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An extension of subgradient method for solving variational inequality problems is presented. A new iterative process, which relates
to the fixed point of a nonexpansive mapping and the current iterative point, is generated. A weak convergence theorem is obtained
for three sequences generated by the iterative process under some mild conditions.

1. Introduction

Let Ω be a nonempty closed convex subset of a real Hilbert
space 𝐻, and let 𝑓 : Ω → Ω be a continuous mapping. The
variational inequality problem, denoted byVI(𝑓,Ω), is to find
a vector 𝑥∗ ∈ Ω, such that

⟨𝑥 − 𝑥
∗

, 𝑓 (𝑥
∗

)⟩ ≥ 0, ∀ 𝑥 ∈ Ω. (1)

Throughout the paper, let Ω∗ be the solution set of VI(𝑓,Ω),
which is assumed to be nonempty. In the special case when
Ω is the nonnegative orthant, (1) reduces to the nonlinear
complementarity problem. Find a vector 𝑥∗ ∈ Ω, such that

𝑥
∗

≥ 0, 𝑓 (𝑥
∗

) ≥ 0, 𝑓(𝑥
∗

)
𝑇

𝑥
∗

= 0. (2)

The variational inequality problem plays an important role
in optimization theory and variational analysis. There are
numerous applications of variational inequalities in math-
ematics as well as in equilibrium problems arising from
engineering, economics, and other areas in real life, see [1–16]
and the references therein. Many algorithms, which employ
the projection onto the feasible set Ω of the variational
inequality or onto some related sets in order to iteratively
reach a solution, have been proposed to solve (1). Korpelevich
[2] proposed an extragradient method for finding the saddle
point of some special cases of the equilibrium problem.
Solodov and Svaiter [3] extended the extragradient algorithm
through replying the set Ω by the intersection of two sets

related toVI(𝑓,Ω). In each iteration of the algorithm, the new
vector 𝑥

𝑘+1
is calculated according to the following iterative

scheme. Given the current vector 𝑥
𝑘
, compute 𝑟(𝑥

𝑘
) = 𝑥

𝑘
−

𝑃
Ω
(𝑥
𝑘
− 𝑓(𝑥

𝑘
)), if 𝑟(𝑥

𝑘
) = 0, stop; otherwise, compute

𝑧
𝑘
= 𝑥
𝑘
− 𝜂
𝑘
𝑟 (𝑥
𝑘
) , (3)

where 𝜂
𝑘
= 𝑟
𝑚𝑘 and𝑚

𝑘
being the smallest nonnegative integer

𝑚 satisfying

⟨𝑓 (𝑥
𝑘
− 𝑟
𝑚

𝑟 (𝑥
𝑘
)) , 𝑟 (𝑥

𝑘
)⟩ ≥ 𝛿

󵄩󵄩󵄩󵄩𝑟 (𝑥𝑘)
󵄩󵄩󵄩󵄩

2

, (4)

and then compute

𝑥
𝑘+1

= 𝑃
Ω∩𝐻𝑘

(𝑥
𝑘
) , (5)

where𝐻
𝑘
= {𝑥 ∈ 𝑅

𝑛

| ⟨𝑥 − 𝑧
𝑘
, 𝑓(𝑧
𝑘
)⟩ ≤ 0}.

On the other hand, Nadezhkina and Takahashi [11] got
𝑥
𝑘+1

by the following iterative formula:

𝑥
𝑘+1

= 𝛼
𝑘
𝑥
𝑘
+ (1 − 𝛼

𝑘
) 𝑆𝑃
Ω
(𝑥
𝑘
− 𝜆
𝑘
𝑓 (𝑥
𝑘
)) , (6)

where {𝛼
𝑘
}
∞

𝑘=0
is a sequence in (0, 1), {𝜆

𝑘
}
∞

𝑘=0
is a sequence,

and 𝑆 : Ω → Ω is a nonexpansive mapping. Denoting the
fixed points set of 𝑆 by𝐹(𝑆) and assuming𝐹(𝑆)∩Ω∗ ̸= 0, they
proved that the sequence {𝑥

𝑘
}
∞

𝑘=0
converges weakly to some

𝑥
∗

∈ 𝐹(𝑆) ∩ Ω
∗.

Motivated and inspired by the extragradient methods in
[2, 3], in this paper, we study further extragradient methods
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and analyze the weak converge property of three sequences
generated by our method.

The rest of this paper is organized as follows. In Section 2,
we give some preliminaries and basic results. In Section 3, we
present an extragradient algorithm and then discuss the weak
convergence of the sequences generated by the algorithm. In
Section 4, we modify the extragradient algorithm and give its
convergence analysis.

2. Preliminary and Basic Results

Let 𝐻 be a real Hilbert space with ⟨𝑥, 𝑦⟩ denoting the
inner product of the vectors 𝑥, 𝑦. Weak converge and strong
converge of the sequence {𝑥

𝑘
}
∞

𝑘=0
to a point 𝑥 are denoted by

𝑥
𝑘
⇀ 𝑥 and 𝑥

𝑘
→ 𝑥, respectively. Identity mapping from Ω

to itself is denoted by 𝐼.
For some vector 𝑥 ∈ 𝐻, the orthogonal projection of 𝑥

ontoΩ, denoted by 𝑃
Ω
(𝑥), is defined as

𝑃
Ω
(𝑥) := arg min {󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 | 𝑦 ∈ Ω} . (7)

The following lemma states some well-known properties of
the orthogonal projection operator.

Lemma 1. One has

(1) ⟨𝑥 − 𝑃
Ω
(𝑥) , 𝑃

Ω
(𝑥) − 𝑦⟩ ≥ 0, ∀ 𝑥 ∈ 𝑅

𝑛

, ∀ 𝑦 ∈ Ω.

(8)

(2)
󵄩󵄩󵄩󵄩𝑃Ω (𝑥) − 𝑃Ω (𝑦)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀ 𝑥, 𝑦 ∈ 𝑅
𝑛

. (9)

(3)
󵄩󵄩󵄩󵄩𝑃Ω (𝑥) − 𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥 − 𝑃Ω (𝑥)

󵄩󵄩󵄩󵄩

2

,

∀ 𝑥 ∈ 𝑅
𝑛

, ∀ 𝑦 ∈ Ω.

(10)

(4)
󵄩󵄩󵄩󵄩𝑃Ω (𝑥) − 𝑃Ω (𝑦)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑃Ω (𝑥) − 𝑥 + 𝑦 − 𝑃Ω (𝑦)

󵄩󵄩󵄩󵄩

2

,

∀ 𝑥, 𝑦 ∈ 𝑅
𝑛

.

(11)

A mapping 𝑓 is called monotone if

⟨𝑥 − 𝑦, 𝑓 (𝑥) − 𝑓 (𝑦)⟩ ≥ 0, ∀ 𝑥, 𝑦 ∈ Ω. (12)

A mapping 𝑓 is called Lipschitz continuous, if there exists an
𝐿 ≥ 0, such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀ 𝑥, 𝑦 ∈ Ω. (13)

The graph of 𝑓, denoted by 𝐺(𝑓), is defined by

𝐺 (𝑓) := {(𝑥, 𝑦) ∈ Ω × Ω | 𝑦 = 𝑓 (𝑥)} . (14)

A mapping 𝑆 : Ω → Ω is called nonexpansive if
󵄩󵄩󵄩󵄩𝑆 (𝑥) − 𝑆 (𝑦)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀ 𝑥, 𝑦 ∈ Ω, (15)

and the fixed point set of a mapping 𝑆, denoted by 𝐹(𝑆), is
defined by

𝐹 (𝑆) := {𝑥 ∈ Ω | 𝑆 (𝑥) = 𝑥} . (16)

We denote the normal cone of Ω at V ∈ Ω by

𝑁
Ω
(V) := {𝑤 ∈ 𝐻 | ⟨V − 𝑢, 𝑤⟩ ≥ 0, 𝑢 ∈ Ω} , (17)

and define the function 𝑇(V) as

𝑇 (V) := {
𝑓 (V) + 𝑁

Ω
(V) if V ∈ Ω,

0 if V ∉ Ω.
(18)

Then 𝑇 is maximal monotone. It is well known that 0 ∈ 𝑇(V),
if and only if V ∈ Ω

∗. For more details, see, for example, [9]
and references therein.The following lemma is established in
Hilbert space and is well known as Opial condition.

Lemma 2. For any sequence {𝑥
𝑘
}
∞

𝑘=0
⊂ 𝐻 that converges

weakly to 𝑥(𝑥
𝑘
⇀ 𝑥), one has

lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
󵄩󵄩󵄩󵄩 < lim inf
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ̸= 𝑥. (19)

The next lemma is proposed in [10].

Lemma 3 (Demiclosedness principle). Let Ω be a closed,
convex subset of a real Hilbert space 𝐻, and let 𝑆 : Ω → 𝐻

be a nonexpansive mapping.Then 𝐼−𝑆 is demiclosed at 𝑦 ∈ 𝐻;
that is, for any sequence {𝑥

𝑘
}
∞

𝑘=0
⊂ Ω, such that 𝑥

𝑘
⇀ 𝑥̃, 𝑥̃ ∈ Ω

and (𝐼 − 𝑆)𝑥
𝑘
→ 𝑦, one has (𝐼 − 𝑆)𝑥̃ = 𝑦.

3. An Algorithm and Its Convergence Analysis

In this section, we give our algorithm, and then discuss its
convergence. First, we need the following definition.

Definition 4. For some vector 𝑥 ∈ Ω, the projected residual
function is defined as

𝑟 (𝑥) := 𝑥 − 𝑃
Ω
(𝑥 − 𝑓 (𝑥)) . (20)

Obviously, we have that 𝑥 ∈ Ω
∗ if and only if 𝑟(𝑥) = 0. Now

we describe our algorithm.

Algorithm A. Step 0. Take 𝛿 ∈ (0, 1), 𝛾 ∈ (0, 1), 𝑥
0
∈ Ω, and

𝑘 = 0.
Step 1. For the current iterative point 𝑥

𝑘
∈ Ω, compute

𝑦
𝑘
= 𝑃
Ω
(𝑥
𝑘
− 𝑓 (𝑥

𝑘
)) , (21)

𝑧
𝑘
= (1 − 𝜂

𝑘
) 𝑥
𝑘
+ 𝜂
𝑘
𝑦
𝑘
, (22)

where 𝜂
𝑘
= 𝛾
𝑛𝑘 and 𝑛

𝑘
being the smallest nonnegative integer

𝑛 satisfying

⟨𝑓 (𝑥
𝑘
− 𝛾
𝑛

𝑟 (𝑥
𝑘
)) , 𝑟 (𝑥

𝑘
)⟩ ≥ 𝛿

󵄩󵄩󵄩󵄩𝑟 (𝑥𝑘)
󵄩󵄩󵄩󵄩

2

. (23)

Compute

𝑡
𝑘
= 𝑃
𝐻𝑘∩Ω

(𝑥
𝑘
) , (24)

𝑥
𝑘+1

= 𝛼
𝑘
𝑥
𝑘
+ (1 − 𝛼

𝑘
) 𝑆𝑡
𝑘
, (25)

where {𝛼
𝑘
} ⊂ (𝑎, 𝑏) (𝑎, 𝑏 ∈ (0, 1)), 𝐻

𝑘
= {𝑥 ∈ Ω | ⟨𝑥 −

𝑧
𝑘
, 𝑓(𝑧
𝑘
)⟩ ≤ 0}, and 𝑆 : Ω → Ω is a nonexpansive mapping.

Step 2. If ‖𝑟(𝑥
𝑘+1

)‖ = 0, stop; otherwise go to Step 1.
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Remark 5. The iterative point 𝑡
𝑘
is well computed in Algo-

rithm A according to [3] and can be interpreted as follows: if
(23) is well defined, then 𝑡

𝑘
can be derived by the following

iterative scheme: compute

𝑥
𝑘
= 𝑃
𝐻𝑘
(𝑥
𝑘
) , 𝑡

𝑘
= 𝑃
𝐻𝑘∩Ω

(𝑥
𝑘
) . (26)

For more details, see [3, 4].

Now we investigate the weak convergence property of
our algorithm. First we recall the following result, which was
proposed by Schu [17].

Lemma 6. Let H be a real Hilbert space, let {𝛼
𝑘
}
∞

𝑘=0
⊂

(𝑎, 𝑏) (𝑎, 𝑏 ∈ (0, 1)) be a sequence of real number, and let
{V
𝑘
}
∞

𝑘=0
⊂ 𝐻, {𝑤

𝑘
}
∞

𝑘=0
⊂ 𝐻, such that

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑐,

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩𝑤𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑐,

lim sup
𝑘→∞

󵄩󵄩󵄩󵄩𝛼𝑘V𝑘 + (1 − 𝛼𝑘) 𝑤𝑘
󵄩󵄩󵄩󵄩 = 𝑐,

(27)

for some 𝑐 ≥ 0. Then one has

lim
𝑘→∞

󵄩󵄩󵄩󵄩V𝑘 − 𝑤𝑘
󵄩󵄩󵄩󵄩 = 0. (28)

The following theorem is crucial in proving the bound-
ness of the sequence {𝑥

𝑘
}
∞

𝑘=0
.

Theorem 7. LetΩ be a nonempty, closed, and convex subset of
𝐻, let 𝑓 be a monotone and 𝐿-Lipschitz continuous mapping,
𝐹(𝑆) ∩ Ω

∗

̸= 0, and 𝑥
∗

∈ Ω
∗. Then for any sequence

{𝑥
𝑘
}
∞

𝑘=0
, {𝑡
𝑘
}
∞

𝑘=0
generated by Algorithm A, one has

󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

+ 2
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
⟨𝑧
𝑘
− 𝑡
𝑘
, 𝑓 (𝑧
𝑘
)⟩ .

(29)

Proof. Letting 𝑥 = 𝑥
𝑘
and 𝑦 = 𝑥

∗. It follows from Lemma 1
(10) that

󵄩󵄩󵄩󵄩󵄩
𝑃
𝐻𝑘∩Ω

(𝑥
𝑘
) − 𝑥
∗
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑃
𝐻𝑘∩Ω

(𝑥
𝑘
)
󵄩󵄩󵄩󵄩󵄩

2

,

(30)

that is,
󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

. (31)

From (20)–(23) in Algorithm A, we get ⟨𝑥
𝑘
− 𝑧
𝑘
, 𝑓(𝑧
𝑘
)⟩ > 0,

which means 𝑥
𝑘
∉ 𝐻
𝑘
. So, by the definition of the projection

operator and [3], we obtain

𝑥
𝑘
= 𝑃
𝐻𝑘
(𝑥
𝑘
) = 𝑥
𝑘
−
⟨𝑥
𝑘
− 𝑧
𝑘
, 𝑓 (𝑧
𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2

𝑓 (𝑧
𝑘
)

= 𝑥
𝑘
−
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2
𝑓 (𝑧
𝑘
) .

(32)

Substituting (32) into (31), we have

󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑘
−
𝜂
𝑘
⟨𝑟(𝑥
𝑘
), 𝑓(𝑧
𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2

𝑓(𝑧
𝑘
) − 𝑥
∗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥
𝑘
−
𝜂
𝑘
⟨𝑟(𝑥
𝑘
), 𝑓(𝑧
𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2
𝑓(𝑧
𝑘
) − 𝑡
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

− 2
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2

⟨𝑡
𝑘
− 𝑥
∗

, 𝑓 (𝑧
𝑘
)⟩

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

+ 2
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2

⟨𝑧
𝑘
− 𝑡
𝑘
, 𝑓 (𝑧
𝑘
)⟩

+ 2
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2

⟨𝑥
∗

− 𝑧
𝑘
, 𝑓 (𝑧
𝑘
)⟩ .

(33)

Since 𝑓 is monotone, connecting with (1), we obtain

⟨𝑧
𝑘
− 𝑥
∗

, 𝑓 (𝑧
𝑘
)⟩ ≥ 0. (34)

Thus

󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

+ 2
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

⟨𝑧
𝑘
− 𝑡
𝑘
, 𝑓 (𝑧
𝑘
)⟩ ,

(35)

which completes the proof.

Theorem 8. LetΩ be a nonempty, closed, and convex subset of
𝐻, 𝑓 be a monotone and 𝐿-Lipschitz continuous mapping, and
𝐹(𝑆)∩Ω

∗

̸= 0. Then for any sequence {𝑥
𝑘
}
∞

𝑘=0
, {𝑦
𝑘
}
∞

𝑘=0
, {𝑡
𝑘
}
∞

𝑘=0

generated by Algorithm A, one has

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− (1 − 𝛼
𝑘
)(

𝜂
𝑘
𝛿

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦𝑘
󵄩󵄩󵄩󵄩

4

,

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
1 − 𝛼
𝑘

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩

2

.

(36)

Furthermore,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦𝑘
󵄩󵄩󵄩󵄩 = 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 = 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 = 0.

(37)
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Proof. Using (22), we have

𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2

⟨𝑧
𝑘
− 𝑥
𝑘
, 𝑓 (𝑧
𝑘
)⟩

=
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2

⟨−𝜂
𝑘
𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

= −(
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

.

(38)

By the Cauchy-Schwarz inequality,

2
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓(𝑧𝑘)
󵄩󵄩󵄩󵄩

2
⟨𝑥
𝑘
− 𝑡
𝑘
, 𝑓 (𝑧
𝑘
)⟩

≤ (
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

+
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

.

(39)

Hence, by (23)
󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

− (
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

+
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− (
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− (
𝜂
𝑘
𝛿

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦𝑘
󵄩󵄩󵄩󵄩

4

.

(40)

Then we have
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑘𝑥𝑘 + (1 − 𝛼𝑘)𝑆𝑡𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑘(𝑥𝑘 − 𝑥

∗

) + (1 − 𝛼
𝑘
)(𝑆𝑡
𝑘
− 𝑥
∗

)
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑘
)
󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑘
)
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− (1 − 𝛼
𝑘
) (

𝜂
𝑘
𝛿

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦𝑘
󵄩󵄩󵄩󵄩

4

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−(1 − 𝛼
𝑘
)(

𝜂
𝑘
𝛿

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦𝑘
󵄩󵄩󵄩󵄩

4

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

,

(41)

where the first inequation follows from that 𝑆 is a nonexpan-
sive mapping.

That means {𝑥
𝑘
}
∞

𝑘=0
is bounded, and so as {𝑧

𝑘
}
∞

𝑘=0
. Since

𝑓 is continuous; namely, there exists a constant 𝑀 > 0, s.t.
‖𝑓(𝑧
𝑘
)‖ ≤ 𝑀, for all 𝑘, we yet have

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− (1 − 𝛼
𝑘
) (

𝛿

𝑀
)

2

𝜂
2

𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦𝑘
󵄩󵄩󵄩󵄩

4

.

(42)

So we know that there exists 𝜉 ≥ 0, lim
𝑘→∞

‖𝑥
𝑘
− 𝑥
∗

‖ = 𝜉,
and hence

lim
𝑘→∞

𝜂
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦𝑘
󵄩󵄩󵄩󵄩 = 0, (43)

which implies that lim
𝑘→∞

‖𝑥
𝑘
− 𝑦
𝑘
‖ = 0 or lim

𝑘→∞
𝜂
𝑘
= 0.

If lim
𝑘→∞

‖𝑥
𝑘
− 𝑦
𝑘
‖ = 0, we get the conclusion.

If lim
𝑘→∞

𝜂
𝑘
= 0, we can deduce that the inequality (23)

in Algorithm A is not satisfied for 𝑛
𝑘
− 1; that is, there exists

𝑘
0
, for all 𝑘 ≥ 𝑘

0
,

⟨𝑓 (𝑥
𝑘
− 𝛾
−1

𝜂
𝑘
𝑟 (𝑥
𝑘
)) , 𝑟 (𝑥

𝑘
)⟩ < 𝛿

󵄩󵄩󵄩󵄩𝑟 (𝑥𝑘)
󵄩󵄩󵄩󵄩

2

. (44)

Applying (8) by setting 𝑥 = 𝑥
𝑘
− 𝑓(𝑥

𝑘
), 𝑦 = 𝑥

𝑘
leads to

⟨𝑥
𝑘
−𝑓 (𝑥

𝑘
)−𝑃
Ω
(𝑥
𝑘
− 𝑓 (𝑥

𝑘
)) , 𝑃
Ω
(𝑥
𝑘
− 𝑓 (𝑥

𝑘
)) − 𝑥
𝑘
⟩ ≥ 0.

(45)

Therefore

⟨𝑓 (𝑥
𝑘
), 𝑟 (𝑥

𝑘
)⟩≥

󵄩󵄩󵄩󵄩𝑟 (𝑥𝑘)
󵄩󵄩󵄩󵄩

2 as 𝑟 (𝑥
𝑘
)=𝑥
𝑘
−𝑃
Ω
(𝑥
𝑘
−𝑓 (𝑥

𝑘
)) .

(46)

Passing onto the limit in (44), (46), we get 𝛿 lim
𝑘→∞

‖𝑥
𝑘
−

𝑦
𝑘
‖ ≥ lim

𝑘→∞
‖𝑥
𝑘
− 𝑦
𝑘
‖, since 𝛿 ∈ (0, 1), we obtain

lim
𝑘→∞

‖𝑥
𝑘
− 𝑦
𝑘
‖ = 0.

On the other hand, using Cauchy-Schwarz inequality
again, we have

2
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2
⟨𝑥
𝑘
− 𝑡
𝑘
, 𝑓 (𝑧
𝑘
)⟩

≤ 2(
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

+
1

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩

2

.

(47)

Therefore,
󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

− 2(
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

+ 2(
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

)

2

+
1

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
1

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩

2

.

(48)

Then we have
󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑘𝑥𝑘 + (1 − 𝛼𝑘)𝑆𝑡𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑘
)
󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑘
)
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
1 − 𝛼
𝑘

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
1 − 𝛼
𝑘

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩

2

.

(49)
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Noting that 𝛼
𝑘
∈ (𝑎, 𝑏) (𝑎, 𝑏 ∈ (0, 1)), it easily follows that

0 < (1− 𝑏)/2 < (1−𝛼
𝑘
)/2 < (1− 𝑎)/2 < 1, which implies that

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 = 0. (50)

By the triangle inequality, we have

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥𝑘 + 𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 .

(51)

Passing onto the limit in (51), we conclude

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 = 0. (52)

The proof is complete.

Theorem 9. Let Ω be a nonempty, closed, and convex
subset of 𝐻, let 𝑓 be a monotone and 𝐿-Lipschitz con-
tinuous mapping, and 𝐹(𝑆) ∩ Ω

∗

̸= 0. Then the sequences
{𝑥
𝑘
}
∞

𝑘=0
, {𝑦
𝑘
}
∞

𝑘=0
, {𝑡
𝑘
}
∞

𝑘=0
generated by Algorithm A converge

weakly to the same point 𝑥∗ ∈ 𝐹(𝑆) ∩ Ω
∗, where 𝑥

∗

=

lim
𝑘→∞

𝑃
𝐹(𝑆)∩Ω

∗(𝑥
𝑘
).

Proof. ByTheorem 8, we know that {𝑥
𝑘
}
∞

𝑘=0
is bound, which

implies that there exists a subsequence {𝑥
𝑘𝑖
}
∞

𝑖=0
of {𝑥
𝑘
}
∞

𝑘=0
that

converges weakly to some points 𝑥∗ ∈ 𝐹(𝑆) ∩ Ω∗.
First, we investigate some details of 𝑥∗ ∈ 𝐹(𝑆).
Letting 𝑥󸀠 ∈ 𝐹(𝑆) ∩Ω∗, since 𝑆 is nonexpansive mapping,

from (29) we have
󵄩󵄩󵄩󵄩󵄩
𝑆𝑡
𝑘
− 𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑡
𝑘
− 𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘
− 𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩
. (53)

Passing onto the limit in (53), we obtain

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑆𝑡
𝑘
− 𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩
≤ 𝜉. (54)

Then by (25) we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑘
(𝑥
𝑘
− 𝑥
󸀠

) + (1 − 𝛼
𝑘
) (𝑆𝑡
𝑘
− 𝑥
󸀠

)
󵄩󵄩󵄩󵄩󵄩

= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘+1

− 𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩
= 𝜉.

(55)

From Lemma 6, it follows that

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑆𝑡𝑘 − 𝑥𝑘
󵄩󵄩󵄩󵄩 = 0. (56)

By the triangle inequality, we have

󵄩󵄩󵄩󵄩𝑆𝑥𝑘 − 𝑥𝑘
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑆𝑥𝑘 − 𝑆𝑡𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑆𝑡𝑘 − 𝑥𝑘
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑆𝑡𝑘 − 𝑥𝑘

󵄩󵄩󵄩󵄩 ,

(57)

and then passing onto the limit in (57), we deduce that

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑆𝑥𝑘 − 𝑥𝑘
󵄩󵄩󵄩󵄩 = 0, (58)

which imply that 𝑥∗ ∈ 𝐹(𝑆) by Lemma 3.

Second, we describe the details of 𝑥∗ ∈ Ω∗.
Since 𝑥

𝑘𝑖
⇀ 𝑥
∗, using Theorem 8 we claim that 𝑡

𝑘𝑖
⇀ 𝑥
∗

and 𝑦
𝑘𝑖
⇀ 𝑥
∗.

Letting (V, 𝑢) ∈ 𝐺(𝑇), we have

𝑢 ∈ 𝑇 (V) = 𝑓 (V) + 𝑁
Ω
(V) , 𝑢 − 𝑓 (V) ∈ 𝑁

Ω
(V) , (59)

thus,

⟨V − 𝑥
∗

, 𝑢 − 𝑓 (V)⟩ ≥ 0, ∀ 𝑥
∗

∈ Ω. (60)

Applying (8) by letting 𝑥 = 𝑥
𝑘
− 𝑓(𝑥

𝑘
), 𝑦 = V, we have

⟨𝑥
𝑘
− 𝑓 (𝑥

𝑘
) − 𝑃
Ω
(𝑥
𝑘
− 𝑓 (𝑥

𝑘
)) , 𝑃
Ω
(𝑥
𝑘
− 𝑓 (𝑥

𝑘
)) − V⟩ ≥ 0,

(61)

that is,

⟨𝑥
𝑘
− 𝑓 (𝑥

𝑘
) − 𝑦
𝑘
, 𝑦
𝑘
− V⟩ ≥ 0. (62)

Note that 𝑢 − 𝑓(V) ∈ 𝑁
Ω
(V) and 𝑡

𝑘
∈ Ω, then

⟨V − 𝑡
𝑘𝑖
, 𝑢⟩

≥ ⟨V − 𝑡
𝑘𝑖
, 𝑓 (V)⟩

≥ ⟨V − 𝑡
𝑘𝑖
, 𝑓 (V)⟩ − ⟨𝑥

𝑘𝑖
− 𝑓 (𝑥

𝑘𝑖
) − 𝑦
𝑘𝑖
, 𝑦
𝑘𝑖
− V⟩

= ⟨V − 𝑡
𝑘𝑖
, 𝑓 (V) − 𝑓 (𝑡

𝑘𝑖
)⟩ + ⟨V − 𝑡

𝑘𝑖
, 𝑓 (𝑡
𝑘𝑖
)⟩

− ⟨V − 𝑦
𝑘𝑖
, 𝑦
𝑘𝑖
− 𝑥
𝑘𝑖
⟩ − ⟨V − 𝑦

𝑘𝑖
, 𝑓 (𝑥
𝑘𝑖
)⟩

≥ ⟨V − 𝑡
𝑘𝑖
, 𝑓 (𝑡
𝑘𝑖
)⟩ − ⟨V − 𝑦

𝑘𝑖
, 𝑦
𝑘𝑖
− 𝑥
𝑘𝑖
⟩

− ⟨V − 𝑦
𝑘𝑖
, 𝑓 (𝑥
𝑘𝑖
)⟩ ,

(63)

where the last inequation follows from the monotone of 𝑓.
Since 𝑓 is continuous, by (37) we have

lim
𝑖→∞

𝑓 (𝑥
𝑘𝑖
) = lim
𝑖→∞

𝑓 (𝑦
𝑘𝑖
) , lim

𝑖→∞

𝑥
𝑘𝑖
= lim
𝑖→∞

𝑡
𝑘𝑖
. (64)

Passing onto the limit in (63), we obtain

⟨V − 𝑥
∗

, 𝑢⟩ ≥ 0. (65)

As 𝑓 is maximal monotone, we have 𝑥∗ ∈ 𝑓
−1

(0), which
implies that 𝑥∗ ∈ Ω∗.

At last we show that such 𝑥∗ is unique.
Let {𝑥

𝑘𝑗
}
∞

𝑗=0
be another subsequence of {𝑥

𝑘
}
∞

𝑘=0
, such that

𝑥
𝑘𝑗
⇀ 𝑥
∗

Δ
. Then we conclude that 𝑥∗

Δ
∈ 𝐹(𝑆) ∩ Ω

∗. Suppose
𝑥
∗

Δ
̸= 𝑥
∗; by Lemma 2 we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

= lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘𝑖
−𝑥
∗
󵄩󵄩󵄩󵄩󵄩
< lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘𝑖
−𝑥
∗

Δ

󵄩󵄩󵄩󵄩󵄩
= lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗

Δ

󵄩󵄩󵄩󵄩

= lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘𝑗
−𝑥
∗

Δ

󵄩󵄩󵄩󵄩󵄩󵄩
< lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑘𝑗
−𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩
= lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

(66)

which implies that lim
𝑘→∞

‖𝑥
𝑘
− 𝑥
∗

‖ < lim
𝑘→∞

‖𝑥
𝑘
− 𝑥
∗

‖,
and this is a contradiction. Thus, 𝑥∗ = 𝑥

∗

Δ
, and the proof is

complete.
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4. Further Study

In this section we propose an extension of Algorithm A,
which is effective in practice. Similar to the investigation in
Section 3, for the constant 𝜏 > 0, we define a new projected
residual function as follows:

𝑟 (𝑥, 𝜏) := 𝑥 − 𝑃
Ω
(𝑥 − 𝜏𝑓 (𝑥)) . (67)

It is clear that the new projected residual function (67)
degenerates into (20) by setting 𝜏 = 1.

Algorithm B. Step 0. Take 𝛿 ∈ (0, 1), 𝛾 ∈ (0, 1), 𝜂
−1

> 0, 𝜃 >

1, 𝑥
0
∈ Ω, and 𝑘 = 0.

Step 1. For the current iterative point 𝑥
𝑘
∈ Ω, compute

𝑦
𝑘
= 𝑃
Ω
(𝑥
𝑘
− 𝜏
𝑘
𝑓 (𝑥
𝑘
)) ,

𝑧
𝑘
= (1 − 𝜂

𝑘
) 𝑥
𝑘
+ 𝜂
𝑘
𝑦
𝑘
,

(68)

where 𝜏
𝑘
= min{𝜃𝜂

𝑘−1
, 1}, 𝜂

𝑘
= 𝛾
𝑛𝑘𝜏
𝑘
and 𝑛

𝑘
being the

smallest nonnegative integer 𝑛 satisfying

⟨𝑓 (𝑥
𝑘
− 𝛾
𝑛

𝜏
𝑘
𝑟 (𝑥
𝑘
, 𝜏
𝑘
)) , 𝑟 (𝑥

𝑘
, 𝜏
𝑘
)⟩ ≥

𝛿

𝜏
𝑘

󵄩󵄩󵄩󵄩𝑟 (𝑥𝑘, 𝜏𝑘)
󵄩󵄩󵄩󵄩

2

.

(69)

Compute

𝑡
𝑘
= 𝑃
𝐻𝑘∩Ω

(𝑥
𝑘
) ,

𝑥
𝑘+1

= 𝛼
𝑘
𝑥
𝑘
+ (1 − 𝛼

𝑘
) 𝑆𝑡
𝑘
,

(70)

where {𝛼
𝑘
} ⊂ (𝑎, 𝑏) (𝑎, 𝑏 ∈ (0, 1)) and 𝐻

𝑘
= {𝑥 ∈ Ω | ⟨𝑥 −

𝑧
𝑘
, 𝑓(𝑧
𝑘
)⟩ ≤ 0}.

Step 2. If ‖𝑟(𝑥
𝑘
, 𝜏
𝑘
)‖ = 0, stop; otherwise go to Step 1.

At the rest of this section, we discuss the weak conver-
gence property of Algorithm B.

Lemma 10. For any 𝜏 > 0, one has

𝑥
∗is the solution of VI (𝑓,Ω) ⇐⇒ 𝑥

∗

= 𝑃
Ω
(𝑥
∗

− 𝜏𝑓 (𝑥
∗

)) .

(71)

Therefore, solving variational inequality is equivalent to
finding a zero point of the projected residual function 𝑟(∙, 𝜏).
Meanwhile we know that 𝑟(𝑥, 𝜏) is a continuous function of
𝑥, as the projection mapping is nonexpansive.

Lemma 11. For any 𝑥 ∈ 𝑅𝑛 and 𝜏
1
≥ 𝜏
2
> 0, it holds that

󵄩󵄩󵄩󵄩𝑟 (𝑥, 𝜏1)
󵄩󵄩󵄩󵄩 ≥

󵄩󵄩󵄩󵄩𝑟 (𝑥, 𝜏2)
󵄩󵄩󵄩󵄩 . (72)

Theorem 12. Let Ω be a nonempty, closed, and convex subset
of𝐻, let𝑓 be amonotone and 𝐿-Lipschitz continuousmapping,
and 𝐹(𝑆) ∩ Ω

∗

̸= 0. Then for any sequence {𝑥
𝑘
}
∞

𝑘=0
, {𝑡
𝑘
}
∞

𝑘=0

generated by Algorithm B, one has
󵄩󵄩󵄩󵄩𝑡𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘

󵄩󵄩󵄩󵄩

2

+ 2
𝜂
𝑘
⟨𝑟 (𝑥
𝑘
, 𝜏
𝑘
) , 𝑓 (𝑧

𝑘
)⟩

󵄩󵄩󵄩󵄩𝑓 (𝑧𝑘)
󵄩󵄩󵄩󵄩

2

⟨𝑧
𝑘
− 𝑡
𝑘
, 𝑓 (𝑧
𝑘
)⟩ .

(73)

Proof. The proof of this theorem is similar to Theorem 7, so
we omit it.

Theorem 13. Let Ω be a nonempty, closed, and convex
subset of 𝐻, let 𝑓 be a monotone and 𝐿-Lipschitz contin-
uous mapping, and 𝐹(𝑆) ∩ Ω

∗

̸= 0. Then for any sequences
{𝑥
𝑘
}
∞

𝑘=0
, {𝑦
𝑘
}
∞

𝑘=0
, {𝑡
𝑘
}
∞

𝑘=0
generated by Algorithm B, one has

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
1 − 𝛼
𝑘

2

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩

2

. (74)

Furthermore,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑦𝑘
󵄩󵄩󵄩󵄩 = 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 = 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑡𝑘
󵄩󵄩󵄩󵄩 = 0.

(75)

Proof. The proof of this theorem is similar to theTheorem 8.
The only difference is that (44) is substituted by

⟨𝑓 (𝑥
𝑘
− 𝛾
−1

𝜂
𝑘
𝑟 (𝑥
𝑘
, 𝜏
𝑘
)) , 𝑟 (𝑥

𝑘
, 𝜏
𝑘
)⟩ <

𝛿

𝜏
𝑘

󵄩󵄩󵄩󵄩𝑟 (𝑥𝑘, 𝜏𝑘)
󵄩󵄩󵄩󵄩

2

,

(76)

where (76) follows from Lemma 11 with 𝜏
1
= 1 and 𝜏

2
= 𝜏
𝑘
.

Theorem 14. Let Ω be a nonempty, closed, and convex
subset of 𝐻, let 𝑓 be a monotone and 𝐿-Lipschitz con-
tinuous mapping, and 𝐹(𝑆) ∩ Ω

∗

̸= 0. Then the sequences
{𝑥
𝑘
}
∞

𝑘=0
, {𝑦
𝑘
}
∞

𝑘=0
, {𝑡
𝑘
}
∞

𝑘=0
generated by Algorithm B converge

weakly to the same point 𝑥∗ ∈ 𝐹(𝑆) ∩ Ω
∗, where 𝑥

∗

=

lim
𝑘→∞

𝑃
𝐹(𝑆)∩Ω

∗(𝑥
𝑘
).

5. Conclusions

In this paper, we proposed an extension of the extragradient
algorithm for solving monotone variational inequalities and
established its weak convergence theorem. The Algorithm B
is effective in practice. Meanwhile, we pointed out that the
solution of our algorithm is also a fixed point of a given
nonexpansive mapping.
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