑡 > 0, 0 < 𝛽 ≤ 1,

(29)

subject to the initial conditions

𝑢 (𝑥, 0) = 𝛾 tanh (𝛾𝑥) ,

V (𝑥, 0) =
1

2
(4𝛾
2

+ 𝜆) − 2𝛾
2tanh2 (𝛾𝑥) ,

(30)

where 𝛾 is an arbitrary constant.
The exact solutions of (29) and (30), for the special case

of 𝛽 = 1, given in [26], are

𝑢 (𝑥, 𝑡) = 𝛾 tanh (𝛾𝜉) , 𝜉 = 𝑥 − (𝛾
2

+
3

2
𝜆) 𝑡,

V (𝑥, 𝑡) =
1

2
(4𝛾
2

+ 𝜆) − 2𝛾
2tanh2 (𝛾𝜉) .

(31)



Abstract and Applied Analysis 7

−20
−10 0 10 20

0

0.2

0.4
𝑡

𝑥

1
1.2

1.4

1.6

1.8

(a)

−20
−10 0 10 20

0

0.2

0.4
𝑡

𝑥

1
1.2

1.4

1.6

1.8

(b)

Figure 3: The surface shows the solution 𝑤(𝑥, 𝑡) of (11): (a) exact
solution; (b) approximate solution (24) when 𝛼 = 𝑐

0
= 𝑐
2
= 1, 𝛾 =

0.1 and 𝛽 = 0.08.

Equation system of (29) is more complex. In order to
obtain an explicit iteration scheme, we follow the pretreat-
ment technique introduced recently by Chang [20, 21] to deal
with long nonlinear items. Firstly, we suppose that

𝑓 = V
𝑥
, 𝑔 = 𝑢

𝑥
, 𝑝 = 𝑔 + 3V, 𝑞 = 𝑢

2

− V + 𝜆.

(32)

According to (32), (29) can be equivalently written as the
following form:

𝑓 = V
𝑥
, 𝑔 = 𝑢

𝑥
,

𝑝 = 𝑔 + 3V, 𝑞 = 𝑢
2

− V + 𝜆,

𝐷
𝛽

𝑡
𝑢 =

1

2
𝑝
𝑥𝑥
− 3𝑞𝑔 + 3𝑢𝑓,

𝐷
𝛽

𝑡
V = −𝑔𝑝

𝑥
+ 3𝑞𝑓 − 𝑓

𝑥𝑥
+ 𝑔𝑔
𝑥
.

(33)

Suppose that the solutions 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) can be rep-
resented as the products of single-valued functions, respec-
tively. Applying the generalized two-dimensional differential
transform to both sides of (33) and using the related theo-
rems, we have

𝐹
1,𝛽
(𝑘, ℎ) = (𝑘 + 1)𝑉

1,𝛽
(𝑘 + 1, ℎ) ,

𝐺
1,𝛽
(𝑘, ℎ) = (𝑘 + 1)𝑈

1,𝛽
(𝑘 + 1, ℎ) ,

𝑃
1,𝛽
(𝑘, ℎ) = 𝐺

1,𝛽
(𝑘, ℎ) + 3𝑉

1,𝛽
(𝑘, ℎ) ,

𝑄
1,𝛽
(0, 0) = 𝑈

2

1,𝛽
(0, 0) − 𝑉

1,𝛽
(0, 0) + 𝜆,

𝑄
1,𝛽
(𝑘, ℎ) =

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

𝑈
1,𝛽
(𝑟, ℎ − 𝑠)𝑈

1,𝛽
(𝑘 − 𝑟, 𝑠)

− 𝑉
1,𝛽
(𝑘, ℎ) , 𝑘

2

+ ℎ
2

̸= 0,

Γ (𝛽 (ℎ + 1) + 1)

Γ (𝛽ℎ + 1)
𝑈
1,𝛽
(𝑘, ℎ + 1)

=
1

2
(𝑘 + 1) (𝑘 + 2) 𝑃

1,𝛽
(𝑘 + 2, ℎ)

− 3

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

𝑄
1,𝛽
(𝑟, ℎ − 𝑠) 𝐺

1,𝛽
(𝑘 − 𝑟, 𝑠)

+ 3

𝑘+1

∑

𝑟=0

ℎ

∑

𝑠=0

𝑈
1,𝛽
(𝑟, ℎ − 𝑠) 𝐹

1,𝛽
(𝑘 − 𝑟, 𝑠) ,

Γ (𝛽 (ℎ + 1) + 1)

Γ (𝛽ℎ + 1)
𝑉
1,𝛽
(𝑘, ℎ + 1)

= −

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

(𝑘 + 1 − 𝑟) 𝐺
1,𝛽
(𝑟, ℎ − 𝑠) 𝑃

1,𝛽

× (𝑘 + 1 − 𝑟, 𝑠) − (𝑘 + 1) (𝑘 + 2) 𝐹
1,𝛽
(𝑘 + 2, ℎ)

+ 3

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

𝑄
1,𝛽
(𝑟, ℎ − 𝑠) 𝐹

1,𝛽
(𝑘 − 𝑟, 𝑠)

+

𝑘

∑

𝑟=0

ℎ

∑

𝑠=0

(𝑘 + 1 − 𝑟) 𝐺
1,𝛽
(𝑟, ℎ − 𝑠) 𝐺

1,𝛽

× (𝑘 + 1 − 𝑟, 𝑠) .

(34)

Herein 𝐹
1,𝛽
(𝑘, ℎ), 𝐺

1,𝛽
(𝑘, ℎ), 𝑃

1,𝛽
(𝑘, ℎ), and 𝑄

1,𝛽
(𝑘, ℎ) denote

the differential transformations of the functions 𝑓(𝑥, 𝑡),

𝑔(𝑥, 𝑡), 𝑝(𝑥, 𝑡), and 𝑞(𝑥, 𝑡), respectively.
The generalized two-dimensional differential transforms

of the initial conditions of (30) can be obtained as follows:
𝑈
1,𝛽
(𝑘, 0) = 0, if 𝑘 = 0, 2, 4, . . . ,

𝑉
1,𝛽
(𝑘, 0) = 0, if 𝑘 = 1, 3, 5, . . . ,

𝑈
1,𝛽
(1, 0) = 𝛾

2

, 𝑈
1,𝛽
(3, 0) = −

𝛾
4

3
,

𝑈
1,𝛽
(5, 0) =

2𝛾
6

15
, 𝑈

1,𝛽
(7, 0) = −

17𝛾
8

315
, . . . ,

𝑉
1,𝛽
(0, 0) =

1

2
(4𝛾
2

+ 𝜆) , 𝑉
1,𝛽
(2, 0) = −2𝛾

4

,

𝑉
1,𝛽
(4, 0) =

4𝛾
6

3
, 𝑉

1,𝛽
(6, 0) = −

34𝛾
8

45
, . . . .

(35)
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Utilizing the recurrence relations of (34) and the trans-
formed initial conditions, we can obtain all the 𝑈

1,𝛽
(𝑘, ℎ)

and 𝑉
1,𝛽
(𝑘, ℎ) with the help of Mathematica. Through the

complex calculation which is similar to the solving process
in Section 3.1, we have the approximate solutions of (29) in
finite series,

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) + 𝑢

1
(𝑥, 𝑡) + 𝑢

2
(𝑥, 𝑡) + 𝑢

3
(𝑥, 𝑡) , (36)

V (𝑥, 𝑡) = V
0
(𝑥, 𝑡) + V

1
(𝑥, 𝑡) + V

2
(𝑥, 𝑡) + V

3
(𝑥, 𝑡) , (37)

where the closed forms of 𝑢
𝑖
(𝑥, 𝑡) and V

𝑖
(𝑥, 𝑡) (𝑖 = 0, 1, 2, 3)

are given by

𝑢
0
(𝑥, 𝑡) = 𝛾 tanh (𝛾𝑥) ,

𝑢
1
(𝑥, 𝑡) = −

1

2
𝛾
2

(2𝛾
2

+ 3𝜆)
sec2 (𝛾𝑥) 𝑡𝛼

Γ (1 + 𝛼)
,

𝑢
2
(𝑥, 𝑡) = −

1

2
𝛾
3sec2 (𝛾𝑥)

× [(2𝛾
2

+ 3𝜆)
2

− 144𝛾
2

𝜆sec2 (𝛾𝑥)]

×
tanh (𝛾𝑥) 𝑡2𝛼

Γ (1 + 2𝛼)
,

𝑢
3
(𝑥, 𝑡) = {

1

4
𝛾
4sec2 (𝛾𝑥)

× [−2(2𝛾
2

+ 3𝜆)
3

+ 3sec2 (𝛾𝑥)

× (−152𝛾
6

+ 1092𝛾
4

𝜆 + 270𝛾
2

𝜆
2

+ 27𝜆
3

+ (200𝛾
6

− 4776𝛾
4

𝜆 − 270𝛾
2

𝜆
2

)

× sec2 (𝛾𝑥)

+ 4032𝛾
4

𝜆sec4 (𝛾𝑥))] } 𝑡
3𝛼

Γ (1 + 3𝛼)

+
3

4
𝛾
6

(10𝛾
2

− 9𝜆) (2𝛾
2

+ 3𝜆)

× [2 cosh (2𝛾𝑥) − 3]

×
sec6 (𝛾𝑥) Γ (1 + 2𝛼) 𝑡3𝛼

Γ(1 + 𝛼)
2

Γ (1 + 3𝛼)

,

V
0
(𝑥, 𝑡) =

1

2
(4𝛾
2

+ 𝜆) − 2𝛾
2tanh2 (𝛾𝑥) ,

V
1
(𝑥, 𝑡) = 2𝛾

3

(2𝛾
2

− 3𝜆) sec2 (𝛾𝑥)
tanh (𝛾𝑥) 𝑡𝛼

Γ (1 + 𝛼)
,

V
2
(𝑥, 𝑡) = {2(2𝛾

2

− 3𝜆)
2

− 3sec2 (𝛾𝑥)

× [4𝛾
4

− 60𝛾
2

𝜆 + 9𝜆
2

+ 48𝛾
2

𝜆sec2 (𝛾𝑥)] }

×
𝛾
4sec2 (𝛾𝑥) 𝑡2𝛼

Γ (1 + 2𝛼)
,
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Figure 4: The surface shows the exact solutions (31): (a) 𝑢(𝑥, 𝑡); (b)
V(𝑥, 𝑡) when 𝜆 = 1 and 𝛾 = 0.1.

V
3
(𝑥, 𝑡) = {2𝛾

5sec8 (𝛾𝑥)

× [92𝛾
6

+ 3420𝛾
4

𝜆 + 351𝛾
2

𝜆
2

+ 54𝜆
3

− 9 (12𝛾
6

+ 1456𝛾
4

𝜆 + 63𝛾
2

𝜆
2

− 9𝜆
3

)

× sinh2 (𝛾𝑥)

− 96𝛾
2

(2𝛾
4

− 48𝛾
2

𝜆 + 9𝜆
2

) sinh4 (𝛾𝑥)

+(2𝛾
2

− 3𝜆)
3

sinh (𝛾𝑥)6]}

×
tanh (𝛾𝑥) 𝑡3𝛼

Γ (1 + 3𝛼)

− [27(𝜆 − 2𝛾
2

)
2

sinh (𝛾𝑥)

−96𝛾
2

(2𝛾
2

− 3𝜆) sinh3 (𝛾𝑥) ]

×
𝛾
7sec7 (𝛾𝑥) Γ (1 + 2𝛼) 𝑡3𝛼

Γ(1 + 𝛼)
2

Γ (1 + 3𝛼)

.

(38)

The effectiveness and accuracy of the approximate solu-
tions can be seen from the comparison figures.

Figures 4 and 5 show the approximate solutions of (36)
and (37) and the exact ones of (31) with 𝛼 = 𝜆 = 1 and
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𝛾 = 0.1, respectively. Comparing Figures 1(a) and 1(b) with
Figures 2(a) and 2(b), we can see that the solutions obtained
by different methods are nearly identical. From these figures,
we can know that the series solutions converge rapidly, so a
good approximation has been achieved.

4. Summary and Discussion

In this paper, combining the Caputo fractional derivative,
the GDTM was applied to derive approximate analytical
solutions of the time-fractionalHirota-Satsuma coupledKdV
equation and coupled MKdV equation with initial condi-
tions. The numerical solutions obtained from the GDTM
are shown graphically. The obtained results demonstrate the
reliability of the algorithm and its wider applicability to
nonlinear fractional coupled partial differential equations.

In [8] and the references cited therein, the so-called
fractional complex transform (FCT) is suggested to convert
a fractional differential equation with Jumarie’s modification
of Riemann-Liouville derivative into its classical differential
partner. According to the idea of FCT, for some fractional
differential equations with Caputo time-fractional derivative
𝐷
𝛽

𝑡
, we assume that

𝑢 (𝑥, 𝑡) =

+∞

∑

𝑚=0

𝑢
𝑚
(𝑥)

𝑡
𝑚𝛽

Γ (1 + 𝑚𝛽)
,

V (𝑥, 𝑡) =
+∞

∑

𝑚=0

V
𝑚
(𝑥)

𝑡
𝑚𝛽

Γ (1 + 𝑚𝛽)
,

(39)

consequently, from Lemma 3,

𝐷
𝛽

𝑡
𝑢 (𝑥, 𝑡) =

+∞

∑

𝑚=0

𝑢
𝑚+1

(𝑥)
𝑡
𝑚𝛽

Γ (1 + 𝑚𝛽)
, (40)

and it can be seen easily that

𝑢 (𝑥, 𝑡) V (𝑥, 𝑡) =
+∞

∑

𝑚=0

(

𝑚

∑

𝑟=0

𝑢
𝑟
(𝑥) V
𝑚−𝑟

(𝑥)

×
Γ (1 + 𝑚𝛽)

Γ (1 + 𝑟𝛽) Γ (1 + (𝑚 − 𝑟) 𝛽)
)

×
𝑡
𝑚𝛽

Γ (1 + 𝑚𝛽)
.

(41)

We can point out that the approximate solutions of (11)
and (29) by GDTM can be derived by the similar method
compared with FCT. Without loss of generality, we only
consider (29) with the initial conditions of (30). In fact,
suppose that

𝑓 (𝑥, 𝑡) =

+∞

∑

𝑚=0

𝑓
𝑚
(𝑥)

𝑡
𝑚𝛽

Γ (1 + 𝑚𝛽)
,

𝑔 (𝑥, 𝑡) =

+∞

∑

𝑚=0

𝑔
𝑚
(𝑥)

𝑡
𝑚𝛽

Γ (1 + 𝑚𝛽)
,

𝑝 (𝑥, 𝑡) =

+∞

∑

𝑚=0

𝑝
𝑚
(𝑥)

𝑡
𝑚𝛽

Γ (1 + 𝑚𝛽)
,

𝑞 (𝑥, 𝑡) =

+∞

∑

𝑚=0

𝑞
𝑚
(𝑥)

𝑡
𝑚𝛽

Γ (1 + 𝑚𝛽)
.

(42)

From (33), (40), and (41), we have the following iteration
formulae:

𝑢
0
(𝑥) = 𝑢 (𝑥, 0) , V

0
(𝑥) = V (𝑥, 0) ,

𝑓
0
(𝑥) = V



0
(𝑥) , 𝑔

0
(𝑥) = 𝑢



0
(𝑥) ,

𝑝
0
(𝑥) = 𝑔

0
(𝑥) + 3V

0
(𝑥) ,

𝑞
0
(𝑥) = 𝑢

2

0
(𝑥) − V

0
(𝑥) + 𝜆,

𝑓
𝑚
(𝑥) = V



𝑚
(𝑥) , 𝑔

𝑚
(𝑥) = 𝑢



𝑚
(𝑥) ,

𝑝
𝑚
(𝑥) = 𝑔

𝑚
(𝑥) + 3V

𝑚
(𝑥) ,

𝑞
𝑚
(𝑥) =

𝑚

∑

𝑟=0

𝑢
𝑟
(𝑥) 𝑢
𝑚−𝑟

(𝑥)
Γ (1 + 𝑚𝛽)

Γ (1 + 𝑟𝛽) Γ (1 + (𝑚 − 𝑟) 𝛽)

− V
𝑚
(𝑥) ,

𝑢
𝑚+1

(𝑥) =
1

2
𝑝


𝑚
(𝑥) − 3

𝑚

∑

𝑟=0

𝑞
𝑟
(𝑥) 𝑔
𝑚−𝑟

(𝑥)

×
Γ (1 + 𝑚𝛽)

Γ (1 + 𝑟𝛽) Γ (1 + (𝑚 − 𝑟) 𝛽)

+ 3

𝑚

∑

𝑟=0

𝑢
𝑟
(𝑥) 𝑓
𝑚−𝑟

(𝑥)

×
Γ (1 + 𝑚𝛽)

Γ (1 + 𝑟𝛽) Γ (1 + (𝑚 − 𝑟) 𝛽)
,

V
𝑚+1

(𝑥) = − 𝑓


𝑚
(𝑥) −

𝑚

∑

𝑟=0

𝑔
𝑟
(𝑥) 𝑝


𝑚−𝑟
(𝑥)

×
Γ (1 + 𝑚𝛽)

Γ (1 + 𝑟𝛽) Γ (1 + (𝑚 − 𝑟) 𝛽)

+3

𝑚

∑

𝑟=0

𝑞
𝑟
(𝑥) 𝑓
𝑚−𝑟

(𝑥)
Γ (1+𝑚𝛽)

Γ (1+𝑟𝛽) Γ (1+(𝑚−𝑟) 𝛽)

+

𝑚

∑

𝑟=0

𝑔
𝑟
(𝑥) 𝑔


𝑚−𝑟
(𝑥)

Γ (1+𝑚𝛽)

Γ (1+𝑟𝛽) Γ (1+(𝑚−𝑟) 𝛽)
,

(43)

for𝑚 = 0, 1, 2, 3, . . ..
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Figure 5: The surface shows the approximate solutions of (29): (a)
𝑢(𝑥, 𝑡) of (36); (b) V(𝑥, 𝑡) of (37) when 𝛼 = 𝜆 = 1 and 𝛾 = 0.1.

Setting 𝑢
𝑚
(𝑥, 𝑡) = 𝑢

𝑚
(𝑥)(𝑡
𝑚𝛽

/Γ(1 + 𝑚𝛽)) and V
𝑚
(𝑥, 𝑡) =

V
𝑚
(𝑥)(𝑡
𝑚𝛽

/Γ(1 + 𝑚𝛽)), and using (43), we can obtain the 3-
order approximate solutions as (36) and (37) by using the
symbol computational software Mathematica.
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