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We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational
inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux
differentiability of solution mapping on control variables.

1. Introduction

In this paper, we deal with optimal control problems gov-
erned by the following variational inequality in a Hilbert
space𝐻:

(𝑥


(𝑡) + 𝐴𝑥 (𝑡) , 𝑥 (𝑡) − 𝑧) + 𝜙 (𝑥 (𝑡)) − 𝜙 (𝑧)

≤ (𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵𝑢 (𝑡) , 𝑥 (𝑡) − 𝑧) ,

a.e., 0 < 𝑡 ≤ 𝑇, 𝑧 ∈ 𝑉,

𝑥 (0) = 𝑥
0
.

(1)

Here,𝐴 is a continuous linear operator from𝑉 into𝑉∗ which
is assumed to satisfy Gårding’s inequality, where 𝑉 is dense
subspace in𝐻. Let 𝜙 : 𝑉 → (−∞, +∞] be a lower semicon-
tinuous, proper convex function. LetU be a Hilbert space of
control variables, and let𝐵 be a bounded linear operator from
U into 𝐿2(0, 𝑇;𝐻). Let Uad be a closed convex subset of U,
which is called the admissible set. Let 𝐽 = 𝐽(𝑣) be a given
quadratic cost function (see (61) or (103)). Then we will find
an element 𝑢 ∈ Uad which attains minimum of 𝐽(𝑣) overUad
subject to (1).

Recently, initial and boundary value problems for per-
manent magnet technologies have been introduced via varia-
tional inequalities in [1, 2] and nonlinear variational inequal-
ities of semilinear parabolic type in [3, 4].The papers treating
the variational inequalities with nonlinear perturbations are

not many. First of all, we deal with the existence and a varia-
tion of constant formula for solutions of the nonlinear func-
tional differential equation (1) governed by the variational
inequality in Hilbert spaces in Section 2.

Based on the regularity results for solution of (1), we
intend to establish the optimal control problem for the cost
problems in Section 3. For the optimal control problem of
systems governed by variational inequalities, see [1, 5]. We
refer to [6, 7] to see the applications of nonlinear variational
inequalities.Necessary conditions for state constraint optimal
control problems governed by semilinear elliptic problems
have been obtained by Bonnans and Tiba [8] using methods
of convex analysis (see also [9]).

Let 𝑥
𝑢
stand for solution of (1) associated with the control

𝑢 ∈ U. When the nonlinear mapping 𝑓 is Lipschitz contin-
uous from R × 𝑉 into 𝐻, we will obtain the regularity for
solutions of (1) and the norm estimate of a solution of the
above nonlinear equation on desired solution space. Con-
sequently, in view of the monotonicity of 𝜕𝜙, we show that
the mapping 𝑢 → 𝑥

𝑢
is continuous in order to establish

the necessary conditions of optimality of optimal controls for
various observation cases.

In Section 4, we will characterize the optimal controls
by giving necessary conditions for optimality. For this, it is
necessary to write down the necessary optimal condition due
to the theory of Lions [9]. The most important objective of
such a treatment is to derive necessary optimality conditions
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that are able to give complete information on the optimal
control.

Since the optimal control problems governed by nonlin-
ear equations are nonsmooth and nonconvex, the standard
methods of deriving necessary conditions of optimality are
inapplicable here. So we approximate the given problem by a
family of smooth optimization problems and afterwards tend
to consider the limit in the corresponding optimal control
problems. An attractive feature of this approach is that it
allows the treatment of optimal control problems governed
by a large class of nonlinear systems with general cost criteria.

2. Regularity for Solutions

If𝐻 is identifiedwith its dual spacewemaywrite𝑉 ⊂ 𝐻 ⊂ 𝑉
∗

densely and the corresponding injections are continuous.The
norm on𝑉,𝐻, and𝑉∗ will be denoted by || ⋅ ||, | ⋅ |, and || ⋅ ||

∗
,

respectively. The duality pairing between the element 𝑣
1
of

𝑉
∗ and the element 𝑣

2
of 𝑉 is denoted by (𝑣

1
, 𝑣
2
), which is

the ordinary inner product in𝐻 if 𝑣
1
, 𝑣
2
∈ 𝐻.

For 𝑙 ∈ 𝑉∗ we denote (𝑙, 𝑣) by the value 𝑙(𝑣) of 𝑙 at 𝑣 ∈ 𝑉.
The norm of 𝑙 as element of 𝑉∗ is given by

‖𝑙‖
∗
= sup
𝑣∈𝑉

|(𝑙, 𝑣)|

‖𝑣‖
. (2)

Therefore, we assume that 𝑉 has a stronger topology than𝐻
and, for brevity, we may regard that

‖𝑢‖
∗
≤ |𝑢| ≤ ‖𝑢‖ , ∀𝑢 ∈ 𝑉. (3)

Let 𝑎(⋅, ⋅) be a bounded sesquilinear form defined in𝑉×𝑉
and satisfying Gårding’s inequality

Re 𝑎 (𝑢, 𝑢) ≥ 𝜔
1
‖𝑢‖
2
− 𝜔
2
|𝑢|
2
, (4)

where 𝜔
1
> 0 and 𝜔

2
is a real number. Let 𝐴 be the operator

associated with this sesquilinear form:

(𝐴𝑢, 𝑣) = 𝑎 (𝑢, 𝑣) , 𝑢, 𝑣 ∈ 𝑉. (5)

Then −𝐴 is a bounded linear operator from 𝑉 to 𝑉∗ by the
Lax-Milgram Theorem. The realization of 𝐴 in 𝐻 which is
the restriction of 𝐴 to

𝐷 (𝐴) = {𝑢 ∈ 𝑉 : 𝐴𝑢 ∈ 𝐻} (6)

is also denoted by 𝐴. From the following inequalities

𝜔
1
‖𝑢‖
2
≤Re 𝑎 (𝑢, 𝑢) + 𝜔

2
|𝑢|
2
≤ 𝐶 |𝐴𝑢| |𝑢| + 𝜔

2
|𝑢|
2

≤ (𝐶 |𝐴𝑢| + 𝜔
2
|𝑢|) |𝑢| ≤ max {𝐶, 𝜔

2
} ‖𝑢‖
𝐷(𝐴)

|𝑢| ,

(7)

where

‖𝑢‖
𝐷(𝐴)

= (|𝐴𝑢|
2
+ |𝑢|
2
)
1/2 (8)

is the graph norm of 𝐷(𝐴), it follows that there exists a
constant 𝐶

0
> 0 such that

‖𝑢‖ ≤ 𝐶
0
‖𝑢‖
1/2

𝐷(𝐴)
|𝑢|
1/2
. (9)

Thus we have the following sequence

𝐷 (𝐴) ⊂ 𝑉 ⊂ 𝐻 ⊂ 𝑉
∗
⊂ 𝐷(𝐴)

∗
, (10)

where each space is dense in the next one with continuous
injection.

Lemma 1. With the notations (9) and (10), we have

(𝑉, 𝑉
∗
)
1/2,2

= 𝐻,

(𝐷(𝐴),𝐻)
1/2,2

= 𝑉,

(11)

where (𝑉, 𝑉∗)
1/2,2

denotes the real interpolation space between
𝑉 and 𝑉∗(Section 1.3.3 of [10]).

It is also well known that 𝐴 generates an analytic semi-
group 𝑆(𝑡) in both 𝐻 and 𝑉∗. For the sake of simplicity we
assume that 𝜔

2
= 0 and hence the closed half plane {𝜆 :

Re 𝜆 ≥ 0} is contained in the resolvent set of 𝐴.
If 𝑋 is a Banach space, 𝐿2(0, 𝑇;𝑋) is the collection of all

strongly measurable square integrable functions from (0, 𝑇)

into𝑋 and𝑊1,2(0, 𝑇;𝑋) is the set of all absolutely continuous
functions on [0, 𝑇] such that their derivative belongs to
𝐿
2
(0, 𝑇;𝑋).𝐶([0, 𝑇]; 𝑋)will denote the set of all continuously

functions from [0, 𝑇] into 𝑋 with the supremum norm. If 𝑋
and 𝑌 are two Banach spaces,L(𝑋, 𝑌) is the collection of all
bounded linear operators from𝑋 into𝑌, andL(𝑋,𝑋) is sim-
plywritten asL(𝑋). Here, we note that by using interpolation
theory we have

𝐿
2

(0, 𝑇; 𝑉) ∩𝑊
1,2
(0, 𝑇; 𝑉

∗
) ⊂ 𝐶 ([0, 𝑇] ;𝐻) . (12)

First of all, consider the following linear system:

𝑥


(𝑡) + 𝐴𝑥 (𝑡) = 𝑘 (𝑡) ,

𝑥 (0) = 𝑥
0
.

(13)

By virtue of Theorem 3.3 of [11] (or Theorem 3.1 of [12,
13]), we have the following result on the corresponding linear
equation of (13).

Lemma 2. Suppose that the assumptions for the principal
operator 𝐴 stated above are satisfied. Then the following prop-
erties hold.

(1) For 𝑥
0
∈ 𝑉 = (𝐷(𝐴),𝐻)

1/2,2
(see Lemma 1) and 𝑘 ∈

𝐿
2
(0, 𝑇;𝐻), 𝑇 > 0, there exists a unique solution 𝑥 of

(13) belonging to

𝐿
2

(0, 𝑇;𝐷 (𝐴)) ∩ 𝑊
1,2

(0, 𝑇;𝐻) ⊂ 𝐶 ([0, 𝑇] ; 𝑉) (14)

and satisfying

‖𝑥‖
𝐿
2
(0,𝑇;𝐷(𝐴))∩𝑊

1,2
(0,𝑇;𝐻)

≤ 𝐶
1
(
𝑥0

 + ‖𝑘‖𝐿2(0,𝑇;𝐻)) , (15)

where 𝐶
1
is a constant depending on 𝑇.

(2) Let 𝑥
0
∈ 𝐻 and 𝑘 ∈ 𝐿

2
(0, 𝑇; 𝑉

∗
), 𝑇 > 0. Then there

exists a unique solution 𝑥 of (13) belonging to

𝐿
2

(0, 𝑇; 𝑉) ∩𝑊
1,2
(0, 𝑇; 𝑉

∗
) ⊂ 𝐶 ([0, 𝑇] ;𝐻) (16)



Abstract and Applied Analysis 3

and satisfying

‖𝑥‖
𝐿
2
(0,𝑇;𝑉)∩𝑊

1,2
(0,𝑇;𝑉

∗
)
≤ 𝐶
1
(
𝑥0

 + ‖𝑘‖𝐿2(0,𝑇;𝑉∗)) , (17)

where 𝐶
1
is a constant depending on 𝑇.

Let𝑓 be a nonlinear single valuedmapping from [0,∞)×

𝑉 into𝐻.

(F) We assume that
𝑓 (𝑡, 𝑥1) − 𝑓 (𝑡, 𝑥2)

 ≤ 𝐿
𝑥1 − 𝑥2

 , (18)

for every 𝑥
1
, 𝑥
2
∈ 𝑉.

Let 𝑌 be another Hilbert space of control variables and
take U = 𝐿

2
(0, 𝑇; 𝑌) as stated in the Introduction. Choose a

bounded subset 𝑈 of 𝑌 and call it a control set. Let us define
an admissible controlUad as

Uad = {𝑢 ∈ 𝐿
2

(0, 𝑇; 𝑌) : 𝑢 is strongly measurable

function satisfying 𝑢 (t) ∈ 𝑈 for almost all 𝑡} .
(19)

Noting that the subdifferential operator 𝜕𝜙 is defined by

𝜕𝜙 (𝑥) = {𝑥
∗
∈ 𝑉
∗
; 𝜙 (𝑥) ≤ 𝜙 (𝑦) + (𝑥

∗
, 𝑥 − 𝑦) , 𝑦 ∈ 𝑉} ,

(20)

the problem (1) is represented by the following nonlinear
functional differential problem on𝐻:

𝑥


(𝑡) + 𝐴𝑥 (𝑡) + 𝜕𝜙 (𝑥 (𝑡)) ∋ 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵𝑢 (𝑡) ,

0 < 𝑡 ≤ 𝑇,

𝑥 (0) = 𝑥
0
.

(21)

Referring toTheorem 3.1 of [3], we establish the following
results on the solvability of (1).

Proposition 3. (1) Let the assumption (F) be satisfied. Assume
that 𝑢 ∈ 𝐿

2
(0, 𝑇; 𝑌), 𝐵 ∈ L(𝑌, 𝑉

∗
), and 𝑥

0
∈ 𝐷(𝜙) where

𝐷(𝜙) is the closure in𝐻 of the set𝐷(𝜙) = {𝑢 ∈ 𝑉 : 𝜙(𝑢) < ∞}.
Then, (1) has a unique solution

𝑥 ∈ 𝐿
2

(0, 𝑇; 𝑉) ∩ 𝐶 ([0, 𝑇] ;𝐻) (22)

which satisfies

𝑥


(𝑡) = 𝐵𝑢 (𝑡) − 𝐴𝑥 (𝑡) − (𝜕𝜙)
0

(𝑥 (𝑡)) + 𝑓 (𝑡, 𝑥 (𝑡)) , (23)

where (𝜕𝜙)0 : 𝐻 → 𝐻 is the minimum element of 𝜕𝜙 and
there exists a constant 𝐶

2
depending on 𝑇 such that

‖𝑥‖
𝐿
2
∩𝐶

≤ 𝐶
2
(1 +

𝑥0
 + ‖𝐵𝑢‖𝐿2(0,𝑇;𝑉∗)) , (24)

where 𝐶
2
is some positive constant and 𝐿2 ∩ 𝐶 = 𝐿

2
(0, 𝑇; 𝑉) ∩

𝐶([0, 𝑇];𝐻).
Furthermore, if 𝐵 ∈ L(𝑌,𝐻) then the solution 𝑥 belongs to

𝑊
1,2
(0, 𝑇;𝐻) and satisfies

‖𝑥‖
𝑊
1,2
(0,𝑇;𝐻)

≤ 𝐶
2
(1 +

𝑥0
 + ‖𝐵𝑢‖𝐿2(0,𝑇;𝐻)) . (25)

(2) We assume the following.

(A) 𝐴 is symmetric and there exists ℎ ∈ 𝐻 such that for
every 𝜖 > 0 and any 𝑦 ∈ 𝐷(𝜙)

𝐽
𝜖
(𝑦 + 𝜖ℎ) ∈ 𝐷 (𝜙) , 𝜙 (𝐽

𝜖
(𝑦 + 𝜖ℎ)) ≤ 𝜙 (𝑦) , (26)

where 𝐽
𝜖
= (𝐼 + 𝜖𝐴)

−1.

Then for 𝑢 ∈ 𝐿2(0, 𝑇; 𝑌), 𝐵 ∈ L(𝑌,𝐻), and 𝑥
0
∈ 𝐷(𝜙) ∩𝑉

(1) has a unique solution

𝑥 ∈ 𝐿
2

(0, 𝑇;𝐷 (𝐴)) ∩ 𝑊
1,2

(0, 𝑇;𝐻) ∩ 𝐶 ([0, 𝑇] ;𝐻) , (27)

which satisfies

‖𝑥‖
𝐿
2
∩𝑊
1,2
∩𝐶

≤ 𝐶
2
(1 +

𝑥0
 + ‖𝐵𝑢‖𝐿2(0,𝑇;𝐻)) . (28)

Remark 4. In terms of Lemma 1, the following inclusion

𝐿
2

(0, 𝑇; 𝑉) ∩ 𝑊
1,2
(0, 𝑇; 𝑉

∗
) ⊂ 𝐶 ([0, 𝑇] ;𝐻) (29)

is well known as seen in (9) and is an easy consequence of
the definition of real interpolation spaces by the tracemethod
(see [4, 13]).

The following Lemma is from Brézis [14, Lemma A.5].

Lemma 5. Let 𝑚 ∈ 𝐿
1
(0, 𝑇;R) satisfying 𝑚(𝑡) ≥ 0 for all 𝑡 ∈

(0, 𝑇) and 𝑎 ≥ 0 be a constant. Let 𝑏 be a continuous function
on [0, 𝑇] ⊂ R satisfying the following inequality:

1

2
𝑏
2

(𝑡) ≤
1

2
𝑎
2
+ ∫

𝑡

0

𝑚(𝑠) 𝑏 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] . (30)

Then,

|𝑏 (𝑡)| ≤ 𝑎 + ∫

𝑡

0

𝑚(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] . (31)

For each (𝑥
0
, 𝑢) ∈ 𝐻 × 𝐿

2
(0, 𝑇; 𝑌), we can define the

continuous solution mapping (𝑥
0
, 𝑢) → 𝑥. Now, we can state

the following theorem.

Theorem 6. (1) Let the assumption (F) be satisfied, 𝑥
0
∈ 𝐻,

and 𝐵 ∈ L(𝑌, 𝑉
∗
). Then the solution 𝑥 of (1) belongs to 𝑥 ∈

𝐿
2
(0, 𝑇; 𝑉) ∩ 𝐶([0, 𝑇];𝐻) and the mapping

𝐻 × 𝐿
2

(0, 𝑇; 𝑌) ∋ (𝑥
0
, 𝑢)

→ 𝑥 ∈ 𝐿
2

(0, 𝑇; 𝑉) ∩ 𝐶 ([0, 𝑇] ;𝐻)

(32)

is Lipschtz continuous; that is, suppose that (𝑥
0𝑖
, 𝑢
𝑖
) ∈ 𝐻 ×

𝐿
2
(0, 𝑇; 𝑌) and 𝑥

𝑖
be the solution of (1) with (𝑥

0𝑖
, 𝑢
𝑖
) in place

of (𝑥
0
, 𝑢) for 𝑖 = 1, 2,

𝑥1 − 𝑥2
𝐿2(0,𝑇;𝑉)∩𝐶([0,𝑇];𝐻)

≤ 𝐶 {
𝑥01 − 𝑥02

 +
𝑢1 − 𝑢2

𝐿2(0,𝑇;𝑌)
} ,

(33)

where 𝐶 is a constant.
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(2) Let the assumptions (A) and (F) be satisfied and let
𝐵 ∈ L(𝑌,𝐻) and 𝑥

0
∈ 𝐷(𝜙) ∩ 𝑉. Then 𝑥 ∈ 𝐿

2
(0, 𝑇;𝐷(𝐴)) ∩

𝑊
1,2
(0, 𝑇;𝐻), and the mapping

𝑉 × 𝐿
2

(0, 𝑇; 𝑌) ∋ (𝑥
0
, 𝑢)

→ 𝑥 ∈ 𝐿
2

(0, 𝑇;𝐷 (𝐴)) ∩ 𝑊
1,2

(0, 𝑇;𝐻)

(34)

is continuous.

Proof. (1) Due to Proposition 3, we can infer that (1) possesses
a unique solution 𝑥 ∈ 𝐿2(0, 𝑇; 𝑉) ∩𝐶([0, 𝑇];𝐻) with the data
condition (𝑥

0
, 𝑢) ∈ 𝐻 × 𝐿

2
(0, 𝑇; 𝑌). Now, we will prove the

inequality (33). For that purpose, we denote 𝑥
1
− 𝑥
2
by 𝑋.

Then

𝑋


(𝑡) + 𝐴𝑋 (𝑡) + 𝜕𝜙 (𝑥
1
(𝑡)) − 𝜕𝜙 (𝑥

2
(𝑡))

∋ 𝑓 (𝑡, 𝑥
1
(𝑡)) − 𝑓 (𝑡, 𝑥

2
(𝑡))

+ 𝐵 (𝑢
1
(𝑡) − 𝑢

2
(𝑡)) , 0 < 𝑡 ≤ 𝑇,

𝑋 (0) = 𝑥
01
− 𝑥
02
.

(35)

Multiplying on the above equation by𝑋(𝑡), we have

1

2

𝑑

𝑑𝑡
|𝑋 (𝑡)|

2
+ 𝜔
1
‖𝑋 (𝑡)‖

2

≤ 𝜔
2
|𝑋 (𝑡)|

2

+ {
𝑓 (𝑡, 𝑥1 (𝑡)) − 𝑓 (𝑡, 𝑥2 (𝑡))

 +
𝐵 (𝑢1 (𝑡) − 𝑢2 (𝑡))

}

× |𝑋 (𝑡)| .

(36)

Put

𝐻(𝑡) = (𝐿 ‖𝑋 (𝑡)‖ +
𝐵 (𝑢1 (𝑡) − 𝑢2 (𝑡))

) |𝑋 (𝑡)| . (37)

By integrating the above inequality over [0, 𝑡], we have

1

2
|𝑋(𝑡)|

2
+ 𝜔
1
∫

𝑡

0

‖𝑋 (𝑠)‖
2
𝑑𝑠

≤
1

2

𝑥01 − 𝑥02


2

+ 𝜔
2
∫

𝑡

0

|𝑋 (𝑠)|
2
𝑑𝑠 + ∫

𝑡

0

𝐻(𝑠) 𝑑𝑠.

(38)

Note that

𝑑

𝑑𝑡
{𝑒
−2𝜔
2
𝑡
∫

𝑡

0

|𝑋 (𝑠)|
2
𝑑𝑠}

≤ 2𝑒
−2𝜔
2
𝑡
{
1

2
|𝑋 (𝑡)|

2
− 𝜔
2
∫

𝑡

0

|𝑋 (𝑠)|
2
𝑑𝑠}

≤ 2𝑒
−2𝜔
2
𝑡
{
1

2

𝑥01 − 𝑥02


2

+ ∫

𝑡

0

𝐻(𝑠) 𝑑𝑠} ,

(39)

integrating the above inequality over (0, 𝑡), we have

𝑒
−2𝜔
2
𝑡
∫

𝑡

0

|𝑋(𝑠)|
2
𝑑𝑠

≤ 2∫

𝑡

0

𝑒
−2𝜔
2
𝜏
{
1

2

𝑥01 − 𝑥02


2

+ ∫

𝜏

0

𝐻(𝑠) 𝑑𝑠} 𝑑𝜏

=
1 − 𝑒
−2𝜔
2
𝑡

2𝜔
2

𝑥01 − 𝑥02


2

+ 2∫

𝑡

0

∫

𝑡

𝑠

𝑒
−2𝜔
2
𝜏
𝑑𝜏𝐻 (𝑠) 𝑑𝑠

=
1 − 𝑒
−2𝜔
2
𝑡

2𝜔
2

𝑥01 − 𝑥02


2

+
1

𝜔
2

∫

𝑡

0

(𝑒
−2𝜔
2
𝑠
− 𝑒
−2𝜔
2
𝑡
)𝐻 (𝑠) 𝑑𝑠.

(40)

Thus, we get

𝜔
2
∫

𝑡

0

|𝑋(𝑠)|
2
𝑑𝑠 ≤

1

2
(𝑒
2𝜔
2
𝑡
− 1)

𝑥01 − 𝑥02


2

+ ∫

𝑡

0

(𝑒
2𝜔
2
(𝑡−𝑠)

− 1)𝐻 (𝑠) 𝑑𝑠.

(41)

Combining this with (38) it holds that

1

2
|𝑋 (𝑡)|

2
+ 𝜔
1
∫

𝑡

0

‖𝑋 (𝑠)‖
2
𝑑𝑠 ≤

1

2
𝑒
2𝜔
2
𝑡𝑥01 − 𝑥02



2

+ ∫

𝑡

0

𝑒
2𝜔
2
(𝑡−𝑠)

𝐻(𝑠) 𝑑𝑠.

(42)

By Lemma 5, the following inequality

1

2
(𝑒
−𝜔
2
𝑡

|𝑋 (𝑡)|)
2

+ 𝜔
1
𝑒
−2𝜔
2
𝑡
∫

𝑡

0

‖𝑋(𝑠)‖
2
𝑑𝑠

≤
1

2

𝑥01 − 𝑥02


2

+ ∫

𝑡

0

𝑒
−𝜔
2
𝑠
(𝐿 ‖𝑋 (𝑠)‖ +

𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))
) 𝑒
−𝜔
2
𝑠

|𝑋 (𝑠)| 𝑑𝑠

(43)

implies that

𝑒
−𝜔
2
𝑡

|𝑋 (𝑡)| ≤
𝑥01 − 𝑥02



+ ∫

𝑡

0

𝑒
−𝜔
2
𝑠
(𝐿 ‖𝑋 (𝑠)‖ +

𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))
) 𝑑𝑠.

(44)
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From (42) and (44) it follows that

1

2
|𝑋(𝑡)|

2
+ 𝜔
1
∫

𝑡

0

‖𝑋(𝑠)‖
2
𝑑𝑠 ≤

1

2
𝑒
2𝜔
2
𝑡𝑥01 − 𝑥02



2

+ ∫

𝑡

0

𝑒
2𝜔
2
(𝑡−𝑠)

(𝐿 ‖𝑋 (𝑠)‖ +
𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))

) 𝑒
𝜔
2
𝑠

×
𝑥01 − 𝑥02

 𝑑𝑠

+ ∫

𝑡

0

𝑒
2𝜔
2
(𝑡−𝑠)

(𝐿 ‖𝑋 (𝑠)‖ +
𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))

)

× ∫

𝑠

0

𝑒
𝜔
2
(𝑠−𝜏)

(𝐿 ‖𝑋 (𝜏)‖ +
𝐵 (𝑢1 (𝜏) − 𝑢2 (𝜏))

) 𝑑𝜏𝑑𝑠

= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

(45)

Putting

𝐺 (𝑠) = ‖𝑋 (𝑠)‖ +
𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))

 . (46)

The third term of the right hand side of (45) is estimated as

𝐼𝐼𝐼 = 𝐿
2
𝑒
2𝜔
2
𝑡
∫

𝑡

0

𝑒
−𝜔
2
𝑠

‖𝐺 (𝑠)‖ ∫

𝑠

0

𝑒
−𝜔
2
𝜏

‖𝐺 (𝜏)‖ 𝑑𝜏𝑑𝑠

= 𝐿
2
𝑒
2𝜔
2
𝑡
∫

𝑡

0

1

2

𝑑

𝑑𝑠
{∫

𝑠

0

𝑒
−𝜔
2
𝜏

‖𝐺(𝜏)‖ 𝑑𝜏}

2

𝑑𝑠

=
1

2
𝐿
2
𝑒
2𝜔
2
𝑡
{∫

𝑡

0

𝑒
−𝜔
2
𝜏

‖𝐺(𝜏)‖ 𝑑𝜏}

2

≤
1

2
𝐿
2
𝑒
2𝜔
2
𝑡 1 − 𝑒

−2𝜔
2
𝑡

2𝜔
2

∫

𝑡

0

‖𝐺 (𝜏)‖
2
𝑑𝜏

=
𝐿
2

4𝜔
2

(𝑒
2𝜔
2
𝑡
− 1)∫

𝑡

0

‖𝐺 (𝑠)‖
2
𝑑𝑠

≤

𝐿
2
(𝑒
2𝜔
2
𝑡
− 1)

2𝜔
2

∫

𝑡

0

(‖𝑋 (𝑠)‖
2
+
𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))



2

) 𝑑𝑠.

(47)

The second term of the right hand side of (45) is estimated as

𝐼𝐼 = 𝑒
2𝜔
2
𝑡
∫

𝑡

0

𝑒
−𝜔
2
𝑠
(𝐿 ‖𝑋 (𝑠)‖ +

𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))
) 𝑑𝑠

×
𝑥01 − 𝑥02



≤
1

2
𝑒
2𝜔
2
𝑡
𝐿
2
∫

𝑡

0

(‖𝑋 (𝑠)‖
2
+
𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))



2

) 𝑑𝑠

+
1

2
𝑒
2𝜔
2
𝑡𝑥01 − 𝑥02



2

.

(48)

Thus, from (47) and (48), we apply Gronwall’s inequality to
(15), and we arrive at

1

2
|𝑋 (𝑡)|

2
+ 𝜔
1
∫

𝑡

0

‖𝑋 (𝑠)‖
2
𝑑𝑠

≤ 𝐶(
𝑥01 − 𝑥02



2

+ ∫

𝑇
1

0

𝐵 (𝑢1 (𝑠) − 𝑢2 (𝑠))


2

𝑑𝑠) ,

(49)

where𝐶 > 0 is a constant. Suppose (𝑥
0𝑛
, 𝑢
𝑛
) → (𝑥

0
, 𝑢) in𝐻×

𝐿
2
(0, 𝑇; 𝑌), and let 𝑥

𝑛
and 𝑥 be the solutions (1) with (𝑥

0𝑛
, 𝑢
𝑛
)

and (𝑥
0
, 𝑢), respectively. Then, by virtue of (49), we see that

𝑥
𝑛
→ 𝑥 in 𝐿2(0, 𝑇, 𝑉) ∩ 𝐶([0, 𝑇];𝐻).
(2) It is easy to show that if 𝑥

0
∈ 𝑉 and 𝐵 ∈ L(𝑌,𝐻),

then𝑥 belongs to𝐿2(0, 𝑇;𝐷(𝐴))∩𝑊1,2(0, 𝑇;𝐻). Let (𝑥
0𝑖
, 𝑢
𝑖
) ∈

𝑉 × 𝐿
2
(0, 𝑇;𝐻), and 𝑥

𝑖
be the solution of (1) with (𝑥

0𝑖
, 𝑢
𝑖
) in

place of (𝑥
0
, 𝑢) for 𝑖 = 1, 2. Then in view of Lemma 2 and

assumption (F), we have
𝑥1 − 𝑥2

𝐿2(0,𝑇;𝐷(𝐴))∩𝑊1,2(0,𝑇;𝐻)

≤ 𝐶
1
{
𝑥01 − 𝑥02

 +
𝑓 (⋅, 𝑥1) − 𝑓(⋅, 𝑥2)

𝐿2(0,𝑇;𝐻)

+
𝐵 (𝑢1 − 𝑢2)

𝐿2(0,𝑇;𝐻)
}

≤ 𝐶
1
{
𝑥01 − 𝑥02

 +
𝐵 (𝑢1 − 𝑢2)

𝐿2(0,𝑇;𝐻)

+𝐿
𝑥1 − 𝑥2

𝐿2(0,𝑇:𝑉)
} .

(50)

Since

𝑥
1
(𝑡) − 𝑥

2
(𝑡) = 𝑥

01
− 𝑥
02
+ ∫

𝑡

0

(�̇�
1
(𝑠) − �̇�

2
(𝑠)) 𝑑𝑠, (51)

we get, noting that | ⋅ | ≤ || ⋅ ||,
𝑥1 − 𝑥2

𝐿2(0,𝑇;𝐻)
≤ √𝑇

𝑥01 − 𝑥02


+
𝑇

√2

𝑥1 − 𝑥2
𝑊1,2(0,𝑇;𝐻)

.

(52)

Hence arguing as in (9) we get
𝑥1 − 𝑥2

𝐿2(0,𝑇;𝑉)
≤ 𝐶
0

𝑥1 − 𝑥2


1/2

𝐿
2
(0,𝑇;𝐷(𝐴))

𝑥1 − 𝑥2


1/2

𝐿
2
(0,𝑇;𝐻)

≤ 𝐶
0

𝑥1 − 𝑥2


1/2

𝐿
2
(0,𝑇;𝐷(𝐴))

× {𝑇
1/4𝑥01 − 𝑥02



1/2

+ (
𝑇

√2

)

1/2

𝑥1 − 𝑥2


1/2

𝑊
1,2
(0,𝑇;𝐻)

}

≤ 𝐶
0
𝑇
1/4𝑥01 − 𝑥02



1/2𝑥1 − 𝑥2


1/2

𝐿
2
(0,𝑇;𝐷(𝐴))

+ 𝐶
0
(
𝑇

√2

)

1/2

𝑥1 − 𝑥2
𝐿2(0,𝑇;𝐷(𝐴))∩𝑊1,2(0,𝑇;𝐻)

≤ 2
−7/4

𝐶
0

𝑥01 − 𝑥02


+ 2𝐶
0
(
𝑇

√2

)

1/2

𝑥1 − 𝑥2
𝐿2(0,𝑇;𝐷(𝐴))∩𝑊1,2(0,𝑇;𝐻)

.

(53)

Combining (50) and (53) we obtain
𝑥1 − 𝑥2

𝐿2(0,𝑇;𝐷(𝐴))∩𝑊1,2(0,𝑇;𝐻)

≤ 𝐶
1
{
𝑥01 − 𝑥02

} +
𝐵𝑢1 − 𝐵𝑢2

𝐿2(0,𝑇;𝐻)

+ 2
−7/4

𝐶
0
𝐶
1
𝐿
𝑥01 − 𝑥02



+ 2𝐶
0
𝐶
1
(
𝑇

√2

)

1/2

𝐿
𝑥1 − 𝑥2

𝐿2(0,𝑇;𝐷(𝐴))∩𝑊1,2(0,𝑇;𝐻)
.

(54)
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Suppose that

(𝑥
0𝑛
, 𝑢
𝑛
) → (𝑥

0
, 𝑢) ∈ 𝑉 × 𝐿

2

(0, 𝑇; 𝑌) , (55)

and let 𝑥
𝑛
and 𝑥 be the solutions (1) with (𝑥

0𝑛
, 𝑢
𝑛
) and (𝑥

0
, 𝑢),

respectively. Let 0 < 𝑇
1
≤ 𝑇 be such that

2𝐶
0
𝐶
1
(
𝑇
1

√2

)

1/2

𝐿 < 1. (56)

Then by virtue of (54) with 𝑇 replaced by 𝑇
1
we see that

𝑥
𝑛
→ 𝑥 ∈ 𝐿

2
(0, 𝑇
1
; 𝐷 (𝐴)) ∩ 𝑊

1,2
(0, 𝑇
1
; 𝐻) . (57)

This implies that (𝑥
𝑛
(𝑇
1
), (𝑥
𝑛
)
𝑇
1

) → (𝑥(𝑇
1
), 𝑥
𝑇
1

) in 𝑉 ×

𝐿
2
(0, 𝑇;𝐷(𝐴)). Hence the same argument shows that 𝑥

𝑛
→ 𝑥

in

𝐿
2
(𝑇
1
,min {2𝑇

1
, 𝑇} ; 𝐷 (𝐴)) ∩ 𝑊

1,2
(𝑇
1
,min {2𝑇

1
, 𝑇} ;𝐻) .

(58)

Repeating this process we conclude that 𝑥
𝑛

→ 𝑥 in
𝐿
2
(0, 𝑇;𝐷(𝐴)) ∩ 𝑊

1,2
(0, 𝑇;𝐻).

3. Optimal Control Problems

In this section we study the optimal control problems for the
quadratic cost function in the framework of Lions [9]. Inwhat
follows we assume that the embedding 𝐷(𝐴) ⊂ 𝑉 ⊂ 𝐻 is
compact.

Let 𝑌 be another Hilbert space of control variables, and 𝐵
be a bounded linear operator from 𝑌 into𝐻; that is,

𝐵 ∈ L (𝑌,𝐻) , (59)

which is called a controller. By virtue of Theorem 6, we can
define uniquely the solutionmap 𝑢 → 𝑥(𝑢) of 𝐿2(0, 𝑇; 𝑌) into
𝐿
2
(0, 𝑇; 𝑉) ∩ 𝐶([0, 𝑇];𝐻). We will call the solution 𝑥(𝑢) the

state of the control system (1).
Let 𝑀 be a Hilbert space of observation variables. The

observation of state is assumed to be given by

𝑧 (𝑢) = 𝐺𝑥 (𝑢) , 𝐺 ∈ L (𝐶 (0, 𝑇; 𝑉
∗
) ,𝑀) , (60)

where𝐺 is an operator called the observer.The quadratic cost
function associated with the control system (1) is given by

𝐽 (𝑣) =
𝐺𝑥 (𝑣) − 𝑧𝑑



2

𝑀

+ (𝑅𝑣, 𝑣)
𝐿
2
(0,𝑇;𝑌)

for 𝑣 ∈ 𝐿2 (0, 𝑇; 𝑌) ,
(61)

where 𝑧
𝑑
∈ 𝑀 is a desire value of 𝑥(𝑣) and𝑅 ∈ L(𝐿

2
(0, 𝑇; 𝑌))

is symmetric and positive; that is,

(𝑅𝑣, 𝑣)
𝐿
2
(0,𝑇;𝑌)

= (𝑣, 𝑅𝑣)
𝐿
2
(0,𝑇;𝑌)

≥ 𝑑‖𝑣‖
2

𝐿
2
(0,𝑇;𝑌)

(62)

for some 𝑑 > 0. Let Uad be a closed convex subset of
𝐿
2
(0, 𝑇; 𝑌), which is called the admissible set. An element

𝑢 ∈ Uad which attains minimum of 𝐽(𝑣) over Uad is called
an optimal control for the cost function (61).

Remark 7. The solution space W of strong solutions of (1) is
defined by

W = 𝐿
2

(0, 𝑇; 𝑉) ∩𝑊
1,2
(0, 𝑇; 𝑉

∗
) ⊂ 𝐶 ([0, 𝑇] ;𝐻) (63)

endowed with the norm

‖⋅‖W = max {‖⋅‖
𝐿
2
(0,𝑇;𝑉)

, ‖⋅‖
𝑊
1,2
(0,𝑇;𝑉

∗
)
} . (64)

Let Ω be an open bounded and connected set of R𝑛
with smooth boundary. We consider the observation 𝐺 of
distributive and terminal values (see [15, 16]).

(1)We take𝑀 = 𝐿
2
((0, 𝑇)×Ω)×𝐿

2
(Ω) and𝐺 ∈ L(W,𝑀)

and observe

𝑧 (𝑣) = 𝐺𝑥 (𝑣)

= (𝑥 (𝑣; ⋅) , 𝑥 (𝑣, 𝑇)) ∈ 𝐿
2

((0, 𝑇) × Ω) × 𝐿
2

(Ω) .

(65)

(2) We take𝑀 = 𝐿
2
((0, 𝑇) × Ω) and 𝐺 ∈ L(W,𝑀) and

observe

𝑧 (𝑣) = 𝐺𝑥 (𝑣) = 𝑦


(𝑣; ⋅) ∈ 𝐿
2

((0, 𝑇) × Ω) . (66)

The above observations are meaningful in view of the regu-
larity of (1) by Proposition 3.

Theorem 8. (1) Let the assumption (F) be satisfied. Assume
that 𝐵 ∈ L(𝑌, 𝑉

∗
) and 𝑥

0
∈ 𝐷(𝜙). Let 𝑥(𝑢) be the solution of

(1) corresponding to 𝑢. Then the mapping 𝑢 → 𝑥(𝑢) is compact
from 𝐿

2
(0, 𝑇; 𝑌) to 𝐿2(0, 𝑇;𝐻).

(2) Let the assumptions (A) and (F) be satisfied. If 𝐵 ∈

L(𝑌,𝐻) and 𝑥
0
∈ 𝐷(𝜙) ∩ 𝑉, then the mapping 𝑢 → 𝑥(𝑢)

is compact from 𝐿
2
(0, 𝑇; 𝑌) to 𝐿2(0, 𝑇; 𝑉).

Proof. (1) We define the solution mapping 𝑆 from 𝐿
2
(0, 𝑇; 𝑌)

to 𝐿2(0, 𝑇;𝐻) by

𝑆𝑢 = 𝑥 (𝑢) , 𝑢 ∈ 𝐿
2

(0, 𝑇; 𝑌) . (67)

In virtue of Lemma 2, we have

‖𝑆𝑢‖
𝐿
2
(0,𝑇;𝑉)∩𝑊

1,2
(0,𝑇;𝑉

∗
)

= ‖𝑥 (𝑢)‖ ≤ 𝐶
1
{
𝑥0

 + ‖𝐵𝑢‖𝐿2(0,𝑇;𝑉∗)} .

(68)

Hence if 𝑢 is bounded in 𝐿
2
(0, 𝑇; 𝑌), then so is 𝑥(𝑢) in

𝐿
2
(0, 𝑇; 𝑉) ∩ 𝑊

1,2
(0, 𝑇; 𝑉

∗
). Since 𝑉 is compactly embed-

ded in 𝐻 by assumption, the embedding 𝐿
2
(0, 𝑇; 𝑉) ∩

𝑊
1,2
(0, 𝑇; 𝑉

∗
) ⊂ 𝐿
2
(0, 𝑇;𝐻) is also compact in view of The-

orem 2 of Aubin [17]. Hence, the mapping 𝑢 → 𝑆𝑢 = 𝑥(𝑢) is
compact from 𝐿

2
(0, 𝑇; 𝑌) to 𝐿2(0, 𝑇;𝐻).

(2) If 𝐷(𝐴) is compactly embedded in 𝑉 by assumption,
the embedding

𝐿
2

(0, 𝑇;𝐷 (𝐴)) ∩ 𝑊
1,2

(0, 𝑇;𝐻) ⊂ 𝐿
2

(0, 𝑇; 𝑉) (69)

is compact. Hence, the proof of (2) is complete.

As indicated in the Introductionweneed to show the exis-
tence of an optimal control and to give the characterizations
of them. The existence of an optimal control 𝑢 for the cost
function (61) can be stated by the following theorem.
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Theorem 9. Let the assumptions (A) and (F) be satisfied and
𝑥
0
∈ 𝐷(𝜙) ∩ 𝑉. Then there exists at least one optimal control

𝑢 for the control problem (1) associated with the cost function
(61); that is, there exists 𝑢 ∈ Uad such that

𝐽 (𝑢) = inf
𝑣∈Uad

𝐽 (𝑣) := 𝐽. (70)

Proof. SinceUad is nonempty, there is a sequence {𝑢
𝑛
} ⊂ Uad

such that minimizing sequence for the problem (70) satisfies

inf
𝑣∈Uad

𝐽 (𝑣) = lim
𝑛→∞

𝐽 (𝑢
𝑛
) = 𝑚. (71)

Obviously, {𝐽(𝑢
𝑛
)} is bounded. Hence by (62) there is a posi-

tive constant𝐾
0
such that

𝑑
𝑢𝑛



2

≤ (𝑅𝑢
𝑛
, 𝑢
𝑛
) ≤ 𝐽 (𝑢

𝑛
) ≤ 𝐾
0
. (72)

This shows that {𝑢
𝑛
} is bounded in Uad. So we can extract a

subsequence (denoted again by {𝑢
𝑛
}) of {𝑢

𝑛
} and find a 𝑢 ∈

Uad such that 𝑤 − lim 𝑢
𝑛
= 𝑢 in 𝑈. Let 𝑥

𝑛
= 𝑥(𝑢

𝑛
) be the

solution of the following equation corresponding to 𝑢
𝑛
:

𝑥


𝑛
(𝑡) + 𝐴𝑥

𝑛
(𝑡) + 𝜕𝜙 (𝑥

𝑛
(𝑡)) ∋ 𝑓 (𝑡, 𝑥

𝑛
(𝑡)) + 𝐵𝑢

𝑛
(𝑡) ,

0 < 𝑡 ≤ 𝑇,

𝑥
𝑛
(0) = 𝑥

0
.

(73)

By (15) and (17) we know that {𝑥
𝑛
} and {𝑥



𝑛
} are bounded

in 𝐿2(0, 𝑇; 𝑉) and 𝐿2(0, 𝑇; 𝑉∗), respectively. Therefore, by the
extraction theorem of Rellich’s, we can find a subsequence of
{𝑥
𝑛
}, say again {𝑥

𝑛
}, and find 𝑥 such that

𝑥
𝑛
(⋅) → 𝑥 (⋅) weakly in 𝐿

2

(0, 𝑇; 𝑉) ∩ 𝐶 ([0, 𝑇] ;𝐻) ,

𝑥


𝑛
→ 𝑥

, weakly in 𝐿

2
(0, 𝑇; 𝑉

∗
) .

(74)

However, by Theorem 8, we know that

𝑥
𝑛
(⋅) → 𝑥 (⋅) , strongly in 𝐿

2

(0, 𝑇; 𝑉) . (75)

From (F) it follows that

𝑓 (⋅, 𝑥
𝑛
) → 𝑓 (⋅, 𝑥) , strongly in 𝐿

2

(0, 𝑇;𝐻) . (76)

By the boundedness of 𝐴 we have

𝐴𝑥
𝑛
→ 𝐴𝑥, strongly in 𝐿

2
(0, 𝑇; 𝑉

∗
) . (77)

Since 𝜕𝜙(𝑥
𝑛
) are uniformly bounded from (73)–(77) it follows

that

𝜕𝜙 (𝑥
𝑛
) → 𝑓 (⋅, 𝑥) + 𝐵𝑢 − 𝑥


− 𝐴𝑥,

weakly in 𝐿
2
(0, 𝑇; 𝑉

∗
) ,

(78)

and noting that 𝜕𝜙 is demiclosed, we have that

𝑓 (⋅, 𝑥) + 𝐵𝑢 − 𝑥

− 𝐴𝑥 ∈ 𝜕𝜙 (𝑥) in 𝐿

2
(0, 𝑇; 𝑉

∗
) . (79)

Thus we have proved that 𝑥(𝑡) satisfies a.e. on (0, 𝑇) the fol-
lowing equation:

𝑥


(𝑡) + 𝐴𝑥 (𝑡) + 𝜕𝜙 (𝑥 (𝑡)) ∋ 𝑓 (𝑡, 𝑥 (𝑡))

+ 𝐵𝑢 (𝑡) , a.e., 0 < 𝑡 ≤ 𝑇,

𝑥 (0) = 𝑥
0
.

(80)

Since 𝐺 is continuous and || ⋅ ||
𝑀
is lower semicontinuous, it

holds that
𝐺𝑥(𝑢) − 𝑧𝑑

𝑀
≤ lim inf
𝑛→∞

𝐺𝑥 (𝑢𝑛) − 𝑧𝑑
𝑀
. (81)

It is also clear from lim inf
𝑛→∞

‖𝑅
1/2
𝑢
𝑛
‖
𝐿
2
(0,𝑇;𝑌)

≥

‖𝑅
1/2
𝑢‖
𝐿
2
(0,𝑇;𝑌)

that

lim inf
𝑛→∞

(𝑅𝑢
𝑛
, 𝑢
𝑛
)
𝐿
2
(0,𝑇;𝑌)

≥ (𝑅𝑢, 𝑢)
𝐿
2
(0,𝑇;𝑌)

. (82)

Thus,

𝑚 = lim
𝑛→∞

𝐽 (𝑢
𝑛
) ≥ 𝐽 (𝑢) . (83)

But since 𝐽(𝑢) ≥ 𝑚 by definition, we conclude 𝑢 ∈ Uad is a
desired optimal control.

4. Necessary Conditions for Optimality

In this section we will characterize the optimal controls by
giving necessary conditions for optimality. For this it is nec-
essary to write down the necessary optimal condition

𝐷𝐽 (𝑢) (𝑣 − 𝑢) ≥ 0, 𝑣 ∈ Uad (84)

and to analyze (84) in view of the proper adjoint state system,
where 𝐷𝐽(𝑢) denote the Gâteaux derivative of 𝐽(𝑣) at 𝑣 = 𝑢.
Therefore, we have to prove that the solution mapping 𝑣 →

𝑥(𝑣) is Gâteaux differentiable at 𝑣 = 𝑢. Here we note that from
Theorem 6 it follows immediately that

lim
𝜆→0

𝑥 (𝑢 + 𝜆𝑤)

= 𝑥 (𝑢) , strongly in 𝐿
2

(0, 𝑇; 𝑉) ∩ 𝐶 ([0, 𝑇] ;𝐻) .

(85)

The solution map 𝑣 → 𝑥(𝑣) of 𝐿2(0, 𝑇; 𝑌) into 𝐿2(0, 𝑇; 𝑉) ∩
𝐶([0, 𝑇];𝐻) is said to be Gâteaux differentiable at 𝑣 =

𝑢 if for any 𝑤 ∈ 𝐿
2
(0, 𝑇; 𝑌) there exists a 𝐷𝑥(𝑢) ∈

L(𝐿
2
(0, 𝑇; 𝑌), 𝐿

2
(0, 𝑇; 𝑉) ∩ 𝐶([0, 𝑇];𝐻) such that



1

𝜆
(𝑥 (𝑢 + 𝜆𝑤) − 𝑥 (𝑢)) − 𝐷𝑥 (𝑢)𝑤


→ 0 as 𝜆 → 0.

(86)

The operator𝐷𝑥(𝑢) denotes the Gâteaux derivative of 𝑥(𝑢) at
𝑣 = 𝑢 and the function𝐷𝑥(𝑢)𝑤 ∈ 𝐿

2
(0, 𝑇; 𝑉)∩𝐶([0, 𝑇];𝐻)) is

called the Gâteaux derivative in the direction𝑤 ∈ 𝐿
2
(0, 𝑇; 𝑌),

which plays an important part in the nonlinear optimal
control problems.

First, as is seen in Corollary 2.2 of Chapter II of [18], let
us introduce the regularization of 𝜙 as follows.
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Lemma 10. For every 𝜖 > 0, define

𝜙
𝜖
(𝑥) = {

𝑥 − 𝐽𝜖𝑥


2

∗

2𝜖
+ 𝜙 (𝐽

𝜖
𝑥) : ∀𝜖 > 0, 𝑥 ∈ 𝐻} , (87)

where 𝐽
𝜖
= (𝐼 + 𝜖𝜙)

−1. Then the function 𝜙
𝜖
is Fréchet differen-

tiable on𝐻 and its Frećhet differential 𝜕𝜙
𝜖
is Lipschitz contin-

uous on𝐻 with Lipschitz constant 𝜖−1. In addition,

lim
𝜖→0

𝜙
𝜖
(𝑥) = 𝜙 (𝑥) , ∀𝑥 ∈ 𝐻,

𝜙 (𝐽
𝜖
𝑥) ≤ 𝜙

𝜖
(𝑥) ≤ 𝜙 (𝑥) , ∀𝜖 > 0, 𝑥 ∈ 𝐻,

lim
𝜖→0

𝜕 𝜙
𝜖
(𝑥) = (𝜕𝜙)

0

(𝑥) , ∀𝑥 ∈ 𝐻,

(88)

where (𝜕𝜙)0(𝑥) is the element of minimum norm in the set
𝜕𝜙(𝑥).

Now, we introduce the smoothing system corresponding
to (1) as follows.

𝑥


(𝑡) + 𝐴𝑥 (𝑡) + 𝜕𝜙
𝜖
(𝑥 (𝑡))

= 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵𝑢 (𝑡) , 0 < 𝑡 ≤ 𝑇,

𝑥 (0) = 𝑥
0
.

(89)

Lemma 11. Let the assumption (F) be satisfied. Then the solu-
tionmap 𝑣 → 𝑥(𝑣) of𝐿2(0, 𝑇; 𝑌) into𝐿2(0, 𝑇; 𝑉)∩𝐶([0, 𝑇];𝐻)
is Lipschtz continuous.

Moreover, let us assume the condition (A) in Proposition 3.
Then the map 𝑣 → 𝜕𝜙

𝜖
(𝑥(𝑣)) of 𝐿2(0, 𝑇; 𝑌) into 𝐿2(0, 𝑇;𝐻) ∩

𝐶([0, 𝑇]; 𝑉
∗
) is also Lipschtz continuous.

Proof. We set 𝑤 = 𝑣 − 𝑢. From Theorem 6, it follows imme-
diately that

‖𝑥 (𝑢 + 𝜆𝑤) − 𝑥 (𝑢)‖
𝐶([0,𝑇];𝐻)

≤ const. |𝜆| ‖𝑤‖
𝐿
2
(0,𝑇;𝑌)

,

(90)

so the solution map 𝑣 → 𝑥(𝑣) of 𝐿2(0, 𝑇; 𝑌) into 𝐿2(0, 𝑇; 𝑉) ∩
𝐶([0, 𝑇];𝐻) is Lipschtz continuous. Moreover, since

𝜕𝜙
𝜖
(𝑥 (𝑢; 𝑡)) − 𝜕𝜙

𝜖
(𝑥 (𝑢 + 𝜆𝑤; 𝑡))

= 𝑥


(𝑢 + 𝜆𝑤; 𝑡) − 𝑥


(𝑢; 𝑡) + 𝐴 (𝑥 (𝑢 + 𝜆𝑤; 𝑡) − 𝑥 (𝑢; 𝑡))

− {𝑓 (𝑡, 𝑥 (𝑢 + 𝜆𝑤; 𝑡)) − 𝑓 (𝑡, 𝑥 (𝑢; 𝑡))} − 𝜆𝐵𝑤 (𝑡) ,

(91)

by the assumption (A) and (2) of Theorem 6, it holds
𝜕𝜙𝜖 (𝑥 (𝑢 + 𝜆𝑤)) − 𝜕𝜙𝜖 (𝑥 (𝑢))

𝐿2(0,𝑇;𝐻)

≤

𝑥


(𝑢 + 𝜆𝑤) − 𝑥


(𝑢)
𝐿2(0,𝑇;𝐻)

+ ‖𝑥 (𝑢 + 𝜆𝑤) − 𝑥 (𝑢)‖
𝐿
2
(0,𝑇;𝐷(𝐴))

+ 𝐿‖𝑥 (𝑢 + 𝜆𝑤) − 𝑥 (𝑢)‖
𝐿
2
(0,𝑇;𝑉)

+ |𝜆|‖𝐵‖‖𝑤‖
𝐿
2
(0,𝑇;𝑈)

≤ const. |𝜆|‖𝑤‖
𝐿
2
(0,𝑇;𝑌)

(92)

and, by the relation (12),
𝜕𝜙𝜖 (𝑥 (𝑢 + 𝜆𝑤; 𝑡)) − 𝜕𝜙𝜖 (𝑥 (𝑢; 𝑡))

∗

≤

𝑥


(𝑢 + 𝜆𝑤; 𝑡) − 𝑥


(𝑢; 𝑡)
∗

+ ‖𝐴‖L(𝑉,𝑉∗) ‖(𝑥 (𝑢 + 𝜆𝑤; 𝑡) − 𝑥 (𝑢; 𝑡))‖

+ 𝐿 ‖𝑥 (𝑢 + 𝜆𝑤; 𝑡) − 𝑥 (𝑢; 𝑡)‖ + |𝜆| ‖𝐵‖|𝑤 (𝑡)|

≤ const. |𝜆|‖𝑤‖
𝐿
2
(0,𝑇;𝑌)

.

(93)

So we know that the map 𝑣 → 𝜕𝜙
𝜖
(𝑥(𝑣)) of 𝐿2(0, 𝑇; 𝑌) into

𝐿
2
(0, 𝑇;𝐻) ∩ 𝐶([0, 𝑇]; 𝑉

∗
) is also Lipschtz continuous.

Let the solution space W
1
of (1) of strong solutions is

defined by

W
1
= 𝐿
2

(0, 𝑇;𝐷 (𝐴)) ∩ 𝑊
1,2

(0, 𝑇;𝐻) (94)

as stated in Remark 7.
In order to obtain the optimality conditions, we require

the following assumptions.

(F1) The Gâteaux derivative 𝜕
2
𝑓(𝑡, 𝑥) in the second argu-

ment for (𝑡, 𝑥) ∈ (0, 𝑇) × 𝑉 is measurable in 𝑡 ∈ (0, 𝑇)
for 𝑥 ∈ 𝑉 and continuous in 𝑥 ∈ 𝑉 for a.e. 𝑡 ∈ (0, 𝑇),
and there exist functions 𝜃

1
, 𝜃
2
∈ 𝐿
2
(R+;R) such that

𝜕2𝑓 (𝑡, 𝑥)
∗
≤ 𝜃
1
(𝑡) + 𝜃

2
(‖𝑥‖) ,

∀ (𝑡, 𝑥) ∈ (0, 𝑇) × 𝑉.

(95)

(F2) The map 𝑥 → 𝜕𝜙
𝜖
(𝑥) is Gâteaux differentiable, and

the value 𝐷𝜕𝜙
𝜖
(𝑥)𝐷𝑥(𝑢) is the Gâteaux derivative of

𝜕𝜙
𝜖
(𝑥)𝑥(𝑢) at 𝑢 ∈ 𝐿

2
(0, 𝑇; 𝑈) such that there exist

functions 𝜃
3
, 𝜃
4
∈ 𝐿
2
(R+;R) such that

𝐷𝜕𝜙𝜖 (𝑥)𝐷𝑥 (𝑢)
∗

≤ 𝜃
3
(𝑡) + 𝜃

4
(‖𝑢‖
𝐿
2
(0,𝑇;𝑌)

) , ∀𝑢 ∈ 𝐿
2

(0, 𝑇; 𝑌) .

(96)

Theorem 12. Let the assumptions (A), (F1), and (F2) be satis-
fied. Let 𝑢 ∈ Uad be an optimal control for the cost function 𝐽
in (61). Then the following inequality holds:

(𝐶
∗
Λ
𝑀
(𝐶𝑥 (𝑢) − 𝑧

𝑑
) , 𝑦)

W
1

+ (𝑅𝑢, 𝑣 − 𝑢)
𝐿
2
(0,𝑇;𝑌)

≥ 0, ∀𝑣 ∈ Uad,
(97)

where 𝑦 = 𝐷𝑥(𝑢)(𝑣 − 𝑢) ∈ 𝐶([0, 𝑇]; 𝑉
∗
) is a unique solution

of the following equation:

𝑦


(𝑡) + 𝐴𝑦 (𝑡) + 𝐷(𝜕𝜙)
0

(𝑥) (𝑦 (𝑡))

= 𝜕
2
𝑓 (𝑡, 𝑥) 𝑦 (𝑡) + 𝐵𝑤 (𝑡) , 0 < 𝑡 ≤ 𝑇,

𝑦 (0) = 0.

(98)

Proof. We set 𝑤 = 𝑣 − 𝑢. Let 𝜆 ∈ (−1, 1), 𝜆 ̸= 0. We set

𝑦 = lim
𝜆→0

𝜆
−1

(𝑥 (𝑢 + 𝜆𝑤) − 𝑥 (𝑢)) = 𝐷𝑥 (𝑢)𝑤. (99)
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From (89), we have

𝑥


(𝑢 + 𝜆𝑤) − 𝑥


(𝑢) + 𝐴 (𝑥 (𝑢 + 𝜆𝑤) − 𝑥 (𝑢))

+ 𝜕𝜙
𝜖
(𝑥 (𝑢 + 𝜆𝑤)) − 𝜕𝜙

𝜖
(𝑥 (𝑢))

= 𝑓 (⋅, 𝑥 (𝑢 + 𝜆𝑤)) − 𝑓 (⋅, 𝑥 (𝑢)) + 𝜆𝐵𝑤.

(100)

Then as an immediate consequence of Lemma 11 one obtains

lim
𝜆→0

1

𝜆
{𝜕𝜙
𝜖
(𝑥 (𝑢 + 𝜆𝑤; 𝑡)) − 𝜕𝜙

𝜖
(𝑥 (𝑢; 𝑡))} = 𝐷𝜕𝜙

𝜖
(𝑥) 𝑦 (𝑡) ,

lim
𝜆→0

1

𝜆
{𝑓 (𝑡, 𝑥 (𝑢 + 𝜆𝑤; 𝑡)) − 𝑓 (𝑡, 𝑥 (𝑢; 𝑡))} = 𝜕

2
𝑓 (𝑡, 𝑥)𝑦 (𝑡) ,

(101)

thus, in the sense of (F2), we have that 𝑦 = 𝐷𝑥(𝑢)(𝑣 − 𝑢)

satisfies (98) and the cost 𝐽(𝑣) is Gâteaux differentiable at 𝑢
in the direction 𝑤 = 𝑣 − 𝑢. The optimal condition (84) is
rewritten as

(𝐶𝑥 (𝑢) − 𝑧
𝑑
, 𝑦)
𝑀
+ (𝑅𝑢, 𝑣 − 𝑢)

𝐿
2
(0,𝑇;𝑌)

= (𝐶
∗
Λ
𝑀
(𝐶𝑥 (𝑢) − 𝑧

𝑑
) , 𝑦)

W
1

+ (𝑅𝑢, 𝑣 − 𝑢)
𝐿
2
(0,𝑇;𝑌)

≥ 0, ∀𝑣 ∈ Uad.

(102)

With every control 𝑢 ∈ 𝐿
2
(0, 𝑇; 𝑌), we consider the

following distributional cost function expressed by

𝐽
1
(𝑢) = ∫

𝑇

0

𝐶𝑥𝑢 (𝑡) − 𝑧𝑑 (𝑡)


2

𝑋
𝑑𝑡 + ∫

𝑇

0

(𝑅𝑢 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡,

(103)

where the operator 𝐶 is bounded from𝐻 to another Hilbert
space 𝑋 and 𝑧

𝑑
∈ 𝐿
2
(0, 𝑇;𝑋). Finally we are given that 𝑅 is a

self adjoint and positive definite:
𝑅 ∈ L (𝑋) , (𝑅𝑢, 𝑢) ≥ 𝑐 ‖𝑢‖ , 𝑐 > 0. (104)

Let 𝑥
𝑢
(𝑡) stand for solution of (1) associated with the control

𝑢 ∈ 𝐿
2
(0, 𝑇; 𝑌). Let Uad be a closed convex subset of

𝐿
2
(0, 𝑇; 𝑌).

Theorem 13. Let the assumptions in Theorem 12 be satisfied
and let the operators 𝐶 and𝑁 satisfy the conditions mentioned
above. Then there exists an element 𝑢 ∈ Uad such that

𝐽
1
(𝑢) = inf

𝑣∈Uad
𝐽
1
(𝑣) . (105)

Furthermore, the following inequality holds:

∫

𝑇

0

(Λ
−1

𝑌
𝐵
∗
𝑝
𝑢
(𝑡) + 𝑅𝑢 (𝑡) , (𝑣 − 𝑢) (𝑡)) 𝑑𝑡 ≥ 0, ∀𝑣 ∈ Uad,

(106)

holds, where Λ
𝑌
is the canonical isomorphism 𝑌 onto 𝑌∗ and

𝑝
𝑢
satisfies the following equation:

𝑝


𝑢
(𝑡) − 𝐴

∗
𝑝
𝑢
(𝑡) − 𝐷(𝜕𝜙)

0

(𝑥)
∗
𝑝
𝑢
(𝑡) + 𝜕

2
𝑓(𝑡, 𝑥)

∗
𝑝
𝑢
(𝑡)

= −𝐶
∗
Λ
𝑋
(𝐶𝑥
𝑢
(𝑡) − 𝑧

𝑑
(𝑡)) , for 0 < 𝑡 ≤ 𝑇,

𝑃
𝑢
(𝑇) = 0.

(107)

Proof. Let 𝑥(𝑡) = 𝑥
0
(𝑡) be a solution of (1) associated with the

control 0. Then it holds that

𝐽
1
(𝑣) = ∫

𝑇

0

𝐶𝑥𝑣 (𝑡) − 𝑧𝑑 (𝑡)


2

𝑋
𝑑𝑡 + ∫

𝑇

0

(𝑅𝑣 (𝑡) , 𝑣 (𝑡)) 𝑑𝑡

= ∫

𝑇

0

𝐶 (𝑥𝑣 (𝑡) − 𝑥 (𝑡)) + 𝐶𝑥 (𝑡) − 𝑧𝑑 (𝑡)


2

𝑋
𝑑𝑡

+ ∫

𝑇

0

(𝑅𝑣 (𝑡) , 𝑣 (𝑡)) 𝑑𝑡

= 𝜋 (𝑣, 𝑣) − 2𝐿 (𝑣) + ∫

𝑇

0

𝑧𝑑 (𝑡) − 𝐶𝑥 (𝑡)


2

𝑋
𝑑𝑡,

(108)

where

𝜋 (𝑢, 𝑣) = ∫

𝑇

0

(𝐶 (𝑥
𝑢
(𝑡) − 𝑥 (𝑡)) , 𝐶 (𝑥

𝑣
(𝑡) − 𝑥 (𝑡)))

𝑋
𝑑𝑡

+ ∫

𝑇

0

(𝑅𝑢 (𝑡) , 𝑣 (𝑡)) 𝑑𝑡,

𝐿 (𝑣) = ∫

𝑇

0

(𝑧
𝑑
(𝑡) − 𝐶𝑥 (𝑡) , 𝐶 (𝑥

𝑣
(𝑡) − 𝑥 (𝑡)))

𝑋
𝑑𝑡.

(109)

The form 𝜋(𝑢, 𝑣) is a continuous form in 𝐿
2
(0, 𝑇; 𝑌) ×

𝐿
2
(0, 𝑇; 𝑌) and from assumption of the positive definite of the

operator 𝑅, we have

𝜋 (𝑣, 𝑣) ≥ 𝑐‖𝑣‖
2
, 𝑣 ∈ 𝐿

2

(0, 𝑇; 𝑌) . (110)

If 𝑢 is an optimal control, similarly for (97), (84) is equivalent
to

∫

𝑇

0

(𝐶
∗
Λ
𝑋
(𝐶𝑥
𝑢
(𝑡) − 𝑧

𝑑
(𝑡)) , 𝑦 (𝑡)) 𝑑𝑡

+ ∫

𝑇

0

(𝑅𝑢 (𝑡) , (𝑣 − 𝑢) (𝑡)) 𝑑𝑡 ≥ 0.

(111)

Now we formulate the adjoint system to describe the optimal
condition:

𝑝


𝑢
(𝑡) − 𝐴

∗
𝑝
𝑢
(𝑡) − 𝐷𝜕𝜙

𝜖
(𝑥)
∗
𝑝
𝑢
(𝑡) + 𝜕

2
𝑓(𝑡, 𝑥)

∗
𝑝
𝑢
(𝑡)

= − (𝐶
∗
Λ
𝑋
𝐶𝑥
𝑢
(𝑡) − 𝑧

𝑑
(𝑡)) , for 0 < 𝑡 ≤ 𝑇,

𝑃
𝑢
(𝑇) = 0.

(112)

Taking into account the regularity result of Proposition 3
and the observation conditions, we can assert that (112)
admits a unique weak solution 𝑝

𝑢
reversing the direction of

time 𝑡 → 𝑇 − 𝑡 by referring to the well-posedness result of
Dautray and Lions [19, pages 558–570].
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We multiply both sides of (112) by 𝑦(𝑡) of (98) and inte-
grate it over [0, 𝑇]. Then we have

∫

𝑇

0

(𝐶
∗
Λ
𝑋
(𝐶𝑥
𝑢
(𝑡) − 𝑧

𝑑
(𝑡)) , 𝑦 (𝑡)) 𝑑𝑡

= −∫

𝑇

0

(𝑝


𝑢
(𝑡) , 𝑦 (𝑡)) 𝑑𝑡 + ∫

𝑇

0

(𝐴
∗
𝑝
𝑢
(𝑡) , 𝑦 (𝑡)) 𝑑𝑡

+ ∫

𝑇

0

(𝐷𝜕𝜙
𝜖
(𝑥)
∗
𝑝
𝑢
(𝑡) , 𝑦 (𝑡)) 𝑑𝑡

− ∫

𝑇

0

(𝜕
2
𝑓(𝑡, 𝑥)

∗
𝑝
𝑢
(𝑡) , 𝑦 (𝑡)) 𝑑𝑡.

(113)

By the initial value condition of 𝑦 and the terminal value
condition of 𝑝

𝑢
, the left hand side of (113) yields

− (𝑝
𝑢
(𝑇) , 𝑦 (𝑇)) + (𝑝

𝑢
(0) , 𝑦 (0))

+ ∫

𝑇

0

(𝑝
𝑢
(𝑡) , 𝑦


(𝑡)) 𝑑𝑡 + ∫

𝑇

0

(𝑝
𝑢
(𝑡) , 𝐴𝑦 (𝑡)) 𝑑𝑡

+ ∫

𝑇

0

(𝑝
𝑢
(𝑡) , 𝐷𝜕𝜙

𝜖
(𝑥) 𝑦 (𝑡)) 𝑑𝑡

− ∫

𝑇

0

(𝑝
𝑢
(𝑡) , 𝜕
2
𝑓 (𝑡, 𝑥) 𝑦 (𝑡)) 𝑑𝑡

= ∫

𝑇

0

(𝑝
𝑢
(𝑡) , 𝐵 (𝑣 − 𝑢) (𝑡)) 𝑑𝑡.

(114)

Let 𝑢 be the optimal control subject to (103). Then (111) is
represented by

∫
Ω

(𝑝
𝑢
(𝑡) , 𝐵 (𝑣 − 𝑢) (𝑡)) 𝑑𝑡 + ∫

𝑇

0

(𝑅𝑢 (𝑡) , (𝑣 − 𝑢) (𝑡)) 𝑑𝑡 ≥ 0,

(115)

which is rewritten by (106). Note that 𝐶∗ ∈ 𝐵(𝑋∗, 𝐻) and for
𝜙 and 𝜓 in 𝐻 we have (𝐶∗Λ

𝑋
𝐶𝜓, 𝜙) = ⟨𝐶𝜓, 𝐶𝜙⟩

𝑋
, where

duality pairing is also denoted by (⋅, ⋅).

Remark 14. Identifying the antidual 𝑋 with 𝑋 we need not
use the canonical isomorphism Λ

𝑋
. However, in case where

𝑋 ⊂ 𝑉
∗ this leads to difficulties since 𝐻 has already been

identified with its dual.
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