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We consider a nonzero-sum stochastic differential game which involves two players, a controller and a stopper. The controller
chooses a control process, and the stopper selects the stopping rule which halts the game.This game is studied in a jump diffusions
setting within Markov control limit. By a dynamic programming approach, we give a verification theorem in terms of variational
inequality-Hamilton-Jacobi-Bellman (VIHJB) equations for the solutions of the game. Furthermore, we apply the verification
theorem to characterize Nash equilibrium of the game in a specific example.

1. Introduction

In this paper we study a nonzero-sum stochastic differential
game with two players: a controller and a stopper. The state
𝑋(⋅) in this game evolves according to a stochastic differential
equation driven by jump diffusions.The controller affects the
control process 𝑢(⋅) in the drift and volatility of𝑋(⋅) at time 𝑡,
and the stopper decides the duration of the game, in the form
of a stopping rule 𝜏 for the process𝑋(⋅). The objectives of the
two players are to maximize their own expected payoff.

In order to illustrate the motivation and the background
of application for this game, we show a model in finance.

Example 1. Let (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃) be a filtered probability

space, let 𝐵(𝑡) be a 𝑘-dimensional Brownian Motion, and let
�̃�(𝑑𝑡, 𝑑𝑧) = (�̃�

1
(𝑑𝑡, 𝑑𝑧), . . . , �̃�

𝑘
(𝑑𝑡, 𝑑𝑧)) be 𝑘-independent

compensated Poisson randommeasures independent of 𝐵(𝑡),
𝑡 ∈ [0,∞). For 𝑖 = 1, . . . , 𝑘, �̃�

𝑖
(𝑑𝑡, 𝑑𝑧) = 𝑁

𝑖
(𝑑𝑡, 𝑑𝑧)−]

𝑖
(𝑑𝑧)𝑑𝑡,

where ]
𝑖
is the Lévy measure of a Lévy process 𝜂

𝑖
(𝑡) with

jump measure 𝑁
𝑖
such that 𝐸[𝜂2

𝑖
(𝑡)] < ∞ for all 𝑡. {F

𝑡
}
𝑡≥0

is the filtration generated by 𝐵(𝑡) and �̃�(𝑑𝑡, 𝑑𝑧) (as usual
augmentedwith all the𝑃-null sets).We refer to [1, 2] formore
information about Lévy processes.

We firstly define a financial market model as follows.
Suppose that there are two investment possibilities:

(1) a risk-free asset (e.g., a bond), with unit price 𝑆
0
(𝑡) at

time 𝑡 given by
𝑑𝑆
0
(𝑡) = 𝑟 (𝑡) 𝑆

0
(𝑡) 𝑑𝑡, 𝑆

0
(0) = 1, (1)

(2) a risky asset (e.g., a stock), with unit price 𝑆
1
(𝑡) at time

𝑡 given by

𝑑𝑆
1
(𝑡)

= 𝑆
1
(𝑡−) [𝑏 (𝑡) 𝑑𝑡 + 𝜎 (𝑡) 𝑑𝐵 (𝑡) + ∫

R

𝛾 (𝑡, 𝑧) �̃� (𝑑𝑡, 𝑑𝑧)] ,

𝑆
1
(0) > 0,

(2)

where 𝑟(𝑡) is F
𝑡
-adapted with ∫

𝑇

0
|𝑟(𝑡)|𝑑𝑡 < ∞ a.s., 𝑇 > 0

is a fixed given constant, 𝑏, 𝜎, 𝛾 is F
𝑡
-predictable processes

satisfying 𝛾(𝑡, 𝑧) > −1 for a.a. 𝑡, 𝑧, a.s. and

∫

𝑇

0

{|𝑏 (𝑡)| + 𝜎
2
(𝑡) + ∫

R

𝛾
2
(𝑡, 𝑧) ] (𝑑𝑧)} 𝑑𝑡 < ∞, ∀𝑇 < ∞.

(3)
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Assume that an investor hires a portfolio manager to
manage his wealth 𝑋(𝑡) from investments. The manager
(controller) can choose a portfolio 𝑢(𝑡), which represents the
proportion of the total wealth 𝑋(𝑡) invested in the stock at
time 𝑡. And the investor (stopper) can halt the wealth process
𝑋(𝑡) by selecting a stop-rule 𝜏 : 𝐶[0, 𝑇] → [0, 𝑇]. Then the
dynamics of the corresponding wealth process 𝑋(𝑡) = 𝑋

𝑢
(𝑡)

is

𝑑𝑋
𝑢
(𝑡) = 𝑋

𝑢
(𝑡−) { [(1 − 𝑢 (𝑡)) 𝑟 (𝑡) + 𝑢 (𝑡) 𝑏 (𝑡)] 𝑑𝑡

+ 𝑢 (𝑡) 𝜎 (𝑡) 𝑑𝐵 (𝑡)

+𝑢 (𝑡−) ∫
R

𝛾 (𝑡, 𝑧) �̃� (𝑑𝑡, 𝑑𝑧)} ,

𝑋
𝑢
(0) = 𝑥 > 0

(4)

(see, e.g., [3–5]).We require that 𝑢(𝑡−)𝛾(𝑡, 𝑧) > −1 for a.a. 𝑡, 𝑧,
a.s. and that

∫

𝑇

0

{ |(1 − 𝑢 (𝑡)) 𝑟 (𝑡)| + |𝑢 (𝑡) 𝑏 (𝑡)| + 𝑢
2
(𝑡) 𝜎
2
(𝑡)

+𝑢
2
(𝑡) ∫

R

𝛾
2
(𝑡, 𝑧) ] (𝑑𝑧)} 𝑑𝑡 < ∞ a.s.

(5)

At terminal time 𝜏, the stopper gives the controller a
payoff 𝐶(𝑋(𝜏)), where 𝐶 : 𝐶[0, 𝑇] → R is a deterministic
mapping. Therefore, the controller aims to maximize his
utility of the following form:

J
𝑥

1
(𝑢, 𝜏)=𝐸

𝑥
[𝑒
−𝛿𝜏

𝑈
1
(𝐶 (𝑋 (𝜏)))−∫

𝜏

0

𝑒
−𝛿𝑡
ℎ (𝑡, 𝑋 (𝑡) , 𝑢

𝑡
) 𝑑𝑡] ,

(6)

where 𝛿 > 0 is the discounting rate, ℎ is a cost function, and
𝑈
1
is the controller’s utility. We denote 𝐸𝑥 the expectation

with respect to𝑃𝑥 and𝑃𝑥 the probability laws of𝑋(𝑡) starting
at 𝑥.

Meanwhile it is the stopper’s objective to choose the
stopping time 𝜏 such that his own utility

J
𝑥

2
(𝑢, 𝜏) = 𝐸

𝑥
[𝑒
−𝛿𝜏

𝑈
2
{𝑋 (𝜏) − 𝐶 (𝑋 (𝜏))}] (7)

is maximized, where 𝑈
2
is the stopper’s utility.

As this game is typically a nonzero sum, we seek a Nash
equilibrium, namely, a pair (𝑢∗, 𝜏∗) such that

J
𝑥

1
(𝑢
∗
, 𝜏
∗
) ≥ J

𝑥

1
(𝑢, 𝜏
∗
) , ∀𝑢,

J
𝑥

2
(𝑢
∗
, 𝜏
∗
) ≥ J

𝑥

2
(𝑢
∗
, 𝜏) , ∀𝜏.

(8)

This means that the choice 𝑢∗ is optimal for the controller
when the stopper uses 𝜏∗ and vice verse.

The game (4) and (8) are a nonzero-sum stochastic
differential game between a controller and a stopper. The
existence of Nash equilibrium shows that, by an appropriate
stopping rule design 𝜏∗, the stopper can induce the controller
to choose the best portfolio he can. Similarly, by applying a
suitable portfolio 𝑢∗, the controller can force the stopper to
stop the employment relationship at a time of the controller’s
choosing.

There have been significant advances in the research
of stochastic differential games of control and stopping.
For example, in [6–9] the authors considered the zero-sum
stochastic differential games ofmixed type with both controls
and stopping between two players. In these games, each of the
players chooses an optimal strategy, which is composed by a
control 𝑢(⋅) and a stopping 𝜏. Under appropriate conditions,
they constructed a saddle pair of optimal strategies. For the
nonsum case, the games of mixed type were discussed in
[6, 10]. The authors presented Nash equilibria, rather than
saddle pairs, of strategies [10]. Moreover, the papers [11–17]
considered a zero-sum stochastic differential game between
controller and stopper, where one player (controller) chooses
a control process 𝑢(⋅) and the other (stopper) chooses a
stopping 𝜏. One player tries to maximize the reward and the
other to minimize it. They presented a saddle pair for the
game.

In this paper, we study a nonzero-sum stochastic differen-
tial game between a controller and a stopper. The controller
and the stopper have different payoffs.The objectives of them
are tomaximize their own payoffs.This game is considered in
a jumpdiffusion context under theMarkov control condition.
We prove a verification theorem in terms of VIHJB equations
for the game to characterize Nash equilibrium.

Our setup and approach are related to [3, 17]. However,
their games are different fromours. In [3], the authors studied
the stochastic differential games between two controllers.
The work in [17] was carried out for a zero-sum stochastic
differential game between a controller and a stopper.

The paper is organized as follows: in the next section,
we formulate the nonzero-sum stochastic differential game
between a controller and a stopper and prove a general
verification theorem. In Section 3, we apply the general
results obtained in Section 2 to characterize the solutions of a
special game. Finally, we conclude this paper in Section 4.

2. A Verification Theorem for
Nonzero-Sum Stochastic Differential Game
between Controller and Stopper

Suppose the state 𝑌(𝑡) = 𝑌
𝑢
(𝑡) at time 𝑡 is given by the

following stochastic differential equation:

𝑑𝑌 (𝑡) = 𝛼 (𝑌 (𝑡) , 𝑢
0
(𝑡)) 𝑑𝑡 + 𝛽 (𝑌 (𝑡) , 𝑢

0
(𝑡)) 𝑑𝐵 (𝑡)

+ ∫
R𝑘
0

𝜃 (𝑌 (𝑡−) , 𝑢
1
(𝑡−, 𝑧) , 𝑧) �̃� (𝑑𝑡, 𝑑𝑧) ,

𝑌 (0) = 𝑦 ∈ R
𝑘
,

(9)

where 𝛼 : R𝑘 × U → R𝑘, 𝛽 : R𝑘 × U → R𝑘×𝑘, 𝜃 : R𝑘 ×

U × R𝑘 → R𝑘×𝑘 are given functions, and U denotes a given
subset of R𝑝.

We regard 𝑢
0
(𝑡) = 𝑢

0
(𝑡, 𝜔) and 𝑢

1
(𝑡, 𝑧) = 𝑢

1
(𝑡, 𝑧, 𝜔)

as the control processes, assumed to be càdlàg, F
𝑡
-adapted

and with values in 𝑢
0
(𝑡) ∈ U, 𝑢

1
(𝑡, 𝑧) ∈ U for a.a. 𝑡, 𝑧, 𝜔.

And we put 𝑢(𝑡) = (𝑢
0
(𝑡), 𝑢
1
(𝑡, 𝑧)). Then 𝑌(𝑡) = 𝑌

(𝑢)
(𝑡) is

a controlled jump diffusion (see [18] for more information
about stochastic control of jump diffusion).
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Fix an open solvency set S ⊂ R𝑘. Let

𝜏S = inf {𝑡 > 0; 𝑌 (𝑡) ∉ S} (10)

be the bankruptcy time. 𝜏S is the first time at which the
stochastic process 𝑌(𝑡) exits the solvency set S. Similar
optimal control problems in which the terminal time is
governed by a stopping criterion are considered in [19–21] in
the deterministic case.

Let 𝑓
𝑖
: R𝑘 × 𝐾 → R and 𝑔

𝑖
: R𝑘 → R be given

functions, for 𝑖 = 1, 2. Let A be a family of admissible
controls, contained in the set of 𝑢(⋅) such that (9) has a unique
strong solution and

𝐸
𝑦
[∫

𝜏S

0

𝑓𝑖 (𝑌𝑡, 𝑢𝑡)
 𝑑𝑡] < ∞, 𝑖 = 1, 2 (11)

for all 𝑦 ∈ S, where 𝐸𝑦 denotes expectation given that𝑌(0) =
𝑦 ∈ R𝑘. Denote by Γ the set of all stopping times 𝜏 ≤ 𝜏S.
Moreover, we assume that

the family {𝑔
−

𝑖
(𝑌
𝜏
) ; 𝜏 ∈ Γ} is uniformly integrable,

for 𝑖 = 1, 2.

(12)

Then for 𝑢 ∈ A and 𝜏 ∈ Γ we define the performance
functionals as follows:

J
𝑦

𝑖
(𝑢, 𝜏) = 𝐸

𝑦
[∫

𝜏

0

𝑓
𝑖
(𝑌 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡 + 𝑔

𝑖
(𝑌 (𝜏))] ,

𝑖 = 1, 2.

(13)

We interpret 𝑔
𝑖
(𝑌(𝜏)) as 0 if 𝜏 = ∞. We may regardJ

𝑦

1
(𝑢, 𝜏)

as the payoff to the controller who controls 𝑢 andJ𝑦
2
(𝑢, 𝜏) as

the payoff to the stopper who decides 𝜏.

Definition 2 (nash equilibrium). A pair (𝑢∗, 𝜏∗) ∈ A × Γ is
called a Nash equilibrium for the stochastic differential game
(9) and (13), if the following holds:

J
𝑦

1
(𝑢
∗
, 𝜏
∗
) ≥ J

𝑦

1
(𝑢, 𝜏
∗
) , ∀𝑢 ∈ U, 𝑦 ∈ S, (14)

J
𝑦

2
(𝑢
∗
, 𝜏
∗
) ≥ J

𝑦

2
(𝑢
∗
, 𝜏) , ∀𝜏 ∈ Γ, 𝑦 ∈ S. (15)

Condition (14) states that if the stopper chooses 𝜏∗, it is
optimal for the controller to use the control 𝑢∗. Similarly,
condition (15) states that if the controller uses 𝑢∗, it is optimal
for the stopper to decide 𝜏∗. Thus, (𝑢∗, 𝜏∗) is an equilibrium
point in the sense that there is no reason for each individual
player to deviate from it, as long as the other player does not.

We restrict ourselves to Markov controls; that is, we
assume that 𝑢

0
(𝑡) = �̃�

0
(𝑌(𝑡)), 𝑢

1
(𝑡, 𝑧) = �̃�

1
(𝑌(𝑡), 𝑧). As

customary we do not distinguish between 𝑢
0
and �̃�

0
, 𝑢
1
and

�̃�
1
. Then the controls 𝑢

0
and 𝑢

1
can simply be identified with

functions �̃�
0
(𝑦) and �̃�

1
(𝑦, 𝑧), where 𝑦 ∈ S and 𝑧 ∈ R𝑘.

When the control 𝑢 is Markovian, the corresponding
process 𝑌(𝑢)(𝑡) becomes a Markov process with the generator
𝐴
𝑢 of 𝜙 ∈ 𝐶2(R𝑘) given by

𝐴𝜙 (𝑦) =

𝑘

∑

𝑖=1

𝛼
𝑖
(𝑦, 𝑢
0
(𝑦))

𝜕𝜙

𝜕𝑦
𝑖

(𝑦)

+
1

2

𝑘

∑

𝑖,𝑗=1

(𝛽𝛽
𝑇
)
𝑖,𝑗
(𝑦, 𝑢
0
(𝑦))

𝜕
2
𝜙

𝜕𝑦
𝑖
𝜕𝑦
𝑗

(𝑦)

+

𝑘

∑

𝑗=1

∫
R

{𝜙 (𝑦 + 𝜃
𝑗
(𝑦, 𝑢
1
(𝑦, 𝑧) , 𝑧)) − 𝜙 (𝑦)

−∇𝜙 (𝑦) 𝜃
𝑗
(𝑦, 𝑢
1
(𝑦, 𝑧) , 𝑧) } ] (𝑑𝑧) ,

(16)

where ∇𝜙 = (𝜕𝜙/𝜕𝑦
1
, . . . , 𝜕𝜙/𝜕𝑦

𝑘
) is the gradient of 𝜙, and 𝜃𝑗

is the 𝑗th column of the 𝑘 × 𝑘matrix 𝜃.
Now we can state the main result of this section.

Theorem 3 (verification theorem for game (9) and (13)).
Suppose there exist two functions 𝜙

𝑖
: S → R; 𝑖 = 1, 2 such

that

(i) 𝜙
𝑖
∈ 𝐶
1
(S0)⋂𝐶(S), 𝑖 = 1, 2, whereS is the closure of

S and S0 is the interior of S;
(ii) 𝜙
𝑖
≥ 𝑔
𝑖
on S, 𝑖 = 1, 2.

Define the following continuation regions:

𝐷
𝑖
= {𝑦 ∈ S; 𝜙

𝑖
(𝑦) > 𝑔

𝑖
(𝑦)} , 𝑖 = 1, 2. (17)

Suppose 𝑌(𝑡) = 𝑌
𝑢
(𝑡) spends 0 time on 𝜕𝐷

𝑖
a.s., 𝑖 =

1, 2, that is,
(iii) 𝐸𝑦[∫𝜏𝑆

0
𝜒
𝜕𝐷𝑖
(𝑌(𝑡))𝑑𝑡] = 0 for all 𝑦 ∈ S, 𝑢 ∈ U, 𝑖 = 1, 2,

(iv) 𝜕𝐷
𝑖
is a Lipschitz surface, 𝑖 = 1, 2,

(v) 𝜙
𝑖
∈ 𝐶
2
(S\𝜕𝐷

𝑖
).The second-order derivatives of 𝜙

𝑖
are

locally bounded near 𝜕𝐷
𝑖
, respectively, 𝑖 = 1, 2,

(vi) 𝐷
1
= 𝐷
2
:= 𝐷,

(vii) there exists �̂� ∈ A such that, for 𝑖 = 1, 2,

𝐴
�̂�
𝜙
𝑖
(𝑦) + 𝑓

𝑖
(𝑦, �̂� (𝑦))

= sup
𝑢∈A

{𝐴
𝑢
𝜙
𝑖
(𝑦) + 𝑓

𝑖
(𝑦, 𝑢 (𝑦))} {

= 0, 𝑦 ∈ 𝐷,

≤ 0, 𝑦 ∈ S \ 𝐷,

(18)

(viii) 𝐸𝑦[|𝜙
𝑖
(𝑌
𝜏
)| + ∫
𝜏

0
|𝐴
𝑢
𝜙
𝑖
(𝑌
𝑢
(𝑡))|𝑑𝑡] < ∞; 𝑖 = 1, 2, for all

𝑢 ∈ U, 𝜏 ∈ Γ.
For 𝑢 ∈ A define

𝜏
𝐷
= 𝜏
𝑢

𝐷
= inf {𝑡 > 0; 𝑌

𝑢
(𝑡) ∉ 𝐷} < ∞, (19)

and, in particular,

𝜏
𝐷
= 𝜏
�̂�

𝐷
= inf {𝑡 > 0; 𝑌

�̂�
(𝑡) ∉ 𝐷} < ∞. (20)
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Suppose that
(ix) the family {𝜙

𝑖
(𝑌(𝜏)); 𝜏 ∈ Γ, 𝜏 ≤ 𝜏

𝐷
} is uniformly

integrable, for all 𝑢 ∈ A and 𝑦 ∈ S, 𝑖 = 1, 2.

Then (𝜏
𝐷
, �̂�) ∈ Γ ×A is a Nash equilibrium for game (9), (13),

and

𝜙
1
(𝑦) = sup

𝑢∈A

J
𝑢,𝜏𝐷

1
(𝑦) = J

�̂�,𝜏𝐷

1
(𝑦) , (21)

𝜙
2
(𝑦) = sup

𝜏∈Γ

J
�̂�,𝜏

2
(𝑦) = J

�̂�,𝜏𝐷

2
(𝑦) . (22)

Proof. From (i), (iv), and (v) we may assume by an approx-
imation theorem (see Theorem 2.1 in [18]) that 𝜙

𝑖
∈ 𝐶
2
(S),

𝑖 = 1, 2.
For a given 𝑢 ∈ A, we define, with 𝑌(𝑡) = 𝑌

𝑢
(𝑡),

𝜏
𝐷
= 𝜏
𝑢

𝐷
= inf {𝑡 > 0; 𝑌

𝑢
(𝑡) ∉ 𝐷} . (23)

In particular, let �̂� be as in (vii). Then,

𝜏
𝐷
= 𝜏
�̂�

𝐷
= inf {𝑡 > 0; 𝑌

�̂�
(𝑡) ∉ 𝐷} . (24)

We first prove that (21) holds. Let 𝜏
𝐷
∈ Γ be as in (24). For

arbitrary 𝑢 ∈ A, by (vii) and the Dynkin’s formula for jump
diffusion (see Theorem 1.24 in [18]) we have

𝜙
1
(𝑦) = 𝐸

𝑦
[∫

𝜏𝐷∧𝑚

0

−𝐴
𝑢
𝜙
1
(𝑌 (𝑡)) 𝑑𝑡 + 𝜙

1
(𝑌 (𝜏
𝐷
∧ 𝑚))]

≥ 𝐸
𝑦
[∫

𝜏𝐷∧𝑚

0

𝑓
1
(𝑌 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡 + 𝜙

1
(𝑌 (𝜏
𝐷
∧ 𝑚))] ,

(25)

where𝑚 = 1, 2, . . .. Therefore, by (11), (12), (i), (ii), (viii), and
the Fatou lemma,

𝜙
1
(𝑦)

≥ lim inf
𝑚→∞

𝐸
𝑦
[∫

𝜏𝐷∧𝑚

0

𝑓
1
(𝑌 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡+𝜙

1
(𝑌 (𝜏
𝐷
∧ 𝑚))]

≥ 𝐸
𝑦
[∫

𝜏𝐷

0

𝑓
1
(𝑌 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡 + 𝑔

1
(𝑌 (𝜏
𝐷
))]

= J
𝑦

1
(𝑢, 𝜏
𝐷
) .

(26)

Since this holds for all 𝑢 ∈ A, we have

𝜙
1
(𝑦) ≥ sup

𝑢∈A

J
𝑦

1
(𝑢, 𝜏
𝐷
) . (27)

In particular, applying the Dynkin’s formula to 𝑢 = �̂� we get
an equality, that is,

𝜙
1
(𝑦) = 𝐸

𝑦
[∫

𝜏𝐷∧𝑚

0

−𝐴
�̂�
𝜙
1
(�̂� (𝑡)) 𝑑𝑡 + 𝜙

1
(�̂� (𝜏
𝐷
∧ 𝑚))]

= 𝐸
𝑦
[∫

𝜏𝐷∧𝑚

0

𝑓
1
(�̂� (𝑡) , �̂� (𝑡)) 𝑑𝑡 + 𝜙

1
(�̂� (𝜏
𝐷
∧ 𝑚))] ,

(28)

where �̂�(𝑡) = 𝑌
�̂�
(𝑡) and𝑚 = 1, 2, . . .. Hence we deduce that

𝜙
1
(𝑦) = J

𝑦

1
(�̂�, 𝜏
𝐷
) . (29)

Since we always have

J
𝑦

1
(�̂�, 𝜏
𝐷
) ≤ sup
𝑢∈A

J
𝑦

1
(𝑢, 𝜏
𝐷
) , (30)

we conclude by combining (27), (29), and (30) that

𝜙
1
(𝑦) = J

𝑦

1
(�̂�, 𝜏
𝐷
) = sup
𝑢∈A

J
𝑦

1
(𝑢, 𝜏
𝐷
) , (31)

which is (21).
Next we prove that (22) holds. Let �̂� ∈ A be as in (vii).

For 𝜏 ∈ Γ, by the Dynkin’s formula and (vii), we have

𝐸
𝑦
[𝜙
2
(�̂� (𝜏
𝑚
))] = 𝜙

2
(𝑦) + 𝐸

𝑦
[∫

𝜏𝑚

0

𝐴
�̂�
𝜙
2
(�̂� (𝑡)) 𝑑𝑡]

≤ 𝜙
2
(𝑦) − 𝐸

𝑦
[∫

𝜏𝑚

0

𝑓
2
(�̂� (𝑡) , �̂� (𝑡)) 𝑑𝑡] ,

(32)

where 𝜏
𝑚
= 𝜏 ∧ 𝑚;𝑚 = 1, 2, . . ..

Letting𝑚 → ∞ gives, by (11), (12), (i), (ii), (viii), and the
Fatou Lemma,

𝜙
2
(𝑦) ≥ lim inf

𝑚→∞
𝐸
𝑦
[∫

𝜏∧𝑚

0

𝑓
2
(�̂� (𝑡) , �̂� (𝑡)) 𝑑𝑡 + 𝜙

2
(�̂� (𝜏
𝑚
))]

≥ 𝐸
𝑦
[∫

𝜏

0

𝑓
2
(�̂� (𝑡) , �̂� (𝑡)) 𝑑𝑡 + 𝑔

2
(�̂� (𝜏)) 𝜒

{𝜏<∞}
]

= J
𝑦

2
(�̂�, 𝜏) .

(33)

The inequality (33) holds for all 𝜏 ∈ Γ. Then we have

𝜙
2
(𝑦) ≥ sup

𝜏∈Γ

J
𝑦

2
(�̂�, 𝜏) . (34)

Similarly, applying the above argument to the pair (�̂�, 𝜏
𝐷
) we

get an equality in (34), that is,

𝜙
2
(𝑦) = J

𝑦

2
(�̂�, 𝜏
𝐷
) . (35)

We always have

J
𝑦

2
(�̂�, 𝜏
𝐷
) ≤ sup
𝜏∈Γ

J
𝑦

2
(�̂�, 𝜏) . (36)

Therefore, combining (34), (35), and (36) we get

𝜙
2
(𝑦) = J

𝑦

2
(�̂�, 𝜏
𝐷
) = sup
𝜏∈Γ

J
𝑦

2
(�̂�, 𝜏) , (37)

which is (22). The proof is completed.
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3. An Example

In this section we come back to Example 1 and useTheorem 3
to study the solutions of game (4) and (8). Here and in the
following, all the processes are assumed to be one-dimension
for simplicity.

To put game (4) and (8) into the framework of Section 2,
we define the process 𝑌(𝑡) = (𝑌

0
(𝑡), 𝑌
1
(𝑡)); 𝑌(0) = 𝑦 = (𝑠, 𝑦

1
)

by

𝑑𝑌
0
(𝑡) = 𝑑𝑡, 𝑌

0
(0) = 𝑠 ∈ R,

𝑑𝑌
1
(𝑡) = 𝑑𝑋 (𝑡)

= 𝑌
1
(𝑡) { [(1 − 𝑢 (𝑡)) 𝑟 (𝑡) + 𝑢 (𝑡) 𝑏 (𝑡)] 𝑑𝑡

+ 𝑢 (𝑡) 𝜎 (𝑡) 𝑑𝐵 (𝑡)

+𝑢 (𝑡−) ∫
R

𝛾 (𝑡, 𝑧) �̃� (𝑑𝑡, 𝑑𝑧)} ,

𝑌
1
(0) = 𝑥 = 𝑦

1
.

(38)

Then the performance functionals to the controller (6) and
the stopper (7) can be formulated as follows:

J
𝑦

1
(𝑢, 𝜏) = 𝐸

𝑠,𝑦1 [𝑒
−𝛿(𝑠+𝜏)

𝑈
1
(𝐶 (𝑌
1
(𝜏)))

−∫

𝜏

0

𝑒
−𝛿(𝑠+𝑡)

ℎ (𝑌
0
(𝑡) , 𝑌
1
(𝑡) , 𝑢 (𝑡)) 𝑑𝑡] ,

J
𝑦

2
(𝑢, 𝜏) = 𝐸

𝑠,𝑦1 [𝑒
−𝛿(𝑠+𝜏)

𝑈
2
(𝑌
1
(𝜏) − 𝐶 (𝑌

1
(𝜏)))] .

(39)

In this case the generator 𝐴𝑢 in (16) has the form

𝐴
𝑢
𝜙 (𝑠, 𝑥)

=
𝜕𝜙

𝜕𝑠
+ [(1 − 𝑢) 𝑟𝑥 + 𝑢𝑏𝑥]

𝜕𝜙

𝜕𝑥
+
1

2
𝑥
2
𝑢
2
𝜎
2 𝜕
2
𝜙

𝜕𝑥2

+ ∫
R0

{𝜙 (𝑠, 𝑥 + 𝑥𝑢𝛾 (𝑧)) − 𝜙 (𝑠, 𝑥) − 𝑥𝑢𝛾 (𝑧)
𝜕𝜙

𝜕𝑥
}

× ] (𝑑𝑧) .

(40)

To obtain a possible Nash equilibrium (�̂�, 𝜏) ∈ A × Γ for
game (4) and (8), according to Theorem 3, it is necessary to
find a subset 𝐷 of S = R2

+
:= [0,∞)

2 and 𝜙
𝑖
(𝑠, 𝑥); 𝑖 = 1, 2,

such that

(i) 𝜙
1
(𝑠, 𝑥) = 𝑒

−𝛿𝑠
𝑈
1
(𝐶(𝑥)) and 𝜙

2
(𝑠, 𝑥) = 𝑒

−𝛿𝑠
𝑈
2
(𝑥 −

𝐶(𝑥)), for all (𝑠, 𝑥) ∈ 𝐷;
(ii) 𝜙
1
(𝑠, 𝑥) ≥ 𝑒

−𝛿𝑠
𝑈
1
(𝐶(𝑥)) and 𝜙

2
(𝑠, 𝑥) ≥ 𝑒

−𝛿𝑠
𝑈
2
(𝑥 −

𝐶(𝑥)), for all (𝑠, 𝑥) ∈ S;
(iii) 𝐴𝑢𝜙

1
(𝑠, 𝑥) − ℎ(𝑠, 𝑥, 𝑢) ≤ 0 and 𝐴𝑢𝜙

2
(𝑠, 𝑥) ≤ 0, for all

(𝑠, 𝑥) ∈ S \ 𝐷 and 𝑢;
(iv) there exists �̂� such that 𝐴�̂�𝜙

1
(𝑠, 𝑥) − ℎ(𝑠, 𝑥, �̂�) =

𝐴
�̂�
𝜙
2
(𝑠, 𝑥) = 0, for all (𝑠, 𝑥) ∈ 𝐷.

Imposing the first-order condition on 𝐴
𝑢
𝜙
1
(𝑠, 𝑥) −

ℎ(𝑠, 𝑥, 𝑢) and 𝐴𝑢𝜙
2
(𝑠, 𝑥), we get the following equations for

the optimal control processes �̂�:

(𝑏𝑥 − 𝑟𝑥)
𝜕𝜙
1

𝜕𝑥
(𝑠, 𝑥) + 𝑥

2
𝜎
2
�̂�
𝜕
2
𝜙
1

𝜕𝑥2
(𝑠, 𝑥)

+ ∫
R

𝑟𝛾 (𝑧) [
𝜕𝜙
1

𝜕𝑥
(𝑠, 𝑥 + 𝑟�̂�𝛾 (𝑧)) −

𝜕𝜙
1

𝜕𝑥
(𝑠, 𝑥)]

−
𝜕ℎ

𝜕𝑢
(𝑠, 𝑥, �̂�) = 0,

(𝑏𝑥 − 𝑟𝑥)
𝜕𝜙
2

𝜕𝑥
(𝑠, 𝑥) + 𝑥

2
𝜎
2
�̂�
𝜕
2
𝜙
2

𝜕𝑥2
(𝑠, 𝑥)

+ ∫
R

𝑟𝛾 (𝑧) [
𝜕𝜙
2

𝜕𝑥
(𝑠, 𝑥 + 𝑟�̂�𝛾 (𝑧)) −

𝜕𝜙
2

𝜕𝑥
(𝑠, 𝑥)] = 0.

(41)

With �̂� as in (41), we put

𝐴
�̂�
𝜙
𝑖
(𝑠, 𝑥)

=
𝜕𝜙
𝑖

𝜕𝑠
+ [(1 − �̂�) 𝑟𝑥 + �̂�𝑏𝑥]

𝜕𝜙
𝑖

𝜕𝑥
+
1

2
𝑥
2
�̂�
2
𝜎
2 𝜕
2
𝜙
𝑖

𝜕𝑥2

+ ∫
R0

{𝜙
𝑖
(𝑠, 𝑥 + 𝑥�̂�𝛾 (𝑧)) − 𝜙

𝑖
(𝑠, 𝑥) − 𝑥�̂�𝛾 (𝑧)

𝜕𝜙
𝑖

𝜕𝑥
}

× ] (𝑑𝑧) .

(42)

Thus, we may reduce game (4) and (8) to the problem of
solving a family of nonlinear variational-integro inequalities.
We summarize as follows.

Theorem 4. Suppose there exist �̂� satisfying (41) and two 𝐶1-
functions 𝜙

𝑖
; 𝑖 = 1, 2 such that

(1)

𝐷 = {(𝑠, 𝑥) : 𝜙
2
(𝑠, 𝑥) > 𝑒

−𝛿𝑠
𝑈
2
(𝑥 − 𝐶 (𝑥))}

= {(𝑠, 𝑥) : 𝜙
1
(𝑠, 𝑥) > 𝑒

−𝛿𝑠
𝑈
1
(𝐶 (𝑥))} ;

(43)

(2) 𝜙
𝑖
∈ 𝐶
2
(𝐷), 𝑖 = 1, 2;

(3) 𝜙
2
(𝑠, 𝑥) = 𝑒

−𝛿𝑠
𝑈
2
(𝑥 − 𝐶(𝑥)) and 𝜙

1
(𝑠, 𝑥) =

𝑒
−𝛿𝑠
𝑈
1
(𝐶(𝑥)) for all (𝑠, 𝑥) ∈ S \ 𝐷;

(4) 𝐴𝑢𝜙
1
(𝑠, 𝑥) − ℎ(𝑠, 𝑥, 𝑢) ≤ 0 and 𝐴𝑢𝜙

2
(𝑠, 𝑥) ≤ 0 for all

(𝑠, 𝑥) ∈ S \ 𝐷 and for all 𝑢 ∈ A;
(5) 𝐴�̂�𝜙

1
(𝑠, 𝑥) − ℎ(𝑠, 𝑥, �̂�) = 0 for all (𝑠, 𝑥) ∈ 𝐷, where

𝐴
�̂�
𝜙
1
is given by (42);

(6) 𝐴�̂�𝜙
2
(𝑠, 𝑥) = 0 for all (𝑠, 𝑥) ∈ 𝐷, where 𝐴�̂�𝜙

2
is given

by (42).

Then the pair (�̂�, 𝜏) is a Nash equilibrium of the stochastic
differential game (4) and (8), where

𝜏 = inf {𝑡 > 0; 𝑌
�̂�
(𝑡) ∉ 𝐷} . (44)
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Moreover, the corresponding equilibrium performances are

𝜙
1
(𝑠, 𝑥) = J

(𝑠,𝑥)

1
(�̂�, 𝜏) ,

𝜙
2
(𝑠, 𝑥) = J

(𝑠,𝑥)

2
(�̂�, 𝜏) .

(45)

In this paper we will not discuss general solutions of this
family of nonlinear variational-integro inequalities. Instead
we discuss a solution in special case when

𝛾 (𝑡, 𝑧) = 0, ℎ (𝑠, 𝑥, 𝑢) =
𝑢
2

2
. (46)

Let us try the functions 𝜙
𝑖
, 𝑖 = 1, 2, of the form

𝜙
𝑖
(𝑠, 𝑥) = 𝑒

−𝛿𝑠
𝜓
𝑖
(𝑥) , (47)

and a continuation region𝐷 of the form

𝐷 = {(𝑠, 𝑥) ; 𝑥 < 𝑥
0
} for some 𝑥

0
> 0. (48)

Then we have

𝐴
𝑢
𝜙
𝑖
(𝑠, 𝑥) = 𝑒

−𝛿𝑠
𝐴
𝑢
𝜓
𝑖
(𝑥) , (49)

where
𝐴
𝑢
𝜓
𝑖
(𝑥) = − 𝛿𝜓

𝑖
(𝑥) + [(1 − 𝑢) 𝑟𝑥 + 𝑢𝑏𝑥] 𝜓



𝑖
(𝑥)

+
1

2
𝑥
2
𝑢
2
𝜎
2
𝜓


𝑖
(𝑥) .

(50)

By conditions (1) and (3) in Theorem 4, we get

𝜓
1
(𝑥) = 𝑈

1
(𝐶 (𝑥)) , 𝑥 ≥ 𝑥

0
,

𝜓
1
(𝑥) > 𝑈

1
(𝐶 (𝑥)) , 0 < 𝑥 < 𝑥

0
,

𝜓
2
(𝑥) = 𝑈

2
(𝑥 − 𝐶 (𝑥)) , 𝑥 ≥ 𝑥

0
,

𝜓
2
(𝑥) > 𝑈

2
(𝑥 − 𝐶 (𝑥)) , 0 < 𝑥 < 𝑥

0
.

(51)

From conditions (4), (5), and (6) ofTheorem 4, we get the
candidate �̂� for the optimal control as follows:

�̂� = Argmax
𝑢∈A

{𝐴
𝑢
𝜓
1
(𝑥) −

𝑢
2

2
}

= Argmax
𝑢∈A

{ − 𝛿𝜓
1
(𝑥) + [(1 − 𝑢) 𝑟𝑥 + 𝑢𝑏𝑥] 𝜓



1
(𝑥)

+
1

2
𝑥
2
𝑢
2
𝜎
2
𝜓


1
(𝑥) −

𝑢
2

2
}

=
(𝑏𝑥 − 𝑟𝑥) 𝜓



1
(𝑥)

1 − 𝑥2𝜎2𝜓


1
(𝑥)

,

(52)

�̂� = Argmax
𝑢∈A

{𝐴
𝑢
𝜓
2
(𝑥)}

= Argmax
𝑢∈A

{ − 𝛿𝜓
2
(𝑥) + [(1 − 𝑢) 𝑟𝑥 + 𝑢𝑏𝑥] 𝜓



2
(𝑥)

+
1

2
𝑥
2
𝑢
2
𝜎
2
𝜓


2
(𝑥)}

=
− (𝑏𝑥 − 𝑟𝑥) 𝜓



2
(𝑥)

𝑥2𝜎2𝜓


2
(𝑥)

.

(53)

Let𝜓
𝑖
(𝑥) = �̃�

𝑖
(𝑥) on 0 < 𝑥 < 𝑥

0
, 𝑖 = 1, 2. By condition (5)

in Theorem 4, we have 𝐴�̂��̃�
1
(𝑥) − �̂�

2
/2 = 0 for 0 < 𝑥 < 𝑥

0
.

Substituting (52) into 𝐴𝑢�̃�
1
(𝑥) − 𝑢

2
/2 = 0, we obtain

− 𝛿�̃�
1
(𝑥) + [𝑟𝑥 +

(𝑏𝑥 − 𝑟𝑥)
2
�̃�


1
(𝑥)

1 − 𝑥2𝜎2�̃�


1
(𝑥)

] �̃�


1
(𝑥)

+

[(𝑏𝑥 − 𝑟𝑥) �̃�


1
(𝑥)]
2

2(1 − 𝑥2𝜎2�̃�


1
(𝑥))
2
[𝑥
2
𝜎
2
�̃�


1
(𝑥) − 1] = 0.

(54)

Similarly, we obtain𝐴�̂��̃�
2
(𝑥) = 0 for 0 < 𝑥 < 𝑥

0
by condition

(6) in Theorem 4. And we substitute (53) in 𝐴𝑢�̃�
2
(𝑥) = 0 to

get

− 𝛿�̃�
2
(𝑥) + 𝑟𝑥�̃�



2
(𝑥) +

[(𝑏𝑥 − 𝑟𝑥) �̃�


2
(𝑥)]
2

1 − 𝑥2𝜎2�̃�


2
(𝑥)

+

[𝑥𝜎 (𝑏𝑥 − 𝑟𝑥) �̃�


2
(𝑥)]
2

�̃�


2
(𝑥)

2(1 − 𝑥2𝜎2�̃�


2
(𝑥))
2

= 0.

(55)

Therefore, we conclude that

𝜓
1
(𝑥) = {

𝑈
1
(𝐶 (𝑥)) , 𝑥 ≥ 𝑥

0
,

�̃�
1
(𝑥) , 0 < 𝑥 < 𝑥

0
,

(56)

𝜓
2
(𝑥) = {

𝑈
2
(𝑥 − 𝐶 (𝑥)) , 𝑥 ≥ 𝑥

0
,

�̃�
2
(𝑥) , 0 < 𝑥 < 𝑥

0
,

(57)

where �̃�
1
(𝑥) and �̃�

2
(𝑥) are the solutions of (56) and (57),

respectively.
According to Theorem 4, we use the continuity and

differentiability of 𝜓
𝑖
at 𝑥 = 𝑥

0
to determine 𝑥

0
, 𝑖 = 1, 2, that

is,

𝜓
1
(𝑥
0
) = 𝑈
1
(𝐶 (𝑥
0
)) ,

𝜓


1
(𝑥
0
) = 𝑈



1
(𝐶 (𝑥
0
)) 𝐶

(𝑥
0
) ,

𝜓
2
(𝑥
0
) = 𝑈
2
(𝑥
0
− 𝐶 (𝑥

0
)) ,

𝜓


2
(𝑥
0
) = 𝑈



2
(𝑥
0
− 𝐶 (𝑥

0
)) (1 − 𝐶


(𝑥
0
)) .

(58)

At the end of this section, we summarize the above results
in the following theorem.

Theorem 5. Let 𝜓
𝑖
, 𝑖 = 1, 2 and let 𝑥

0
be the solutions of

equations (56)–(58). Then the pair (�̂�, 𝜏) given by

�̂� =
(𝑏𝑥 − 𝑟𝑥) 𝜓



1
(𝑥)

1 − 𝑥2𝜎2𝜓


1
(𝑥)

=
− (𝑏𝑥 − 𝑟𝑥) 𝜓



2
(𝑥)

𝑥2𝜎2𝜓


2
(𝑥)

,

𝜏 = inf {𝑡 > 0; 𝑥 ≥ 𝑥
0
}

(59)

is a Nash equilibrium of game (4) and (8). The corresponding
equilibrium performances are

𝜙
𝑖
(𝑠, 𝑥) = 𝑒

−𝛿𝑠
𝜓
𝑖
(𝑥) , 𝑖 = 1, 2. (60)
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4. Conclusion

A verification theorem is obtained for the general stochastic
differential game between a controller and a stopper. In
the special case of quadratic cost, we use this theorem to
characterize the Nash equilibrium. However, the question of
the existence and uniqueness of Nash equilibrium for the
game remains open. It will be considered in our subsequent
work.
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