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New explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Li soliton hierarchy are obtained.
Then, the nonlinear integrable couplings of Li soliton hierarchy with self-consistent sources are established. Finally, we present the
infinitely many conservation laws for the nonlinear integrable coupling of Li soliton hierarchy.

1. Introduction

Soliton theory has achieved great success during the last
decades, it is being applied to many fields. The diversity
and complexity of soliton theory enables investigators to do
research fromdifferent views, such as binary nonlinearization
of soliton hierarchy [1] and Bäcklund transformations of
soliton systems from symmetry constraints [2].

Recently, with the development of integrable systems,
integrable couplings have attracted much attention. Inte-
grable couplings [3, 4] are coupled systems of integrable
equations, which have been introduced when we study of
Virasoro symmetric algebras. It is an important topic to
look for integrable couplings because integrable couplings
havemuch richermathematical structures and better physical
meanings. In recent years, many methods of searching for
integrable couplings have been developed [5–13], but all
the integrable couplings obtained are linear for the V =

(V
1
, . . . , V

𝑚
)

𝑇. As for how to generate nonlinear integrable
couplings, Ma proposed a general scheme [14]. Suppose that
an integrable system

𝑢
𝑡
= 𝐾 (𝑢) (1)

has a Lax pair 𝑈 and 𝑉, which belong to semisimple matrix
Lie algebras. Introduce an enlarged spectral matrix

𝑈 = 𝑈 (𝑢) = [

𝑈 (𝑢) 0

𝑈
𝑎
(V) 𝑈 (𝑢) + 𝑈

𝑎
(V)
] (2)

from a zero curvature representation

𝑈
𝑡
− 𝑉
𝑥
+ [𝑈,𝑉] = 0, (3)

where

𝑉 = 𝑉 (𝑢) = [

𝑉 (𝑢) 0

𝑉
𝑎
(𝑢) 𝑉 (𝑢) + 𝑉

𝑎
(𝑢)

] , (4)

then we can give rise to

𝑈
𝑡
− 𝑉
𝑥
+ [𝑈,𝑉] = 0,

𝑈
𝑎,𝑡
− 𝑉
𝑎,𝑥
+ [𝑈,𝑉

𝑎
] + [𝑈

𝑎
, 𝑉] + [𝑈

𝑎
, 𝑉
𝑎
] = 0.

(5)

This is an integrable coupling of (1), and it is a nonlinear
integrable coupling because the commutator [𝑈

𝑎
, 𝑉
𝑎
] can

generate nonlinear terms.
Soliton equation with self-consistent sources (SESCS)

[15–22] is an important part in soliton theory. Physically,



2 Abstract and Applied Analysis

the sources may result in solitary waves with a nonconstant
velocity and therefore lead to a variety of dynamics of physical
models. For applications, these kinds of systems are usually
used to describe interactions between different solitary waves
and are relevant to some problems of hydrodynamics, solid
state physics, plasma physics, and so forth. How to obtain an
integrable coupling of the SESCS is an interesting topic; in
this paper, we will use new formula [23] presented by us to
generalize soliton hierarchy with self-consistent sources.

The conservation laws play an important role in dis-
cussing the integrability for soliton hierarchy. An infinite
number of conservation laws for KdV equation was first
discovered by Miura et al. [24]. The direct construction
method of multipliers for the conservation laws was pre-
sented [25], the Lagrangian approach for evolution equa-
tions was considered in [26], Wang and Xia established the
infinitely many conservation laws for the integrable super
𝐺-𝐽 hierarchy [27], and the infinite conservation laws of the
generalized quasilinear hyperbolic equations were derived in
[28]. Comparatively, the less nonlinear integrable couplings
of the soliton equations have been considered for their
conservation laws.

This paper is organized as follows. In Section 2, a kind of
explicit Lie algebras with the forms of blocks is introduced
to generate nonlinear integrable couplings of Li soliton
hierarchy. In Section 3, a new nonlinear integrable coupling
of Li soliton hierarchy with self-consistent sources is derived.
In Section 4, we obtain the conservation laws for the non-
linear integrable couplings of Li hierarchy. Finally, some
conclusions are given.

2. Lie Algebras for Constructing Nonlinear
Integrable Couplings of Li Soliton Hierarchy

Tu [29] presented a base of the Li algebra sl(2) as follows:

𝐺
1
= span {𝑒

1
, 𝑒
2
, 𝑒
3
} , (6)

where

𝑒
1
= (

1 0

0 −1

) , 𝑒
2
= (

0 1

1 0

) , 𝑒
3
= (

0 1

−1 0

) , (7)

which have the commutative relations

[𝑒
1
, 𝑒
2
] = 2𝑒

2
, [𝑒

1
, 𝑒
3
] = −2𝑒

3
, [𝑒

2
, 𝑒
3
] = 𝑒
1
. (8)

Let us introduce a Lie algebra with matrix blocks by using
𝐺
1
in order to get nonlinear couplings of soliton hierarchy as

follows:

𝐺 = span {𝑔
1
, . . . , 𝑔

6
} , (9)

where

𝑔
1
= (

𝑒
1
0

0 𝑒
1

) , 𝑔
2
= (

𝑒
2
0

0 𝑒
2

) ,

𝑔
3
= (

𝑒
3
0

0 𝑒
3

) , 𝑔
4
= (

0 0

𝑒
1
𝑒
1

) ,

𝑔
5
= (

0 0

𝑒
2
𝑒
2

) , 𝑔
6
= (

0 0

𝑒
3
𝑒
3

) .

(10)

Define a commutator as follows:

[𝑎, 𝑏] = 𝑎𝑏 − 𝑏𝑎, 𝑎, 𝑏 ∈ 𝐺. (11)

A direct verification exhibits that

[𝑔
1
, 𝑔
2
] = 2𝑔

3
, [𝑔

1
, 𝑔
3
] = 2𝑔

2
,

[𝑔
2
, 𝑔
3
] = −2𝑔

1
, [𝑔

1
, 𝑔
5
] = 2𝑔

6
,

[𝑔
1
, 𝑔
6
] = 2𝑔

5
, [𝑔

2
, 𝑔
4
] = −2𝑔

6
,

[𝑔
2
, 𝑔
6
] = −2𝑔

4
,

[𝑔
3
, 𝑔
4
] = −2𝑔

5
, [𝑔

3
, 𝑔
5
] = 2𝑔

4
,

[𝑔
4
, 𝑔
5
] = 2𝑔

6
, [𝑔

4
, 𝑔
6
] = 2𝑔

5
,

[𝑔
5
, 𝑔
6
] = −2𝑔

4
, [𝑔

1
, 𝑔
4
] = [𝑔

3
, 𝑔
6
] = 0.

(12)

Set

̃
𝐺
1
= span {𝑔

1
, 𝑔
2
, 𝑔
3
} ,

̃
𝐺
2
= span {𝑔

4
, 𝑔
5
, 𝑔
6
} , (13)

then we find that

𝐺 =
̃
𝐺
1
⊕
̃
𝐺
2
,

̃
𝐺
1
≅ 𝐺
1
, [

̃
𝐺
1
,
̃
𝐺
2
] ⊆
̃
𝐺
2
, (14)

and̃𝐺
1
and̃𝐺

2
are all simple Lie subalgebras.

While we use Lie algebras to generate integrable hierar-
chies of evolution equations, we actually employ their loop
algebras ̃𝐺 = 𝐺 ⊗ 𝐶(𝜆, 𝜆

−1
) to establish Lax pairs, where

𝐶(𝜆, 𝜆

−1
) represents a set of Laurent ploynomials in 𝜆 and 𝐺

is a Lie algebra. Based on this, we give the loop algebras of (9)
as follows:

̃
𝐺 = span {𝑔

1
(𝑛) , . . . , 𝑔

6
(𝑛)} , (15)

where𝑔
𝑖
(𝑛) = 𝑔

𝑖
𝜆

𝑛, [𝑔
𝑖
(𝑚), 𝑔

𝑗
(𝑛)] = [𝑔

𝑖
, 𝑔
𝑗
]𝜆

𝑚+𝑛, 1 ≤ 𝑖, 𝑗 ≤ 6,
𝑚, 𝑛 ∈ 𝑍.

We consider an auxiliary linear problem as follows:

(

𝜑
1

𝜑
2

𝜑
3

𝜑
4

)

𝑥

= 𝑈 (𝑢, 𝜆)(

𝜑
1

𝜑
2

𝜑
3

𝜑
4

),

𝑈 (𝑢, 𝜆) = 𝑅
1
+

6

∑

𝑖=1

𝑢
𝑖
𝑔
𝑖
(𝜆) ,

(

𝜑
1

𝜑
2

𝜑
3

𝜑
4

)

𝑡
𝑛

= 𝑉
𝑛
(𝑢, 𝜆)(

𝜑
1

𝜑
2

𝜑
3

𝜑
4

),

(16)

where 𝑢 = (𝑢
1
, . . . , 𝑢

𝑠
)

𝑇, 𝑈
𝑛
= 𝑅
1
+ 𝑢
1
𝑔
1
+ ⋅ ⋅ ⋅ + 𝑢

6
𝑔
6
, 𝑅
1
is a

pseudoregular element, 𝑢
𝑖
(𝑛, 𝑡) = 𝑢

𝑖
(𝑖 = 1, 2, . . . , 6), and 𝜑

𝑖
=

𝜑(𝑥, 𝑡) are field variables defined on 𝑥 ∈ 𝑅, 𝑡 ∈ 𝑅, 𝑔
𝑖
(𝜆) ∈

̃
𝐺.

The compatibility of (16) gives rise to thewell-known zero
curvature equation

𝑈
𝑡
− 𝑉
𝑥
+ [𝑈,𝑉] = 0, 𝜆

𝑡
= 0. (17)
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The general scheme of searching for the consistent 𝑉
𝑛
,

and generating a hierarchy of zero curvature equations was
proposed in [30]. Solving the following equation:

𝑉
𝑥
= [𝑈,𝑉] ,

𝑉 =

∞

∑

𝑛=0

𝑉
𝑛
𝜆

−𝑛

= (

𝑎 𝑏 + 𝑐 0 0

𝑏 − 𝑐 −𝑎 0 0

𝑒 𝑓 + 𝑔 𝑎 + 𝑒 𝑏 + 𝑐 + 𝑓 + 𝑔

𝑓 − 𝑔 −𝑒 𝑏 − 𝑐 + 𝑓 − 𝑔 − (𝑎 + 𝑒)

) ,

(18)

then we sesrch for 󳵻
𝑛
∈
̃
𝐺, the new 𝑉

𝑛
can be constructed by

𝑉
𝑛
=

𝑛

∑

𝑚=0

𝑉
𝑚
(𝑢) 𝜆

𝑛−𝑚
+ 󳵻
𝑛
(𝑢, 𝜆) . (19)

Solving zero curvature (17), we could get evolution equation
as follows:

𝑢
𝑡
= 𝐾(𝑢, 𝑢

𝑥
, . . . ,

𝜕

𝑝
𝑢

𝜕𝑥

𝑝
) . (20)

Now, we consider Li soliton hierarchy [31]. In order to set
up nonlinear integrable couplings of the Li soliton hierarchy
with self-consistent sources, we first consider the following
matrix spectral problem:

𝜑
𝑥
= 𝑈 (𝑢, 𝜆) 𝜑,

𝑈 (𝑢, 𝜆) = − 𝑔
1
(1) + V𝑔

1
(0) + 𝑢𝑔

2
(0) + V𝑔

3
(0)

− 𝑔
4
(1) + 𝑝

2
𝑔
4
(0) + 𝑝

1
𝑔
5
(0) + 𝑝

2
𝑔
6
(0) ,

(21)

that is,

𝑈 (𝑢, 𝜆)

= (

−𝜆 + V 𝑢 + V 0 0

𝑢 − V 𝜆 − V 0 0

−𝜆 + 𝑝
2
𝑝
1
+ 𝑝
2
−2𝜆 + V + 𝑝

2
𝑢 + V + 𝑝

1
+ 𝑝
2

𝑝
1
− 𝑝
2
𝜆 − 𝑝
2
𝑢 − V + 𝑝

1
− 𝑝
2

2𝜆 − V − 𝑝
2

)

= (

𝑈
1

0

𝑈
0
𝑈
1
+ 𝑈
0

) ,

(22)

where 𝜆 is a spectral parameter and 𝑈
1
satisfies 𝜑

𝑥
= 𝑈
1
𝜑

which is matrix spectral problem of the Li soliton hierarchy
[31].

To establish the nonlinear integrable coupling system of
the Li soliton hierarchy, the adjoint equation 𝑉

𝑥
= [𝑈,𝑉] of

the spectral problem (21) is firstly solved, we assume that a
solution 𝑉 is given by the following:

𝑉 = (

𝑎 𝑏 + 𝑐 0 0

𝑏 − 𝑐 −𝑎 0 0

𝑒 𝑓 + 𝑔 𝑎 + 𝑒 𝑏 + 𝑐 + 𝑓 + 𝑔

𝑓 − 𝑔 −𝑒 𝑏 − 𝑐 + 𝑓 − 𝑔 − (𝑎 + 𝑒)

)

=

∞

∑

𝑛=0

𝑉
𝑛
𝜆

−𝑛

=

∞

∑

𝑛=0

×(

𝑎𝑛 𝑏𝑛 + 𝑐𝑛 0 0

𝑏𝑛 − 𝑐𝑛 −𝑎𝑛 0 0

𝑒𝑛 𝑓𝑛 + 𝑔𝑛 𝑎𝑛 + 𝑒𝑛 𝑏𝑛 + 𝑐𝑛 + 𝑓𝑛 + 𝑔𝑛

𝑓𝑛 − 𝑔𝑛 −𝑒𝑛 𝑏𝑛 − 𝑐𝑛 + 𝑓𝑛 − 𝑔𝑛 − (𝑎𝑛 + 𝑒𝑛)

)𝜆

−𝑛
.

(23)
Therefore, the condition (18) becomes the following recursion
relation:

𝑎
𝑛,𝑥
= 2V𝑏
𝑛
− 2𝑢𝑐
𝑛
,

𝑏
𝑛,𝑥
= −2𝑐

𝑛+1
+ 2V𝑐
𝑛
− 2V𝑎
𝑛
,

𝑐
𝑛,𝑥
= −2𝑏

𝑛+1
+ 2V𝑏
𝑛
− 2𝑢𝑎

𝑛
,

𝑒
𝑛,𝑥
= − 2𝑢𝑔

𝑛
+ 2V𝑓

𝑛
− 2𝑝
1
𝑐
𝑛

+ 2𝑝
2
𝑏
𝑛
− 2𝑝
1
𝑔
𝑛
+ 2𝑝
2
𝑓
𝑛
,

𝑓
𝑛,𝑥
= − 2𝑔

𝑛+1
+ 2V𝑔

𝑛
− 2V𝑒
𝑛

+ 2𝑝
2
𝑐
𝑛
− 2𝑝
2
𝑎
𝑛
+ 2𝑝
2
𝑔
𝑛
− 2𝑝
2
𝑒
𝑛
,

𝑔
𝑛,𝑥
= − 2𝑓

𝑛+1
+ 2V𝑓

𝑛
− 2𝑢𝑒
𝑛
+ 2𝑝
2
𝑏
𝑛

− 2𝑝
1
𝑎
𝑛
+ 2𝑝
2
𝑓
𝑛
− 2𝑝
1
𝑒
𝑛
.

(24)

Choose the initial data
𝑎
0
= 𝑒
0
= 𝛽, 𝑏

0
= 𝑐
0
= 𝑓
0
= 𝑔
0
= 0, (25)

we see that all sets of functions 𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
, 𝑒
𝑛
, 𝑓
𝑛
, and 𝑔

𝑛
are

uniquely determined. In particular, the first few sets are as
follows:

𝑎
1
= 0, 𝑏

1
= −𝑢𝛽, 𝑐

1
= −V𝛽, 𝑒

1
= 0,

𝑓
1
= −𝑝
1
𝛽, 𝑔

1
= −𝑝
2
𝛽, 𝑎

2
=

1

2

(V
2
− 𝑢

2
) ,

𝑏
2
= (

1

2

V
𝑥
− 𝑢V)𝛽, 𝑐

2
= (

1

2

𝑢
𝑥
− V
2
)𝛽,

𝑒
2
= (

1

2

V𝑝
2
−

1

2

𝑢𝑝
1
+

1

4

𝑢

2
−

1

4

V
2
−

1

4

𝑝

2

1
+

1

4

𝑝

2

2
)𝛽,
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𝑓
2
= (

1

4

𝑝
2,𝑥
−

1

4

V
𝑥
+

1

2

𝑢V −
1

2

V𝑝
1
−

1

2

𝑢𝑝
2
−

1

2

𝑝
1
𝑝
2
)𝛽,

𝑔
2
= (

1

4

𝑝
1,𝑥
−

1

4

𝑢
𝑥
+

1

2

V
2
−

1

2

𝑝

2

2
− V𝑝
2
)𝛽, . . . .

(26)

Considering

𝑉
𝑛
= 𝑉 + 󳵻

𝑛
,

󳵻
𝑛

=(

− (𝑎𝑛 − 𝑐𝑛) 0 0 0

0 𝑎𝑛 − 𝑐𝑛 0 0

− (𝑒𝑛 − 𝑔𝑛) 0 − (𝑎𝑛 − 𝑐𝑛) − (𝑒𝑛 − 𝑔𝑛)

0 𝑒𝑛 − 𝑔𝑛 0 𝑎𝑛 − 𝑐𝑛 + 𝑒𝑛 − 𝑔𝑛

).

(27)

From the zero curvature equation 𝑈
𝑡
− 𝑉
𝑥
+ [𝑈,𝑉] = 0, we

obtain the nonlinear integrable coupling system

𝑢
𝑡
𝑛

= 𝐾
𝑛
= (

𝑢

V

𝑝
1

𝑝
2

)

𝑡
𝑛

= (

𝑏
𝑛,𝑥

−(𝑎
𝑛
− 𝑐
𝑛
)
𝑥

𝑓
𝑛,𝑥

−(𝑒
𝑛
− 𝑔
𝑛
)

𝑥

)

= 𝐽(

𝑏
𝑛

𝑎
𝑛
− 𝑐
𝑛

𝑓
𝑛

𝑒
𝑛
− 𝑔
𝑛

) = 𝐽𝐿

𝑛
(

0

𝛽

0

𝛽

) , 𝑛 ≥ 0,

(28)

with theHamiltonian operator 𝐽 and the hereditary recursion
operator 𝐿, respectively, as follows:

𝐽 = (

𝜕 0 0 0

0 −𝜕 0 0

0 0 𝜕 0

0 0 0 −𝜕

) ,

𝐿 =(

0

1

2

𝜕 − 𝑢 0 0

𝜕

−1
𝑢𝜕 +

1

2

𝜕 𝜕

−1
V𝜕 + V 0 0

0 𝑀
1

0 𝑀
2

𝑀
3

𝑀
4

𝑀
5
𝑀
6

),

(29)

where

𝑀
1
= −

1

4

𝜕 −

1

2

𝑝
1
+

1

2

𝑢,

𝑀
2
=

1

4

𝜕 −

1

2

𝑝
1
−

1

2

𝑢,

𝑀
3
= −

1

2

𝜕

−1
𝑢 −

1

2

𝜕

−1
𝑝
1
− 𝜕

−1
𝑝
1
𝜕 −

1

4

𝜕,

𝑀
4
= −

1

2

𝜕

−1
V𝜕 +

1

2

𝜕

−1
𝑝
2
𝜕 + 𝜕

−1
𝑝
2
𝑢 −

1

2

V +
1

2

𝑝
2
,

𝑀
5
=

1

2

𝜕

−1
𝑢𝜕 +

1

2

𝜕

−1
𝑝
1
𝜕 +

1

4

𝜕,

𝑀
6
= − 2𝜕

−1
𝑢V −

3

2

𝜕

−1
𝑝
1
V +

1

2

𝜕

−1
V𝜕

+

1

2

𝜕

−1
𝑝
2
𝜕 −

1

2

V +
1

2

𝑝
2
.

(30)

Obviously, when 𝑝
1
= 𝑝
2
= 0 in (28), the above results

become Li soliton hierarchy. So, we can say that (28) is
integrable coupling of the Li soliton hierarchy.

Taking 𝑛 = 2, we get that the nonlinear integrable
couplings of Li soliton hierarchy are as follows:

𝑢
𝑡
2

= (−

1

2

V
𝑥𝑥
− 𝑢
𝑥
V − 𝑢V

𝑥
)𝛽,

V
𝑡
2

= (

1

2

𝑢
𝑥𝑥
− 3VV
𝑥
+ 𝑢𝑢
𝑥
)𝛽,

𝑝
1,𝑡
2

= (

1

4

𝑝
2,𝑥
−

1

4

V
𝑥
+

1

2

𝑢V −
1

2

V𝑝
1

−

1

2

𝑢𝑝
2
−

1

2

𝑝
1
𝑝
2
)

𝑥

𝛽,

𝑝
2,𝑡
2

= (

1

4

𝑝
1,𝑥
−

1

4

𝑢
𝑥
+

1

2

V
2
−

3

4

𝑝

2

2
−

3

2

V𝑝
2

+

1

2

𝑢𝑝
1
−

1

4

𝑢

2
+

1

4

V
2
+

1

4

𝑝

2

1
)

𝑥

𝛽.

(31)

So, we can say that the system in (28) with 𝑛 ≥ 2

provides a hierarchy of nonlinear integrable couplings for the
Li hierarchy of the soliton equation.

3. Self-Consistent Sources for the Nonlinear
Integrable Couplings of Li Soliton Hierarchy

According to (16), now we consider a new auxiliary linear
problem. For 𝑁 distinct 𝜆

𝑗
, 𝑗 = 1, 2, . . . , 𝑁 and the systems

of (16) become in the following form:

(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

𝜑
4𝑗

)

𝑥

= 𝑈 (𝑢, 𝜆
𝑗
)(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

𝜑
4𝑗

)

=

6

∑

𝑖=1

𝑢
𝑖
𝑔
𝑖
(𝜆)(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

𝜑
4𝑗

), 𝑗 = 1, . . . , 𝑁,
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(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

𝜑
4𝑗

)

𝑡
𝑛

= 𝑉
𝑛
(𝑢, 𝜆
𝑗
)(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

𝜑
4𝑗

)

= [

𝑛

∑

𝑚=0

𝑉
𝑚
(𝑢) 𝜆

𝑛−𝑚

𝑗
+ Δ
𝑛
(𝑢, 𝜆
𝑗
)]

×(

𝜑
1𝑗

𝜑
2𝑗

𝜑
3𝑗

𝜑
4𝑗

), 𝑗 = 1, . . . , 𝑁.

(32)

Based on the result in [32], we show that the following
equation

𝛿𝐻
𝑘

𝛿𝑢

+

𝑁

∑

𝑗=1

𝛼
𝑗

𝛿𝜆
𝑗

𝛿𝑢

= 0 (33)

holds true, where 𝛼
𝑗
is a constant. From (32), we may know

that

𝛿𝜆
𝑗

𝛿𝑢
𝑖

= 𝛼
𝑗
Tr(Ψ

𝑗

𝜕𝑈 (𝑢, 𝜆
𝑗
)

𝜕𝑢
𝑖

)

= 𝛼
𝑗
Tr (Ψ
𝑗
𝑔
𝑖
(𝜆
𝑗
)) , 𝑖 = 1, 2,

(34)

where Tr denotes the trace of a matrix and

Ψ
𝑗
= (

𝜙
1𝑗
𝜙
2𝑗

−𝜙

2

1𝑗
𝜙
3𝑗
𝜙
4𝑗

−𝜙

2

3𝑗

𝜙

2

2𝑗
−𝜙
1𝑗
𝜙
2𝑗

𝜙

2

4𝑗
−𝜙
3𝑗
𝜙
4𝑗

0 0 𝜙
1𝑗
𝜙
2𝑗

−𝜙

2

1𝑗

0 0 𝜙

2

2𝑗
−𝜙
1𝑗
𝜙
2𝑗

),

𝑗 = 1, . . . , 𝑁.

(35)

For 𝑖 = 3, 4 we define that

𝛿𝜆
𝑗

𝛿𝑢
𝑖

= 𝛽
𝑗
Tr(Ψ

𝑗𝐴

𝜕𝑈
0
(𝑢, 𝜆
𝑗
)

𝜕𝑢
𝑖

) , (36)

where

𝑈 = (

𝑈
1

0

𝑈
0
𝑈
1
+ 𝑈
0

) ,

Ψ
𝑗𝐴
= (

𝜙
3𝑗
𝜙
4𝑗

−𝜙

2

3𝑗

𝜙

2

4𝑗
−𝜙
3𝑗
𝜙
4𝑗

) ,

(37)

and 𝛽
𝑗
is a constant.

According to (34) and (36), we obtain a kind of nonlinear
integrable couplings with self-consistent sources as follows:

𝑢
𝑡
𝑛

= 𝐽

𝛿𝐻
𝑛+1

𝛿𝑢
𝑖

+ 𝐽

𝑁

∑

𝑗=1

𝛼
𝑗

𝛿𝜆
𝑗

𝛿𝑢

= 𝐽𝐿

𝑛
𝛿𝐻
1

𝛿𝑢
𝑖

+ 𝐽

𝑁

∑

𝑗=1

𝛼
𝑗

𝛿𝜆
𝑗

𝛿𝑢

, 𝑛 = 1, 2, . . . .

(38)

Therefore, according to formulas (34) and (36), we have the
following results by direct computations:

𝑁

∑

𝑗=1

𝛿𝜆
𝑗

𝛿𝑢

=

𝑁

∑

𝑗=1

(

(

(

(

(

(

(

(

(

𝛿𝜆
𝑗

𝛿𝑢

𝛿𝜆
𝑗

𝛿V

𝛿𝜆
𝑗

𝛿𝑝
1

𝛿𝜆
𝑗

𝛿𝑝
1

)

)

)

)

)

)

)

)

)

=(

2(⟨Φ
2
, Φ
2
⟩ − ⟨Φ

1
, Φ
1
⟩)

2 (⟨Φ
1
, Φ
1
⟩ + ⟨Φ

2
, Φ
2
⟩ + 2 ⟨Φ

1
, Φ
2
⟩)

⟨Φ
4
, Φ
4
⟩ − ⟨Φ

3
, Φ
3
⟩

⟨Φ
3
, Φ
3
⟩ + ⟨Φ

4
, Φ
4
⟩ + 2 ⟨Φ

3
, Φ
4
⟩

) ,

(39)

by taking 𝛼
𝑗
= 1 and 𝛽

𝑗
= 1 in formulas (34) and (36).

Therefore, we have nonlinear integrable coupling system of
the Li equations hierarchy with self-consistent sources as
follows:

𝑢
𝑡
𝑛

= 𝐾
𝑛

= (

𝑢

V

𝑝
1

𝑝
2

)

𝑡
𝑛

= 𝐽𝐿

𝑛
(

0

𝛽

0

𝛽

)

+ 𝐽(

2 (⟨Φ
2
, Φ
2
⟩ − ⟨Φ

1
, Φ
1
⟩)

2 (⟨Φ
1
, Φ
1
⟩ + ⟨Φ

2
, Φ
2
⟩ + 2 ⟨Φ

1
, Φ
2
⟩)

⟨Φ
4
, Φ
4
⟩ − ⟨Φ

3
, Φ
3
⟩

⟨Φ
3
, Φ
3
⟩ + ⟨Φ

4
, Φ
4
⟩ + 2 ⟨Φ

3
, Φ
4
⟩

)

= 𝐽𝐿

𝑛
(

0

𝛽

0

𝛽

) + 𝐽

(

(

(

(

(

(

(

(

(

(

(

2

𝑁

∑

𝑗=1

(𝜑

2

2𝑗
− 𝜑

2

1𝑗
)

2

𝑁

∑

𝑗=1

(𝜑

2

1𝑗
+ 𝜑

2

2𝑗
+ 2𝜑
1𝑗
𝜑
2𝑗
)

𝑁

∑

𝑗=1

(𝜑

2

4𝑗
− 𝜑

2

3𝑗
)

𝑁

∑

𝑗=1

(𝜑

2

3𝑗
+ 𝜑

2

4𝑗
+ 2𝜑
3𝑗
𝜑
4𝑗
)

)

)

)

)

)

)

)

)

)

)

)

,

(40)
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with

𝜑
1𝑗,𝑥
= (−𝜆 + V) 𝜑

1𝑗
+ (𝑢 + V) 𝜑

2𝑗
,

𝜑
2𝑗,𝑥
= (𝑢 − V) 𝜑

1𝑗
+ (𝜆 − V) 𝜑

2𝑗
,

𝜑
3𝑗,𝑥
= (−𝜆 + 𝑝

2
) 𝜑
1𝑗
+ (𝑝
1
+ 𝑝
2
) 𝜑
2𝑗

+ (−2𝜆 + V + 𝑝
2
) 𝜑
3𝑗
+ (𝑢 + V + 𝑝

1
+ 𝑝
2
) 𝜑
4𝑗
,

𝜑
4𝑗,𝑥
= (𝑝
1
− 𝑝
2
) 𝜑
1𝑗
+ (𝜆 − 𝑝

2
) 𝜑
2𝑗

+ (𝑢 − V + 𝑝
1
− 𝑝
2
) 𝜑
3𝑗

+ (2𝜆 − V − 𝑝
2
) 𝜑
4𝑗
, 𝑗 = 1, . . . , 𝑁,

(41)

where Φ
𝑖
= (𝜑
𝑖1
, . . . , 𝜑

𝑖𝑁
), 𝑖 = 1, 2, 3, 4, and ⟨⋅, ⋅⟩ is the

standard inner product in 𝑅𝑁.
When 𝑛 = 2 and 𝛽 = 2, we obtain nonlinear integrable

couplings of Li hierarchy with self-consistent sources

𝑢
𝑡
2

= −

1

2

V
𝑥𝑥
− 𝑢
𝑥
V − 𝑢V

𝑥
+ 2𝜕

𝑁

∑

𝑗=1

(𝜑

2

2𝑗
− 𝜑

2

1𝑗
) ,

V
𝑡
2

=

1

2

𝑢
𝑥𝑥
− 3VV
𝑥
+ 𝑢𝑢
𝑥

− 2𝜕

𝑁

∑

𝑗=1

(𝜑

2

1𝑗
+ 𝜑

2

2𝑗
+ 2𝜑
1𝑗
𝜑
2𝑗
) ,

𝑝
1𝑡
2

= (

1

4

𝑝
2,𝑥
−

1

4

V
𝑥
+

1

2

𝑢V −
1

2

V𝑝
1
−

1

2

𝑢𝑝
2

−

1

2

𝑝
1
𝑝
2
)

𝑥

+ 𝜕

𝑁

∑

𝑗=1

(𝜑

2

4𝑗
− 𝜑

2

3𝑗
) ,

𝑝
2𝑡
2

= (

1

4

𝑝
1,𝑥
−

1

4

𝑢
𝑥
+

1

2

V
2
−

3

4

𝑝

2

2
−

3

2

V𝑝
2
+

1

2

𝑢𝑝
1

−

1

4

𝑢

2
+

1

4

V
2
+

1

4

𝑝

2

1
)

𝑥

− 𝜕

𝑁

∑

𝑗=1

(𝜑

2

3𝑗
+ 𝜑

2

4𝑗
+ 2𝜑
3𝑗
𝜑
4𝑗
) ,

(42)

with

𝜑
1𝑗,𝑥
= (−𝜆 + V) 𝜑

1𝑗
+ (𝑢 + V) 𝜑

2𝑗
,

𝜑
2𝑗,𝑥
= (𝑢 − V) 𝜑

1𝑗
+ (𝜆 − V) 𝜑

2𝑗
,

𝜑
3𝑗,𝑥
= (−𝜆 + 𝑝

2
) 𝜑
1𝑗
+ (𝑝
1
+ 𝑝
2
) 𝜑
2𝑗

+ (−2𝜆 + V + 𝑝
2
) 𝜑
3𝑗
+ (𝑢 + V + 𝑝

1
+ 𝑝
2
) 𝜑
4𝑗
,

𝜑
4𝑗,𝑥
= (𝑝
1
− 𝑝
2
) 𝜑
1𝑗
+ (𝜆 − 𝑝

2
) 𝜑
2𝑗

+ (𝑢 − V + 𝑝
1
− 𝑝
2
) 𝜑
3𝑗

+ (2𝜆 − V − 𝑝
2
) 𝜑
4𝑗
, 𝑗 = 1, . . . , 𝑁.

(43)

4. Conservation Laws for the Nonlinear
Integrable Couplings of Li Soliton Hierarchy

In what follows, we will construct conservation laws for the
nonlinear integrable couplings of the Li hierarchy. For the
coupled spectral problem of Li hierarchy

𝑈 (𝑢, 𝜆)

= (

−𝜆 + V 𝑢 + V 0 0

𝑢 − V 𝜆 − V 0 0

−𝜆 + 𝑝
2
𝑝
1
+ 𝑝
2
−2𝜆 + V + 𝑝

2
𝑢 + V + 𝑝

1
+ 𝑝
2

𝑝
1
− 𝑝
2
𝜆 + −𝑝

2
𝑢 − V + 𝑝

1
− 𝑝
2

2𝜆 − V − 𝑝
2

),

(44)

we introduce the variables

𝑀 =

𝜑
2

𝜑
1

, 𝑁 =

𝜑
3

𝜑
1

, 𝐾 =

𝜑
4

𝜑
1

. (45)

From (44), we have

𝑀
𝑥
= 𝑢 − V + 2𝜆𝑀 − 2V𝑀− (𝑢 + V)𝑀

2
,

𝑁
𝑥
= − 𝜆 + 𝑝

2
− 𝜆𝑁 + (𝑝

1
+ 𝑝
2
)𝑀

+ 𝑝
2
𝑁 + (𝑢 + V + 𝑝

1
+ 𝑝
2
)𝐾 − (𝑢 + V)𝑁𝑀,

𝐾
𝑥
= 𝑝
1
− 𝑝
2
+ 3𝜆𝐾 + 𝜆𝑀 − 𝑝

2
𝑀

− (2V + 𝑝
2
)𝐾 + (𝑢 − V + 𝑝

1
− 𝑝
2
)𝑁 − (𝑢 + V) 𝐾𝑀.

(46)

We expand𝑀,𝑁, and𝐾 in powers of 𝜆 as follows:

𝑀 =

∞

∑

𝑗=1

𝑚
𝑗
𝜆

−𝑗
, 𝑁 =

∞

∑

𝑗=1

𝑛
𝑗
𝜆

−𝑗
,

𝐾 =

∞

∑

𝑗=1

𝑘
𝑗
𝜆

−𝑗
.

(47)
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Substituting (47) into (46) and comparing the coefficients of
the same power of 𝜆, we obtain the following:

𝑚
1
=

1

2

(V − 𝑢) , 𝑛
1
= 𝑝
2
,

𝑘
1
=

1

3

(𝑝
2
− 𝑝
1
) +

1

6

(𝑢 − V) ,

𝑚
2
=

1

4

(V − 𝑢)
𝑥
+

1

2

(V
2
− 𝑢V) ,

𝑛
2
= −𝑝
2,𝑥
−

1

3

𝑝

2

1
−

2

3

𝑢𝑝
1
+

2

3

V𝑝
2
+

4

3

𝑝

2

2
+

1

6

𝑢

2
−

1

6

V
2
,

𝑘
2
=

5

36

(𝑢 − V)
𝑥
+

1

9

(𝑝
2
− 𝑝
1
)

𝑥
−

5

18

V
2
+

5

18

𝑢V

+

2

3

V𝑝
2
−

4

9

𝑢𝑝
2
+

4

9

𝑝

2

2
−

4

9

𝑝
1
𝑝
2
−

2

9

V𝑝
1
,

𝑚
3
=

1

8

(V − 𝑢)
𝑥𝑥
+

1

8

𝑢

3
−

1

8

𝑢

2
V +

3

4

VV
𝑥

−

1

2

V𝑢
𝑥
−

1

4

𝑢V
𝑥
+

5

8

V
3
−

5

8

𝑢V
2
,

𝑛
3
= 𝑝
2,𝑥𝑥
+

5

9

(𝑝
1
𝑢)

𝑥
−

5

9

(𝑝
2
V)
𝑥
−

32

9

𝑝
2
𝑝
2,𝑥
−

7

36

𝑢𝑢
𝑥

+

7

36

VV
𝑥
+

5

9

𝑝
1
𝑝
1,𝑥
+

1

9

𝑝
1
V
𝑥
−

1

9

𝑝
2
𝑢
𝑥
−

5

36

𝑢V
𝑥

+

1

9

𝑢𝑝
2,𝑥
+

5

36

V𝑢
𝑥
−

1

9

V𝑝
1,𝑥
+

1

9

𝑝
1
𝑝
2,𝑥
−

1

9

𝑝
2
𝑝
1,𝑥

−

4

9

𝑝
1
𝑢V +

11

9

𝑝
2
V
2
−

14

9

𝑢𝑝
1
𝑝
2
+

16

9

V𝑝
2

2

+

16

9

𝑝

3

2
−

7

9

𝑝
2
𝑢

2
−

7

9

𝑝
2
𝑝

2

1
+

5

18

V𝑢
2
−

5

18

V
3
−

2

9

V𝑝
2

1
,

𝑘
3
=

19

216

(𝑢 − V)
𝑥𝑥
+

1

27

(𝑝
2
− 𝑝
1
)

𝑥𝑥
+

5

54

(𝑢 − V)
𝑥

−

47

108

VV
𝑥
+

7

27

V𝑢
𝑥
+

19

108

𝑢V
𝑥
−

4

27

V𝑝
2,𝑥

+

7

27

𝑝
2
V
𝑥
+

5

27

𝑢𝑝
2,𝑥
−

5

27

𝑝
2
𝑢
𝑥
−

5

27

𝑝
2
𝑝
1,𝑥

+

5

27

𝑝
1
𝑝
2,𝑥
−

2

27

𝑝
1
V
𝑥
−

4

27

V𝑝
1,𝑥
−

103

216

V
3

+

101

216

𝑢V
2
+

1

8

V𝑢
2
+

7

18

𝑝
2
V
2
−

16

27

𝑝
2
𝑢V

−

19

54

𝑝
2
V
2
+

32

27

V𝑝
2

2
−

16

27

𝑝
1
𝑝
2
V −

4

27

𝑝
1
V
2

−

16

27

𝑢𝑝

2

2
+

16

27

𝑝

3

2
−

16

27

𝑝
1
𝑝

2

2
+

2

9

𝑝
1
𝑢

2

+

1

18

𝑢V
2
+

1

3

𝑢𝑝

2

1
+

1

9

𝑝

3

1
−

2

9

𝑢V𝑝
1
−

2

9

𝑢𝑝
1
𝑝
2

−

1

9

V𝑝
2

1
−

1

9

𝑝
2
𝑝

2

1
−

1

8

𝑢

3
, . . . ,

(48)

and a recursion formula for𝑚
𝑗
, 𝑛
𝑗
, and 𝑘

𝑗
as follows:

𝑚
𝑗+1
=

1

2

𝑚
𝑗,𝑥
+ V𝑚
𝑗
+

1

2

(𝑢 + V)

𝑗−1

∑

𝑙=1

𝑚
𝑙
𝑚
𝑗−𝑙
,

𝑛
𝑗+1
= − 𝑛

𝑗,𝑥
+ (𝑝
1
+ 𝑝
2
)𝑚
𝑗
+ 𝑝
2
𝑛
𝑗

+ (𝑢 + V + 𝑝
1
+ 𝑝
2
) 𝑘
𝑗
− (𝑢 + V)

𝑗−1

∑

𝑙=1

𝑚
𝑙
𝑛
𝑗−𝑙
,

𝑘
𝑗+1
=

1

3

𝑘
𝑗,𝑥
−

1

6

𝑚
𝑗,𝑥
−

1

3

V𝑚
𝑗
+

1

3

𝑝
2
𝑚
𝑗

+

1

3

(2V + 𝑝
2
) 𝑘
𝑗
−

1

3

(𝑢 − V + 𝑝
1
− 𝑝
2
) 𝑛
𝑗

−

1

6

(𝑢 + V)

𝑗−1

∑

𝑙=1

𝑚
𝑙
𝑚
𝑗−𝑙
+

1

3

(𝑢 + V)

𝑗−1

∑

𝑙=1

𝑚
𝑙
𝑘
𝑗−𝑙
.

(49)

Because of

𝜕

𝜕𝑡

[−𝜆 + V + (𝑢 + V)𝑀] =
𝜕

𝜕𝑥

[𝑎 + (𝑏 + 𝑐)𝑀] ,

𝜕

𝜕𝑡

[−𝜆 + 𝑝
2
+ (𝑝
1
+ 𝑝
2
)𝑀 + (−2𝜆 + V + 𝑝

2
)𝑁

+ (𝑢 + V + 𝑝
1
+ 𝑝
2
)𝐾]

=

𝜕

𝜕𝑥

[𝑒 + (𝑓 + 𝑔)𝑀 + (𝑎 + 𝑒)𝑁

+ (𝑏 + 𝑐 + 𝑓 + 𝑔)𝐾] ,

(50)

where

𝑎 = 𝜉
0
𝜆

2
+ 𝜉
1
𝜆 +

1

2

𝜉
0
(V
2
− 𝑢

2
) ,

𝑏 = −𝜉
0
𝑢𝜆 + 𝜉

0
(−𝑢V +

1

2

V
𝑥
) − 𝜉
1
𝑢,

𝑐 = −𝜉
0
V𝜆 + 𝜉

0
(−V
2
+

1

2

𝑢
𝑥
) − 𝜉
1
V,

𝑒 = 𝜉
0
𝜆

2
+ 𝜉
1
𝜆

+ 𝜉
0
(

1

2

V𝑝
2
−

1

2

𝑢𝑝
1
+

1

4

𝑢

2
−

1

4

V
2
−

1

4

𝑝

2

1
+

1

4

𝑝

2

2
) ,

𝑓 = − 𝜉
0
𝑝
1
𝜆 + 𝜉
0
(

1

4

𝑝
2,𝑥
−

1

4

V
𝑥
+

1

2

𝑢V −
1

2

V𝑝
1

−

1

2

𝑢𝑝
2
−

1

2

𝑝
1
𝑝
2
) − 𝜉
1
𝑝
1
,

𝑔 = − 𝜉
0
𝑝
2
𝜆 + 𝜉
0
(

1

4

𝑝
1,𝑥
−

1

4

𝑢
𝑥
+

1

2

V
2

−

1

2

𝑝

2

2
− V𝑝
2
) − 𝜉
1
𝑝
2
.

(51)
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Assume that

𝜎 = −𝜆 + V + (𝑢 + V)𝑀,

𝜃 = 𝑎 + (𝑏 + 𝑐)𝑀,

𝜌 = − 𝜆 + 𝑝
2
+ (𝑝
1
+ 𝑝
2
)𝑀 + (−2𝜆 + V + 𝑝

2
)𝑁

+ (𝑢 + V + 𝑝
1
+ 𝑝
2
)𝐾,

𝛿 = 𝑒 + (𝑓 + 𝑔)𝑀 + (𝑎 + 𝑒)𝑁 + (𝑏 + 𝑐 + 𝑓 + 𝑔)𝐾.

(52)

Then, (50) can be written as 𝜎
𝑡
= 𝜃
𝑥
and 𝜌

𝑡
= 𝛿
𝑥
, which are

the right form of conservation laws. We expand 𝜎, 𝜃, 𝜌, and 𝛿
as series in powers of 𝜆 with the coefficients, which are called
conserved densities and currents, respectively:

𝜎 = −𝜆 + V + (𝑢 + V)

∞

∑

𝑗=1

𝜎
𝑗
𝜆

−𝑗
,

𝜃 = 𝜉
0
𝜆

2
+ 𝜉
1
𝜆 +

∞

∑

𝑗=1

𝜃
𝑗
𝜆

−𝑗
,

𝜌 = −𝜆 + 𝑝
2
+

∞

∑

𝑗=1

𝜌
𝑗
𝜆

−𝑗
,

𝛿 = 𝜉
0
𝜆

2
+ 𝜉
1
𝜆 +

∞

∑

𝑗=1

𝛿
𝑗
𝜆

−𝑗
,

(53)

where 𝜉
0
and 𝜉

1
are constants of integration. The first

conserved densities and currents are read as follows:

𝜎
1
=

1

2

(V
2
− 𝑢

2
) ,

𝜃
1
= 𝜉
0
(

1

2

𝑢𝑢
𝑥
−

3

4

𝑢V
𝑥
−

3

4

VV
𝑥
) −

1

2

𝜉
1
(V
2
− 𝑢

2
) ,

𝜌
1
=

1

2

𝑢𝑝
1
+

1

3

V𝑝
2
−

4

3

𝑝

2

2
−

1

6

𝑢

2

+

1

6

V
2
+

1

3

𝑝

2

1
+

1

6

𝑢𝑝
1
+ 2𝑝
2,𝑥
,

𝛿
1
= 𝜉
0
(2𝑝
2,𝑥𝑥
+

1

36

𝑝
1
V
𝑥
+

41

36

𝑝
1
𝑢
𝑥
−

41

36

𝑝
2
V
𝑥

−

1

36

𝑝
2
𝑢
𝑥
−

41

36

V𝑝
2,𝑥
−

1

36

V𝑝
1,𝑥

+

13

36

VV
𝑥
−

1

36

V𝑢
𝑥
+

1

36

𝑢𝑝
2,𝑥

+

41

36

𝑢𝑝
1,𝑥
−

13

36

𝑢𝑢
𝑥
−

257

36

𝑝
2
𝑝
2,𝑥

+

41

36

𝑝
1
𝑝
1,𝑥
+

1

36

𝑝
1
𝑝
2,𝑥

−

1

36

𝑝
2
𝑝
1,𝑥
+

47

36

𝑝
2
V
2
−

1

18

V𝑢
2

+

11

36

V𝑝
1
𝑝
2
+

55

18

V𝑝
2

2
−

43

36

𝑝
2
𝑢

2

−

53

18

𝑢𝑝
1
𝑝
2
+

93

36

𝑝

3

2

−

3

4

𝑝
2
𝑝

2

1
−

1

18

V𝑝
2

1
−

4

9

V𝑝
2

2

−

1

9

𝑢V𝑝
1
−

4

9

𝑝
1
𝑝

2

2

+

1

18

V
3
+

1

36

𝑢V
𝑥
)

+ 𝜉
1
(−2𝑝
2,𝑥
+ V𝑝
1
−

5

3

𝑢𝑝
1
+

5

3

V𝑝
2
− 𝑢𝑝
2

+

7

3

𝑝

2

2
+

1

6

𝑢

2
−

1

6

V
2
−

1

3

𝑝

2

1
) , . . . .

(54)

The recursion relations for 𝜎
𝑗
, 𝜃
𝑗
, 𝜌
𝑗
, and 𝛿

𝑗
are as follows:

𝜎
𝑗
= (𝑢 + V)𝑚

𝑗
,

𝜃
𝑗
= − 𝜉

0
(𝑢 + V)𝑚

𝑗+1
+ 𝜉
0
(

1

2

𝑢
𝑥
+

1

2

V
𝑥
− 𝑢V − V

2
)𝑚
𝑗

− 𝜉
1
(𝑢 + V)𝑚

𝑗
,

𝜌
𝑗
= (𝑝
1
+ 𝑝
2
)𝑚
𝑗
− 2𝑛
𝑗+1
+ (V + 𝑝

2
) 𝑛
𝑗

+ (𝑢 + V + 𝑝
1
+ 𝑝
2
) 𝑘
𝑗
,

𝛿
𝑗
= 𝜉
0
[ − (𝑝

1
+ 𝑝
2
)𝑚
𝑗+1

+ (

1

4

𝑝
2,𝑥
+

1

4

𝑝
1,𝑥
−

1

4

V
𝑥

−

1

4

𝑢
𝑥
+

1

2

𝑢V −
1

2

V𝑝
1

−

1

2

𝑢𝑝
2
−

1

2

𝑝
1
𝑝
2
+

1

2

V
2

−

1

2

𝑝

2

2
− 𝑝
2
V)𝑚
𝑗

+ 2𝑛
𝑗+2
+ (

1

2

V
2
−

1

2

𝑢

2
+

1

2

V𝑝
2

−

1

2

𝑢𝑝
1
+

1

4

𝑢

2

+

1

4

𝑝

2

2
−

1

4

V
2
−

1

4

𝑝

2

1
) 𝑛
𝑗

− (𝑢 + V + 𝑝
1
+ 𝑝
2
) 𝑘
𝑗+1
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+ (

1

4

𝑢
𝑥
+

1

4

V
𝑥
+

1

4

𝑝
1,𝑥
+

1

4

𝑝
2,𝑥
−

1

2

𝑢V

−

1

2

V
2
−

1

2

V𝑝
1
−

1

2

𝑢𝑝
2

−

1

2

𝑝
1
𝑝
2
−

1

2

𝑝

2

2
− V𝑝
2
)]

+ 𝜉
1
[2𝑛
𝑗+1
− (𝑝
1
+ 𝑝
2
)𝑚
𝑗

− (𝑢 + V + 𝑝
1
+ 𝑝
2
) 𝑘
𝑗
] ,

(55)

where𝑚
𝑗
, 𝑛
𝑗
, and 𝑘

𝑗
can be calculated from (49).The infinite

conservation laws of nonlinear integrable couplings (37) can
be easily obtained in (45)–(55), respectively.

5. Conclusions

In this paper, a new explicit Lie algebra was introduced, and
a new nonlinear integrable couplings of Li soliton hierarchy
with self-consistent sources was worked out. Then, the
conservation laws of Li soliton hierarchy were also obtained.
The method can be used to other soliton hierarchy with self-
consistent sources. In the near future, we will investigate
exact solutions of nonlinear integrable couplings of soliton
equations with self-consistent sources which are derived by
using our method.
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