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Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH), for global optimization. To
enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd
(SKH)method is proposed for optimization tasks. A new krill selecting (KS) operator is used to refine krill behavior when updating
krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator
involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing
(SA). In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating.
The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that,
in most cases, the performance of this improved meta-heuristic SKHmethod is superior to, or at least highly competitive with, the
standard KH and other optimization methods.

1. Introduction

In management science, mathematics, and economics, the
process of optimization is the selection of the best solution
from some set of feasible alternatives. More generally, opti-
mization consists of finding the optimal values of some objec-
tive function within a given domain. In general, a great many
optimization techniques have been developed and applied to
solve optimization problems [1]. A general classification way
for these optimization techniques is considering the nature
of these techniques, and these optimization techniques can
be categorized into two main groups: deterministic methods
and modern intelligent algorithms. Deterministic methods
using gradient such as hill climbing follow a rigorous step
and will repeat the process of optimization if the iterations
start with the same initial starting point. Eventually, they will
reach the same set of solutions. On the other hand, modern

intelligent algorithms without adopting gradient always have
some randomness, and the process of optimization cannot
be repeatable even with the same initial value. However,
generally, the final solutions, though slightly different, will
arrive at the same optimal values within a given accuracy
[2]. The growth of stochastic optimization methods as a
blessing from the mathematical and computing theorem has
opened up a new facet to complete the optimization of a func-
tion. Recently, nature-inspired metaheuristic methods per-
form efficiently and effectively in solving modern nonlinear
numerical global optimization problems. To some extent, all
metaheuristic methods make an attempt at making balance
between diversification (global search) and intensification
(local search) [2, 3].

Inspired by nature, these strong metaheuristic methods
have ever been applied to solve a variety of complicated
problems, such as task-resource assignment [4], constrained
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optimization [5], test-sheet composition [6], and water, geo-
technical, and transport engineering [7, 8]. All the problems
that need to find extreme value could be solved by these
optimizationmethods.These types of metaheuristicmethods
use a population of solutions and always obtain optimal or
suboptimal solutions. During the 1960s and 1970s, computer
researchers investigated the possibility of formulating evolu-
tion as an optimizationmethod and this eventually generated
a subset of gradient-free methods, namely genetic algorithms
(GAs) [2, 9]. In the last twenty years, a great number of classi-
cal optimization techniques have been developed on function
optimization, such as bat algorithm (BA) [10], bacterial
foraging optimization [11], biogeography-based optimization
(BBO) [12–14], modified Lagrangian method [15], artificial
plant optimization algorithm (APOA) [16], artificial physics
optimization [17], differential evolution (DE) [18, 19], genetic
programming [20], particle swarm optimization (PSO) [21–
25], cuckoo search (CS) [26], and,more recently, the krill herd
(KH) method [27] that is inspired by the herding behavior of
krill individuals in nature [2].

Firstly presented by Gandomi and Alavi in 2012, based on
the simulation of the herding behavior of krill individuals,
KH algorithm is a novel metaheuristic search approach for
optimizing possibly nondifferentiable and nonlinear func-
tions in continuous space [2, 27]. In KH, the objective func-
tion for the krill motion is manly influenced by theminimum
distances of each krill individual from food and from highest
density of the herd. The position of the krill consists of three
main motions: (i) foraging motion, (ii) movement led by
other individuals, and (iii) random physical diffusion. KH
algorithm does not need derivative information, because it
uses a stochastic search instead of a gradient search used in
deterministic methods. Furthermore, comparing with other
metaheuristic approaches, this new method requires few
control parameters, in effect, only a single parameterΔt (time
interval), to adjust, which makes KH implement simply and
easily, and is well fitted for parallel computation [2].

KH is an efficient algorithm in exploration but at times
it may trap into some local best values so that it cannot
search globally well [2]. For KH, the search only relies on
randomwalks, so there is no guarantee for a fast convergence
[2]. To improve KH for solving complicated optimization
problems, a few techniques have been introduced into the
standard KH method [2, 28], which increase the diversity of
population and greatly enhance the performance of the basic
KH method.

On the other hand, inspired by the annealing process,
simulated annealing (SA) algorithm [29] is a probabilis-
tic meta-heuristic search method. Differently form most
intelligent algorithm, SA is a trajectory-based optimization
technique [30].

Firstly presented here, a novelmetaheuristic SKHmethod
based onKH and SA is originally proposed in this paper, with
the aim of accelerating convergence speed, thus making the
approach more feasible for a wider range of practical appli-
cations without losing the attractive merits of the canonical
KH approach. In SKH, firstly, we use a standard KH method
to select a good candidate solution set. And then, a new
krill selecting (KS) operator is introduced into the basic KH

method.The introducedKS operator involves greedy strategy
and accepting a not-so-good solution with a low probability
originally used in simulated annealing (SA) [3]. This greedy
strategy is applied to decide whether a good candidate solu-
tion is accepted so as to improve its efficiency and reliability
for solving global numerical optimization problem. Further-
more, to improve the exploration of KH and evade premature
convergence, the concept of acceptance probabilities in KS
operator is introduced into the method through accepting
a not-so-good solution with a low probability in place of
previous solution in order to enhance the adversity of the
population. Fourteen standard benchmark functions, which
have ever been applied to verify optimization algorithms in
continuous optimization problems, are used to evaluate our
proposed method. Experimental results show that the SKH
performsmore efficiently and accurately than basicKH,ABC,
BA, CS, DE, ES, GA, HS, KH, PBIL, PSO, and SA.

The structure of this paper is organized as follows.
Section 2 gives a brief description of basic KH and SA
algorithms. Our proposed SKHmethod is described in detail
in Section 3. Subsequently, comparing with ABC, BA, CS,
DE, ES, GA, HS, KH, PBIL, PSO, and SA, the merits of our
method are verified by 14 benchmark functions in Section 4.
Finally, Section 5 provides the conclusion and proposals for
future work.

2. Preliminary

At first, in this section we will provide a background on the
krill herd and simulated annealing algorithm in brief.

2.1. Krill Herd Algorithm. Krill herd (KH) [2, 27] is a novel
metaheuristic search method for optimization tasks, which
mimics the herding of the krill swarms in response to specific
biological and environmental processes. The position of an
individual krill in search space is mainly influenced by three
motions described as follows [2]:

(i) foraging action,
(ii) movement influenced by other krill individuals,
(iii) physical diffusion.
In KH method, the following Lagrangian model in a

𝑑-dimensional decision space is used as shown in the follow-
ing:

𝑑𝑋
𝑖

𝑑𝑡
= 𝐹
𝑖
+ 𝑁
𝑖
+ 𝐷
𝑖
, (1)

where 𝐹
𝑖
, 𝑁
𝑖
, and 𝐷

𝑖
are the foraging motion, the motion

induced by other krill individuals, and the random physical
diffusion of the krill i [27].

The foraging motion includes two components that are
the current food location and the previous experience about
the food location. For the krill i, this motion can be formu-
lated as follows [2]:
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(3)
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and 𝑉
𝑓
is the foraging speed, 𝜔

𝑓
is the inertia weight of the

foraging motion in (0, 1), and 𝐹old
𝑖

is the last foraging motion.
𝛽
food
𝑖

is the food attractive and 𝛽best
𝑖

is the effect of the best
fitness of the 𝑖th krill so far [2, 27].

In movement induced by other krill, the direction of
motion induced, 𝛼

𝑖
, is approximately calculated by the fol-

lowing three factors: local effect (a local swarm density),
target effect (the target swarm density), and repulsive effect
(a repulsive swarm density). For a krill, this movement can
be expressed as follows [2, 27]:

𝑁
new
𝑖

= 𝑁
max

𝛼
𝑖
+ 𝜔
𝑛
𝑁

old
𝑖

(4)

and 𝑁max is the maximum induced speed, 𝜔
𝑛
is the inertia

weight of the motion induced in [0, 1], and 𝑁old
𝑖

is the last
motion induced [2].

For the krill individuals, the physical diffusion can be
looked on as a random process. This motion can be decided
by a maximum diffusion speed and a random directional
vector. It can be provided as follows [2]:

𝐷
𝑖
= 𝐷

max
𝛿, (5)

where 𝐷max is the maximum diffusion speed, and 𝛿 is the
randomdirectional vector whose values are randomnumbers
in [−1, 1] [2].

Based on the three previously mentioned movements,
using different parameters of the motion during the time,
the position of the 𝑖th krill during the interval 𝑡 to 𝑡 + Δ𝑡 is
expressed by [2]:

𝑋
𝑖 (𝑡 + Δ𝑡) = 𝑋𝑖 (𝑡) + Δ𝑡

𝑑𝑋
𝑖

𝑑𝑡
. (6)

Note that Δ𝑡 is one of the most significant constants
and should be fine-tuned in terms of the given real-world
optimization problem [2]. This is because this parameter can
be considered as a scale factor of the speed vector. More
details about the three actions andKH approach can be found
in [2, 27].

2.2. Simulated Annealing. Simulated annealing (SA) algo-
rithm is a stochastic search technique that originated from
statistical mechanics. The SA method is inspired by the
annealing process of metals. In the annealing process, a metal
is heated to a high temperature and gradually cooled to a
low temperature that can crystallize. As the heating process
lets the atoms travel randomly, if the cooling is done slowly
enough, so the atoms have enough time to adjust themselves
so as to reach a minimum energy state. This analogy can
be applied in function optimization with the state of metal
corresponding to the possible and the minimum energy state
being the final best solution [30].

The SA method repeats a neighbor generation procedure
and follows search paths thatminimize the objective function
value. When exploring search space, the SA provides the
possibility of acceptingworse generating solutions in a special
manner in order to avoid trapping into local minima. More
precisely, in each generation, for a current solution 𝑋 whose

value is𝑓(𝑋), a neighbor𝑋󸀠 is chosen from theneighborhood
of𝑋 denoted by𝑁(𝑋). For each step, the objective difference
Δ = 𝑓(𝑋

󸀠
) − 𝑓(𝑋). 𝑋󸀠 could be accepted with a probability

calculated by [30]

𝑃
𝑠
= exp (−Δ

𝑇
) . (7)

And then, this acceptance probability is compared to a
randomnumber 𝑟 ∈ (0, 1) and𝑋󸀠 is acceptedwhenever𝑝 > 𝑟.
𝑇 is temperature controlled by a cooling scheme [30].

The SA method includes specific factors: a neighbor
generation move, objective function calculation, a method
for assigning the initial temperature, a procedure to update
the temperature, and a cooling scheme including stopping
criteria [30].

3. Our Approach: SKH

For the original KH approach, as the search only relies on
random walks, a rapid convergence cannot always be guar-
anteed. To improve its performance, genetic reproduction
mechanisms have added to the KH approach [27]. It has been
demonstrated that, comparing other approaches, KH II (KH
with crossover operator) performed the best. In effect, KH
makes full use of the three motions in the population and it is
shown that the KH performs well in both convergence speed
and final accuracy on unimodal problems and most simple
multimodal problems. However, once in a while, in a rough
region of the fitness landscape, KH cannot always succeed in
finding better solutions on some complex problems. In our
present study, in order to further improve the performance
of KH, a modified greedy strategy and mutation scheme,
called krill selecting (KS) operator, is introduced into the
KH method to design a novel simulated annealing-based
krill herd (SKH) algorithm. The introduced KS operator is
inspired from the classical simulated annealing algorithm.
That is to say, in our work, the physical property of metal is
added to the krill to produce a type of super krill that is able
to perform the KS operator.The difference between SKH and
KH is that the KS operator is applied to only accept the basic
KH generating new better solution for each krill instead of
accepting all the krill updating adopted in KH. This is rather
greedy. The standard KH is very efficient and powerful, but
the solutions have slight changes as the optima are approach-
ing in the later run phase of the search. Therefore, to evade
premature convergence and further improve the exploration
ability of the KH, KS operator also accepts few not-so-good
krill with a low acceptance probability 𝑝 as new solution.
This probability 𝑝 is also called transition probability. This
acceptance probability technique can increase diversity of
the population in an effort to avoid premature convergence
and explore a large promising region in the prior run phase
to search the whole space extensively. The main step of KS
operator adopted in SKH method is given in Algorithm 1.

In Algorithm 1, to begin with, the temperature is updated
according to

𝑇 = 𝛼 ∗ 𝑇. (8)
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Begin
𝑇 = 𝛼 ∗ 𝑇;
Δ𝑓 = 𝑓(𝑋

󸀠

𝑖
) − 𝑓(𝑋

𝑖
);

% Accept if improved
If (−Δ𝑓 > 𝑓

𝑛
) then do

𝑋
𝑖+1

= 𝑋
󸀠

𝑖
;

end if
% Accept with a low probability if not improved
If (Δ𝑓 <= 𝑓

𝑛
& exp(−Δ𝑓/(𝑘 ∗ 𝑇)) > 𝑟) then do

𝑋
𝑖+1

= 𝑋
󸀠

𝑖
;

end if
End.

Algorithm 1: Krill selecting (KS) operator.

Here, 𝑇 is the temperature for controlling the acceptance
probability 𝑝. And then, the change of the objective function
value Δ𝑓 is computed by (9)

Δ𝑓 = 𝑓 (𝑋
󸀠

𝑖
) − 𝑓 (𝑋

𝑖
) . (9)

Here,𝑋󸀠
𝑖
is new generating krill for krill 𝑖 by three motions in

basic KH.Whether or not we accept a change, we usually use
a constant number 𝑓

𝑛
as a threshold. If −Δ𝑓 > 𝑓

𝑛
, the newly

generating krill 𝑋󸀠
𝑖
is accepted as its latest position for krill 𝑖.

Otherwise, when (10) is true, the newly generating krill𝑋󸀠
𝑖
is

also accepted as its latest position for krill 𝑖

𝑝 = exp(
−Δ𝑓

𝑘 ∗ 𝑇
) > 𝑟. (10)

Here, 𝑟 is random number drawn from uniform distribution
in (0, 1). 𝑘 is Boltzmann’s constant. For simplicity without
losing generality, we use 𝑘 = 1 in our present study.

In SKH, the critical operator is theKS operator that comes
from SA algorithm, which is similar to the LLF operator used
in LKH [2]. The core idea of the proposed KS operator is
based on two considerations. Firstly, good solutions canmake
the method converge faster. Secondly, the KS operator can
significantly improve the exploration of the new search space.

In SKH, at first, standard KH method with high conver-
gence speed is used to shrink the search region to a more
promising area. And then, KS operator with great greedy
ability is applied to only accept better solutions to improve
the quality of the whole population. In this way, SKHmethod
can explore the new search space with KH and extract
optimal population information by KS operator. In addition,
transition probability 𝑝 in KS operator is applied to accept
few nonimproved krill with a low acceptance probability 𝑝
in an effort to increase diversity of the population and evade
premature convergence.

In addition, except krill selecting operator, another vital
improvement is the addition of elitism strategy into the SKH
approach. Undoubtedly, both KH and SA have some basic
elitism. However, it can be further enhanced. As with other
optimization approaches, we introduce some sort of elitism
with the aim of holding some optimal krill in the population.
Here, a more intensive elitism on the optimal krill is applied,

which can stop the optimal krill from being spoiled by three
motions and krill selecting operator. In SKH, at first, the
KEEP optimal krill arememorized in a vectorKEEPKRILL. In
the end, theKEEPworst krill are replaced by theKEEP stored
optimal krill.This elitism strategy always has a guarantee that
the whole population cannot decline to the population with
worse fitness. Note that, in SKH, an elitism strategy is applied
to keep some excellent krill that have the optimal fitness, so
even if three motions and krill selecting operator corrupts its
corresponding krill, we havememorized it and can recover to
its previous good status if needed.

By integrating previouslymentioned krill selecting opera-
tor and intensive elitism strategy into basic KH approach, the
SKH has been designed that can be presented in Algorithm 2.
Here, NP is the size of the parent population 𝑃.

4. Simulation Experiments

In this section, the effectiveness of our proposed SKH
method is tested to global numerical optimization through a
number of experiments implemented in standard benchmark
functions.

To allow an unbiased comparison of time requirements,
all the experiments were conducted in the same hardware and
software environments with [2].

Well-defined problem sets are fitted for verifying the per-
formance of optimization approaches proposed in this paper.
Based on mathematical expressions [31], benchmark func-
tions can be considered as objective functions to implement
such tests. In our present work, fourteen different benchmark
functions are used to evaluate our proposed metaheuristic
SKHmethod.The formulation of these benchmark functions
and their properties can be found in [12, 32]. It is worth
pointing out that, in [32], Yao et al. have ever used 23
benchmarks to test optimization approaches. However, for
the other low-dimensional benchmark functions (d = 2, 4,
and 6), all the methods perform slightly differently with
each other [33], because these low-dimensional benchmarks
are so simple that they cannot distinguish the performance
difference among different approaches. Thus, in our study,
only fourteen high-dimensional benchmarks are applied to
verify our proposed SKH method [2].
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Begin
Step 1: Initialization. Set the generation counter 𝑡, the population P of𝑁𝑃 krill, the foraging

speed 𝑉
𝑓
, the diffusion speed𝐷max, and the maximum speed𝑁max,

temperature 𝑇
0
, Boltzmann constant 𝑘, cooling factor 𝛼, and an acceptance threshold number 𝑓

𝑛
,

and elitism parameter KEEP.
Step 2: Fitness calculation. Calculate the fitness for each krill based on their initial position.
Step 3: While 𝑡 <MaxGeneration do

Sort all the krill according to their fitness.
Store the KEEP best krill.
for 𝑖 = 1 : 𝑁𝑃 (all krill) do

Implement three motion as described in Section 2.1.
Update position for krill 𝑖 by krill selecting operator in Algorithm 1.
Calculate the fitness for each krill based on its new position𝑋

𝑖+1
.

end for 𝑖
Substitute the KEEP best krill for the KEEP worst krill.
Sort all the krill according to their fitness and find the current best.
𝑡 = 𝑡 + 1;

Step 4: end while
Step 5: Output the best solution.

End.

Algorithm 2: Simulated annealing-based krill herd algorithm.

4.1. General Performance of SKH. In this section, the per-
formance of SKH approach on global numeric optimization
problem with eleven optimization methods was compared
so as to look at the merits of SKH. The eleven optimiza-
tion methods are ABC (artificial bee colony) [34], BA (bat
algorithm) [10], CS (cuckoo search) [35], DE (differential
evolution) [18], ES (evolutionary strategy) [36], GA (genetic
algorithm) [9], HS (harmony search) [1, 37], KH [27],
PBIL (probability-based incremental learning) [38], PSO
(particle swarm optimization) [21, 39, 40], and SA [29].
More information about these comparative methods can
be found in [2]. Besides, we must point out that, in [27],
comparing all the algorithms, the experimental results show
that the performance of KH II was the best which proves the
superiority of the KH approach. Consequently, in our present
study, we use KH II as basic KH method.

In the following experiments, the same parameters for
KH, SA and SKH are adopted, which are the foraging speed
𝑉
𝑓
= 0.02, the maximum diffusion speed 𝐷max

= 0.005, the
maximum induced speed 𝑁max

= 0.01, initial temperature
𝑇
0
= 1.0, maximum number of accept Acceptmax = 15,

Boltzmann constant 𝑘 = 1, cooling factor 𝛼 = 0.95, and
an acceptance threshold number 𝑓

𝑛
= 0.01 (only for SKH).

For other methods used here, their parameters are selected as
[2, 12, 41].

We set population size 𝑁𝑃 = 50 and maximum gener-
ation Maxgen = 50 for each approach. We ran 100 Monte
Carlo simulations of each approach on each benchmark
function to get typical performances [1]. The results of the
experiments are recorded in Tables 1 and 2. Table 1 illustrates
the average minima found by each approach, averaged over
100 Monte Carlo runs. Table 2 illustrates the absolute best
minima found by each approach over 100 Monte Carlo runs.
That is to say, Table 1 represents the average performance of
each approach, while Table 2 represents the best performance

of each approach. The best value obtained for each test
problem is shown in bold. Note that the normalizations in
the tables are based on different scales, so values are not
comparative between the two tables. For each function used
in our work, their dimension is 20.

From Table 1, we see that, on average, SKH is the most
effective at finding objective function minimum on eleven of
the fourteen benchmarks (F01–F06, F08, F10, and F12–F14).
ABC, CS, and GA are the second most effective, performing
the best on the benchmark, F07, F11, and F09 when multiple
runs aremade, respectively. Table 2 shows that SKHperforms
the best on thirteen of the fourteen benchmarks which
are F01–F08 and F10–F14. GA is the second most effective,
performing the best on the benchmark F09 when multiple
runs are made.

Moreover, the running time of the twelve optimization
approaches was slightly different. We collected the average
CPU time of the optimization methods as applied to the 14
benchmarks considered in our work. The results are marked
in Table 1. PBIL was the quickest optimization method. SKH
was the ninth fastest of the twelve approaches. However, it
should be noted that in most real-world applications, it is
the fitness function evaluation that is by far the most time-
consuming part of an optimization approach.

In addition, to prove the superiority of the proposed
method in the future, convergence graphs of ABC, BA, CS,
DE, ES, GA, HS, KH, PBIL, PSO, SA, and SKH are also
provided in this section. However, limited by the length of
paper, here only somemost typical benchmarks are illustrated
in Figures 1–7 which mean the process of optimization.
The function values shown in Figures 1–7 are the average
objective functionminimum obtained from 100Monte Carlo
simulations, which are the true objective function solution,
not normalized. By the way, note that the global optima of
the benchmarks (F04, F05, F08, F10, and F14) are illustrated
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Table 1: Mean normalized optimization results in fourteen benchmark functions.

ABC BA CS DE ES GA HS KH PBIL PSO SA SKH
F01 5.86 8.43 4.66 5.28 8.17 7.17 8.35 1.84 8.45 7.02 7.16 1.00
F02 5.29 28.57 4.34 7.44 20.25 7.26 17.66 6.70 17.41 15.67 1.66 1.00
F03 42.23 224.13 17.11 22.27 102.89 43.18 206.61 6.29 229.90 79.38 1.57 1.00
F04 1.2𝐸6 5.8𝐸7 3.3𝐸3 1.9𝐸5 2.8𝐸7 3.8𝐸5 4.2𝐸7 1.3𝐸4 6.0𝐸7 4.1𝐸6 12.54 1.00
F05 3.0𝐸7 8.3𝐸8 1.2𝐸6 1.0𝐸7 4.2𝐸8 1.5𝐸7 6.4𝐸8 1.1𝐸6 8.2𝐸8 9.6𝐸7 188.67 1.00
F06 3.6𝐸6 6.3𝐸7 4.5𝐸5 1.3𝐸6 4.5𝐸7 3.5𝐸6 4.2𝐸7 4.2𝐸5 5.3𝐸7 1.0𝐸7 5.4𝐸3 1.00
F07 1.00 2.75 1.14 1.63 2.54 1.70 2.41 1.01 2.61 1.94 1.05 1.01
F08 16.46 99.06 6.23 15.71 132.91 28.27 88.88 7.30 104.89 34.65 2.75 1.00
F09 1.76 3.94 1.80 2.23 2.76 1.00 3.38 2.13 3.51 3.36 1.63 2.01
F10 416.63 970.18 101.00 514.39 586.60 441.37 537.77 267.70 555.24 387.49 71.95 1.00
F11 1.06 646.05 1.00 1.20 4.55 2.15 3.57 1.72 3.63 2.95 1.88 4.35
F12 26.50 29.62 11.15 21.16 26.82 21.31 26.94 4.23 28.03 22.22 12.75 1.00
F13 2.7𝐸3 1.4𝐸4 991.45 1.3𝐸3 1.5𝐸4 5.0𝐸3 1.3𝐸4 364.49 1.5𝐸4 5.4𝐸3 38.11 1.00
F14 225.79 1.2𝐸3 87.39 116.81 794.09 233.34 1.2𝐸3 28.01 1.3𝐸3 459.13 3.56 1.00
Time 2.39 1.11 2.58 1.98 2.05 2.40 2.83 4.73 1.00 2.42 1.88 2.54
Total 1 0 1 0 0 1 0 0 0 0 0 11
∗The values are normalized so that the minimum in each row is 1.00. These are not the absolute minima found by each algorithm, but the average minima
found by each algorithm.

Table 2: Best normalized optimization results in fourteen benchmark functions.

ABC BA CS DE ES GA HS KH PBIL PSO SA SKH
F01 14.43 23.66 10.43 13.84 23.34 15.83 24.81 3.03 24.37 19.35 8.84 1.00
F02 12.93 78.18 9.36 19.93 64.37 7.42 46.93 15.76 56.66 46.26 1.86 1.00
F03 10.25 88.97 8.48 13.29 47.57 8.71 128.96 2.82 157.15 53.02 1.33 1.00
F04 214.81 2.6𝐸7 137.18 2.9𝐸4 9.1𝐸7 183.20 2.8𝐸8 366.68 6.3𝐸8 3.9𝐸6 223.10 1.00
F05 5.4𝐸6 5.6𝐸8 4.5𝐸4 8.5𝐸6 7.9𝐸8 1.5𝐸5 1.1𝐸9 7.4𝐸5 2.0𝐸9 9.2𝐸7 48.84 1.00
F06 7.5𝐸6 5.3𝐸8 3.3𝐸6 1.1𝐸7 9.1𝐸8 8.8𝐸6 5.0𝐸8 3.7𝐸6 1.1𝐸9 9.7𝐸7 2.2𝐸3 1.00
F07 10.97 29.54 11.22 19.21 31.10 18.09 27.12 8.72 34.18 25.25 9.89 1.00
F08 8.22 37.08 3.50 6.76 75.99 11.20 51.34 3.84 67.57 20.31 1.06 1.00
F09 4.06 7.72 3.13 5.25 6.54 1.00 8.36 4.83 8.72 6.69 2.25 3.22
F10 870.11 1.6𝐸3 166.38 1.1𝐸3 1.1𝐸3 563.34 1.2𝐸3 387.57 994.72 675.38 30.48 1.00
F11 3.01 13.91 3.37 4.21 15.66 6.44 15.39 6.65 15.01 7.46 1.82 1.00
F12 69.59 65.27 22.47 46.15 75.13 48.37 65.04 5.69 65.77 55.79 21.52 1.00
F13 6.3𝐸3 3.9𝐸4 2.6𝐸3 5.1𝐸3 6.9𝐸4 1.4𝐸4 5.5𝐸4 796.88 6.1𝐸4 1.3𝐸4 108.69 1.00
F14 696.00 4.3𝐸3 281.00 444.33 3.4𝐸3 359.67 5.0𝐸3 67.67 5.9𝐸3 2.1𝐸3 10.67 1.00
Total 0 0 0 0 0 1 0 0 0 0 0 13
∗The values are normalized so that the minimum in each row is 1.00. These are the absolute best minima found by each algorithm.

in the form of the semilogarithmic convergence plots.We use
KH short for KH II in the legend of Figures 1–7 and next texts.

Figure 1 shows the results obtained for the twelve meth-
ods when the F01 Ackley function is applied. From Figure 1,
clearly, we can draw the conclusion that SKH is significantly
superior to all the other algorithms during the process of
optimization. For other algorithms, although slower, KH
eventually finds the global minimum close to SKH, while
ABC, BA, CS, DE, ES, GA, HS, PBIL, PSO and SA fail to
search the global minimum within the limited iterations.
Here, all the algorithms show the almost same starting
point; however SKH outperforms them with fast and stable
convergence rate.

Figure 2 shows the results for F04 Penalty #1 function.
From Figure 2, although slower later, PSO shows a fastest
convergence rate initially among twelve methods; however,
it is outperformed by SKH after 6 generations. Further-
more, SKH outperforms all other methods during the whole
progress of optimization in this multimodal benchmark
function. Eventually, SA performs the second best at finding
the global minimum. CS and KH perform the third and the
fourth best at finding the global minimum with a relatively
slow and stable convergence rate.

Figure 3 shows the performance achieved for F05 Penalty
#2 function. For this multimodal function, similar to the F04
Penalty #1 function as shown in Figure 2, SKH is significantly
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Figure 1: Comparison of the performance of the different methods
for the F01 Ackley function.
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Figure 2: Comparison of the performance of the different methods
for the F04.

superior to all the other algorithms during the process of
optimization. SA performs the second best at finding the
global minimum. For other algorithms, the figure shows that
there is little difference between the performance of CS and
KH. However, carefully studying Table 1 and Figure 3, we can
conclude that KH performs slightly better than CS in this
multimodal function.
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Figure 3: Comparison of the performance of the different methods
for the F05 Penalty.
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Figure 4: Comparison of the performance of the different methods
for the F08 Rosenbrock function.

Figure 4 shows the results for F08 Rosenbrock function.
From Figure 4, very clearly, SKH has the fastest convergence
rate at finding the global minimum and significantly outper-
forms all other approaches. Looking carefully at Figure 4, SA
is only inferior to SKH and performs the second best in this
unimodal function. In addition, CS and KH perform very
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Figure 5: Comparison of the performance of the different methods
for the F10.

ABC
BA
CS
DE
ES
GA

HS
KH
PBIL
PSO
SA
SKH

0 10 20 30 40 50
Number of generations

Be
nc

hm
ar

k 
fu

nc
tio

n 
va

lu
e

10

20

30

40

50

60

70

80

Figure 6: Comparison of the performance of the different methods
for the F12 Schwefel.

well and have ranks of 3 and 4, respectively. Furthermore,
PSO has a fast convergence initially towards the known
minimum; however, it is outperformed by SKH after 7
generations. ABC, BA, DE, ES, GA, HS, PBIL, and PSO do
not manage to succeed in this benchmark function within
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Figure 7: Comparison of the performance of the different methods
for the F14 Step function.

maximum number of generations, showing a wide range of
obtained results.

Figure 5 shows the results for F10 Schwefel 1.2 function.
From Figure 5, we can see that SKH performs far better
than other algorithms during the optimization process in this
relative simple unimodal benchmark function. PSO shows
a faster convergence rate initially than SKH; however, it
is outperformed by SKH after 5 generations. CS and KH
perform very well and rank 3 and 4, respectively.

Figure 6 shows the results for F12 Schwefel 2.21 function.
Very clearly, SKH has the fastest convergence rate at finding
the global minimum and significantly outperforms all other
approaches. For other algorithms, KH, CS, and SA perform
very well and have ranks of 2, 3 and 4, respectively. Particu-
larly, KH is only inferior to SKH and eventually converges to
the value that is very close to CSKH.

Figure 7 shows the results for F14 Step function. Appar-
ently, SKH shows the fastest convergence rate at finding
the global minimum and significantly outperforms all other
approaches. Here, all the algorithms show the almost same
starting point; however SKH outperforms the other algo-
rithms with fast and stable convergence rate. For other
algorithms, SA performs the second best among 12 methods.
Furthermore, ABC, BA, CS, DE, ES, GA, HS, KH, PBIL, and
PSO do not manage to succeed in this benchmark function
within maximum number of generations, showing a wide
range of obtained results.

From previous analyses about Figures 1–7, we can arrive
at a conclusion that our proposedmetaheuristic SKHmethod
significantly outperforms the other eleven approaches. In
general, SA is only inferior to SKH and performs the second
best among twelve methods. CS and KH perform the third
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best only inferior to the SA and SKH. Furthermore, the
illustration of benchmarks F04, F05, F08, and F10 shows
that PSO has a faster convergence rate initially, while later
it converges slower and slower to the true objective function
value.

4.2. Discussion. For all the benchmark functions considered
here, it has been demonstrated that the proposed SKH
method is superior to, or at least highly competitive with,
the standard KH and other eleven great state-of-the-art
population-based methods. The advantages of SKH involve
implementing simply and easily and have few parameters to
regulate. The work carried out here proves the SKH to be
effective, robust, and efficient over a variety of benchmark
functions.

Benchmark evaluation is a good way for testing the effec-
tiveness of the metaheuristic methods, but it also has some
limitations [2]. First, we made little effort to carefully adjust
the optimization methods used in this paper. In most cases,
different adjusting parameters in the optimization methods
might generate great differences in their performance. Sec-
ond, real-world optimization problemsmay not havemuch of
a relationship with benchmark functions. Third, benchmark
evaluation may reach significantly different conclusions if
the grading criteria or problem setup change. In our work,
we securitized the average and best results achieved with
some population size and after some number of iterations.
However, we might arrive at different conclusions if we
change the population size, or consider howmany population
sizes it needs to reach a certain function value or if wemodify
the iteration. Regardless of these caveats, the experimental
results obtained here are promising for SKH and show that
this novel method might be able to find a niche among the
plethora of optimization approaches [2].

It is worth pointing out that time requirement is a limita-
tion to the implementation of most optimization methods. If
an approach does not has a fast converge, it will be infeasible,
since it would takemuch time to get an optimal or suboptimal
solution. SKH seems not to require an impractical amount of
CPU time; of the twelve optimization approaches discussed
in this paper, SKH was the ninth fastest. How to speed up the
SKH’s convergence is still worthy of further study.

In our study, 14 benchmark functions are applied to
prove the merits of our method; we will verify our proposed
method on more optimization problems, such as the high-
dimensional (𝑑 ≥ 20) CEC 2010 test suit [42] and the
real-world engineering problems. Moreover, we will compare
SKH with other optimization methods. In addition, we only
look at the unconstrained function optimization here. Our
future work includes adding more optimization techniques
into SKH for constrained optimization problems, such as
constrained real-parameter optimization CEC 2010 test suit
[43].

5. Conclusion and Future Work

Due to the limited performance of KH on complex problems
[2], KS operator has been introduced to the standard KH

to develop a novel improved metaheuristic optimization
method based on KH and SA, called simulated annealing-
based krill herd (SKH) algorithm, for optimization problem.
In SKH, firstly, we use a standard KH algorithm to select a
good candidate solution set. And then, a new krill selecting
(KS) operator is introduced into the basic KH method.
The introduced KS operator includes greedy strategy and
accepting a not-so-good solution with a small probability.
This greedy strategy is applied to accept a good candidate
solution so as to improve its efficiency and reliability for solv-
ing global numerical optimization problem. Furthermore,
the KS operator not only accepts changes that improve the
objective function, but also keeps some changes in not-so-
good solutions with a low probability that are not ideal. This
can enhance the adversity of the population, improve the
exploration of KH, and evade premature convergence.

Furthermore, we can see that this new method can
speed up the global convergence rate without losing the
strong robustness of the basic KH. From the analyses of
the experimental results, we observe that the SKH greatly
improves the reliability of the global optimality and they also
improve the quality of the solutions on unimodal and most
multimodal problems. In addition, the SKH is simple and
implements easily.

In the field of numerical optimization, there are numer-
ous issues that deserve further scrutiny. Our future work
will emphasize the two issues. On the one hand, we would
employ our proposed SKH method to solve real-world
engineering optimization problems, and, obviously, SKH can
be a great method for real-world engineering optimization
problems. On the other hand, we would develop more new
metaheuristic methods to solve optimization problems more
accurately and efficiently [2].
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