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Two numerical algorithms are derived to compute the fractional diffusion-wave equation with a reaction term. Firstly, using the
relations between Caputo and Riemann-Liouville derivatives, we get two equivalent forms of the original equation, where we
approximate Riemann-Liouville derivative by a second-order difference scheme. Secondly, for second-order derivative in space
dimension, we construct a fourth-order difference scheme in terms of the hyperbolic-trigonometric spline function. The stability
analysis of the derived numerical methods is given by means of the fractional Fourier method. Finally, an illustrative example is
presented to show that the numerical results are in good agreement with the theoretical analysis.

1. Introduction

The realm of fractional differential equations has drawn
increasing attention and interest due to their important
applications in biology, physics, chemistry, biochemistry,
medicine, and engineering [1–8]. Generally speaking, the
analytical solutions of most fractional differential equations
are not easy, even impossible, to obtain, so seeking numerical
solutions of these equations becomes more and more impor-
tant. Till now, there have been some studies in this respect.
For example, Cui [9] proposed a compact finite difference
method for the fractional diffusion equation. Chen et al.
[10] analyzed an implicit difference scheme for the subdif-
fusion equation and proved the unconditional stability and
convergence. Li et al. [11] constructed some novel methods
for the fractional calculus and fractional ordinary differential
equation. Liu et al. [12] considered the numericalmethod and
analytical technique for themodified anomalous subdiffusion
equation with a nonlinear source term. Sousa [13] gave three
finite difference schemes for a fractional advection diffusion
problem. In [14], she furthermore presented an improved dif-
ference scheme to enhance the spatial accuracy. H.Wang and
K.Wang [15] developed a fast finite difference method for the
fractional diffusion equations. Yuste and Acedo [16] derived
an explicit finite difference scheme and gave a new von

Neumann-type stability analysis for the fractional diffusion
equations. Roop and his coworkers pioneered in considering
the fractional differential equation by using the finite element
method in [17–19], where the temporal derivative is the
classical derivative and the spatial derivative is the fractional
derivative. Li et al. [20] used the finite difference/finite
element mixed method to numerically solve the nonlinear
subdiffusion and superdiffusion partial differential equation,
where both temporal and spatial derivatives are fractional
derivatives. Zhang et al. [21] obtained a numericalmethod for
the symmetric space fractional partial differential equations
by using Galerkin finite element method and a backward
difference technique. In [22], Zheng et al. established a fully
discrete approximation for the nonlinear spatial fractional
Fokker-Planck equation, where the discontinuous Galerkin
finite element approach was utilized in time domain and
the Galerkin finite element approach was utilized in spatial
domain. Yang et al. used the matrix transform method for
the Riesz space fractional diffusion and advection-dispersion
equations and the time and space fractional Fokker-Planck
equations [23, 24], respectively. Recently, the spectral method
was used to approximate the fractional calculus and the
fractional differential equations [25, 26]. Very recently, Ding
and Li [27] proposed two kinds of finite difference schemes
for the reaction-subdiffusion equation.
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As far as we know, there are some numerical methods
for the subdiffusion equations [9, 10, 12, 16]; however, there
seem to be very limited ones for the fractional diffusion-
wave (seldom called “superdiffusion”) equation. The possible
reason is that there may be no better method to analyze
the stability and convergence. And in the studies available,
the accuracy of the temporal direction for the subdiffusion
and fractional diffusion-wave equations is often less than
second order. This motivates us to construct some higher
order methods.

In this paper, we study the fractional diffusion-wave
equation with a reaction term in the following form:

𝐶𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) = 𝐾𝛼

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶𝛼𝑢 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) ,

0 ≤ 𝑡 ≤ 𝑇, 0 < 𝑥 < 𝐿.

(1)

Roughly speaking, the previous fractional differential
equation is obtained from the classical diffusion-wave equa-
tion by replacing the second-order time derivative by a
fractional derivative of order 𝛼 (1 < 𝛼 < 2). It has been
proposed to deal with disordered media to comb structures,
dielectrics and semiconductors, and viscoelastic problems,
for example, in the description of the propagation of stress
waves in viscoelastic solids; see [28, 29] and references
therein. In particular, in order to carry out the numerical
comparisons, we study the following initial boundary values:

𝑢 (𝑥, 0) = 0,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 0, 0 < 𝑥 < 𝐿, (2)

𝑢 (0, 𝑡) = 𝜑1 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇, (3)
𝑢 (𝐿, 𝑡) = 𝜑2 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇, (4)

where 𝑓(𝑥, 𝑡), 𝜑
1
(𝑥), and 𝜑

2
(𝑥) are sufficiently smooth func-

tions and 𝐾
𝛼
> 0 and 𝐶

𝛼
> 0 are diffusion and reaction

coefficients, respectively.
𝐶
𝐷
𝛼

0,𝑡
𝑢(𝑥, 𝑡) is the Caputo derivative

of order 𝛼 (1 < 𝛼 < 2), which will be introduced in the
following.

The remainder of this paper is organized as follows.
In Section 2, we present preliminary knowledge, which is
necessary for our study. In Section 3, we develop two numer-
ical methods. Meanwhile, we investigate the solvability and
stability by thematrixmethod and fractional Fouriermethod,
respectively. In Section 4, a numerical experiment is carried
out which supports the theoretical analysis. Finally, the paper
concludes with a summary in the last section.

2. Preliminary Knowledge

In the present section, we introduce some important defi-
nitions and lemmas which are used later on. The following
definitions and lemmas can be found in [30].

Definition 1. The left Riemann-Liouville integral operator
𝐷
−𝛼

0,𝑡
of order 𝛼 > 0 is defined in the following form:

𝐷
−𝛼

0,𝑡
𝑢 (𝑥, 𝑡) =

1

Γ (𝛼)
∫

𝑡

0

𝑢 (𝑥, 𝑦) 𝑑𝑦

(𝑡 − 𝑦)
1−𝛼
, (5)

where Γ(⋅) is the Euler gamma function.

Definition 2. The left Caputo derivative operator
𝐶
𝐷
𝛼

0,𝑡
of

order 𝛼 > 0 is defined in the following form:

𝐶
𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) =

{{{{{{{

{{{{{{{

{

1

Γ (𝑚 − 𝛼)
∫

𝑡

0

𝜕
𝑚
𝑢 (𝑥, 𝑦)

𝜕𝑦𝑚

𝑑𝑦

(𝑡 − 𝑦)
𝛼−𝑚+1

,

𝑚 − 1 < 𝛼 < 𝑚 ∈ Z+,
𝜕
𝑚
𝑢 (𝑥, 𝑡)

𝜕𝑡𝑚
,

𝛼 = 𝑚.

(6)

Definition 3. The left Riemann-Liouville derivative operator
RL𝐷
𝛼

0,𝑡
of order 𝛼 > 0 is defined by

RL𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) =

{{{{{{{

{{{{{{{

{

1

Γ (𝑚 − 𝛼)
(
𝜕

𝜕𝑡
)

𝑚

∫

𝑡

0

𝑢 (𝑥, 𝑦) 𝑑𝑦

(𝑡 − 𝑦)
𝛼−𝑚+1

,

𝑚 − 1 < 𝛼 < 𝑚 ∈ Z+,

𝜕
𝑚−1
𝑢 (𝑥, 𝑡)

𝜕𝑡𝑚−1
,

𝛼 = 𝑚 − 1.

(7)

Lemma 4. Suppose𝑚−1 < 𝛼 < 𝑚 ∈ Z+, for any 𝑡, if 𝑢(𝑥, 𝑡) ∈
𝐶
𝑚−1
[0, 𝑇] and 𝜕𝑢𝑚−1(𝑥, 𝑡)/𝜕𝑡𝑚−1 is integrable on [0, 𝑇] with

respect to 𝑡, and then

𝐶𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) = 𝑅𝐿𝐷

𝛼

0,𝑡
𝑢 (𝑥, 𝑡)

−

𝑚−1

∑

𝑗=0

𝜕
𝑗
𝑢 (𝑥, 0)

𝜕𝑡𝑗

𝑡
𝑗−𝛼

Γ (𝑗 + 1 − 𝛼)
.

(8)

Lemma 5 (see [31]). The eigenvalues of the tridiagonal matrix
𝑋 with order 𝑛 − 1

𝑋 =(

𝑏 𝑎

𝑐 𝑏 𝑎

d d d
𝑐 𝑏 𝑎

𝑐 𝑏

) (9)

are given by

𝜁
𝜄
= 𝑏 + 2𝑎√

𝑐

𝑎
cos(𝜋𝜄

𝑛
) , 𝜄 = 1, 2, . . . , 𝑛 − 1. (10)

Let 𝑥
𝑙
= 𝑙ℎ (𝑙 = 0, 1, . . . ,𝑀) and 𝑡

𝑘
= 𝑘𝜏 (𝑘 = 0, 1, . . . , 𝑁),

where ℎ = 𝐿/𝑀 and 𝜏 = 𝑇/𝑁 are the uniform spatial and
temporal mesh sizes, respectively, and𝑀,𝑁 are two positive
integers.

We consider a uniform mesh Ω with nodal points 𝑥
𝑙
on

[0, 𝐿], for each segment [𝑥
𝑙
, 𝑥
𝑙+1
] (𝑙 = 0, 1, . . . ,𝑀 − 1) and

point 𝑡
𝑘
(𝑘 = 0, 1, . . . , 𝑁) we define the following hyperbolic-

trigonometric spline function S
𝑙
(𝑥, 𝑡
𝑘
) which has different

form with the mixed spline function in [27]:

S
𝑙
(𝑥, 𝑡
𝑘
) = 𝑎
𝑙
sinh (𝜗 (𝑥 − 𝑥

𝑙
)) + 𝑏
𝑙
cosh (𝜗 (𝑥 − 𝑥

𝑙
))

+ 𝑐𝑙 sin (𝜗 (𝑥 − 𝑥𝑙)) + 𝑑𝑙, 𝑥 ∈ [𝑥𝑙, 𝑥𝑙+1] ,

𝑙 = 0, 1, . . . ,𝑀 − 1, 𝑘 = 0, 1, . . . , 𝑁,

(11)
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where 𝑎
𝑙
, 𝑏
𝑙
, 𝑐
𝑙
, and 𝑑

𝑙
are constants and 𝜗 is an arbitrary

parameter which can improve the accuracy of the numerical
method.

To obtain the expressions of the coefficients in (11), we
denote

S
𝑙
(𝑥
𝑙
, 𝑡
𝑘
) = 𝑢 (𝑥

𝑙
, 𝑡
𝑘
) , S

𝑙
(𝑥
𝑙+1
, 𝑡
𝑘
) = 𝑢 (𝑥

𝑙+1
, 𝑡
𝑘
) ,

S
󸀠󸀠

𝑙
(𝑥𝑙, 𝑡𝑘) = Q (𝑥𝑙, 𝑡𝑘) , S

󸀠󸀠

𝑙
(𝑥𝑙+1, 𝑡𝑘) = 𝑄 (𝑥𝑙+1, 𝑡𝑘) .

(12)

Through the straightforward calculations, we obtain the
following expressions:

𝑎
𝑙
=
(1 − 2 cosh (𝜗ℎ)) 𝑄 (𝑥𝑙, 𝑡𝑘) + 𝑄 (𝑥𝑙+1, 𝑡𝑘)

2𝜗2 sinh (𝜗ℎ)

+
𝑢 (𝑥
𝑙+1
, 𝑡
𝑘
) − 𝑢 (𝑥

𝑙
, 𝑡
𝑘
)

2 sinh (𝜗ℎ)
,

𝑏
𝑙 =
𝑄 (𝑥𝑙, 𝑡𝑘)

𝜗2
,

𝑐
𝑙
=
𝑄 (𝑥
𝑙
, 𝑡
𝑘
) − 𝑄 (𝑥

𝑙+1
, 𝑡
𝑘
)

2𝜗2 sin (𝜗ℎ)

+
𝑢 (𝑥
𝑙+1
, 𝑡
𝑘
) − 𝑢 (𝑥

𝑙
, 𝑡
𝑘
)

2 sin (𝜗ℎ)
,

𝑑
𝑙 = 𝑢 (𝑥𝑙, 𝑡𝑘) −

𝑄 (𝑥
𝑙
, 𝑡
𝑘
)

𝜗2
,

(13)

in which 𝑙 = 0, 1, . . . ,𝑀 − 1, 𝑘 = 0, 1, . . . , 𝑁.
From (11), one has

S𝑙−1 (𝑥, 𝑡𝑘)

= 𝑎
𝑙−1

sinh (𝜗 (𝑥 − 𝑥
𝑙−1
)) + 𝑏
𝑙−1

cosh (𝜗 (𝑥 − 𝑥
𝑙−1
))

+ 𝑐
𝑙−1

sin (𝜗 (𝑥 − 𝑥
𝑙−1
)) + 𝑑

𝑙−1
, 𝑥 ∈ [𝑥

𝑙−1
, 𝑥
𝑙
] ,

𝑙 = 1, . . . ,𝑀, 𝑘 = 0, 1, . . . , 𝑁.

(14)

In view of the continuity of the first-order derivative at the
common nodes (𝑥

𝑙
, 𝑢(𝑥
𝑙
, 𝑡
𝑘
)), that is,S󸀠

𝑙−1
(𝑥
𝑙
, 𝑡
𝑘
) = S󸀠
𝑙
(𝑥
𝑙
, 𝑡
𝑘
),

we get the following relation:

𝜆
1
𝑄 (𝑥
𝑙−1
, 𝑡
𝑘
) + 𝜆
2
𝑄 (𝑥
𝑙
, 𝑡
𝑘
) + 𝜆
3
𝑄 (𝑥
𝑙+1
, 𝑡
𝑘
)

=
1

ℎ2
[𝜇
1
𝑢 (𝑥
𝑖−1
, 𝑡
𝑘
) + 𝜇
2
𝑢 (𝑥
𝑙
, 𝑡
𝑘
) + 𝜇
3
𝑢 (𝑥
𝑙+1
, 𝑡
𝑘
)] ,

𝑙 = 1, . . . , 𝑀 − 1, 𝑘 = 0, 1, . . . , 𝑁,

(15)

where

𝜆
1
=
1

𝜃2
(
cosh (𝜃) (2 cosh (𝜃) − 1)

sinh (𝜃)
−
cos (𝜃)
sin (𝜃)

− 2 sinh (𝜃)) ,

𝜆
2
=
1

𝜃2
(
1 − 3 cosh (𝜃)

sinh (𝜃)
+
1 + cos (𝜃)
sin (𝜃)

) ,

𝜆
3 =

1

𝜃2
(

1

sinh (𝜃)
−

1

sin (𝜃)
) ,

𝜇
1 = −(

cosh (𝜃)
sinh (𝜃)

+
cos (𝜃)
sin (𝜃)

) ,

𝜇
2 =

1 + cosh (𝜃)
sinh (𝜃)

+
1 + cos (𝜃)
sin (𝜃)

,

𝜇
3 = −(

1

sinh (𝜃)
+

1

sin (𝜃)
) ,

(16)

and 𝜃 = 𝜗ℎ.
Obviously, from the expressions of 𝜇

1, 𝜇2, and 𝜇3, we find
that 𝜇1 + 𝜇2 + 𝜇3 = 0.

When 𝜗 → 0, then 𝜃 → 0; the spline function given by
(15) reduces to the ordinary cubic spline function:

ℎ
2
[𝑄 (𝑥
𝑙−1
, 𝑡
𝑘
) + 4𝑄 (𝑥

𝑙
, 𝑡
𝑘
) + 𝑄 (𝑥

𝑙+1
, 𝑡
𝑘
)]

= 6 [𝑢 (𝑥
𝑙−1
, 𝑡
𝑘
) − 2𝑢 (𝑥

𝑙
, 𝑡
𝑘
) + 𝑢 (𝑥

𝑙+1
, 𝑡
𝑘
)] ,

𝑙 = 1, . . . ,𝑀 − 1, 𝑘 = 0, 1, . . . , 𝑁.

(17)

If we use 𝜕2𝑢(𝑥
𝑙−1
, 𝑡
𝑘
)/𝜕𝑥
2
, 𝜕
2
𝑢(𝑥
𝑙
, 𝑡
𝑘
)/𝜕𝑥
2
; and 𝜕2𝑢(𝑥

𝑙+1
,

𝑡
𝑘
)/𝜕𝑥
2 to take the place of 𝑄(𝑥

𝑙−1
, 𝑡
𝑘
), 𝑄(𝑥

𝑙
, 𝑡
𝑘
); and

𝑄(𝑥
𝑙+1
, 𝑡
𝑘
) in (15), respectively, then one gets

𝜆1

𝜕
2
𝑢 (𝑥𝑙−1, 𝑡𝑘)

𝜕𝑥2
+ 𝜆2

𝜕
2
𝑢 (𝑥𝑙, 𝑡𝑘)

𝜕𝑥2
+ 𝜆3

𝜕
2
𝑢 (𝑥𝑙+1, 𝑡𝑘)

𝜕𝑥2

=
1

ℎ2
[𝜇
1
𝑢 (𝑥
𝑙−1
, 𝑡
𝑘
) + 𝜇
2
𝑢 (𝑥
𝑙
, 𝑡
𝑘
) + 𝜇
3
𝑢 (𝑥
𝑙+1
, 𝑡
𝑘
)]

+ O (ℎ
𝑝
) ,

(18)

where 𝑝 > 0.
Using Taylor’s series for (18) at (𝑥

𝑙, 𝑡𝑘), we get the trunca-
tion error as follows:

𝐸
𝑘

𝑖
= {

1

ℎ
(𝜇
1
− 𝜇
3
)
𝜕

𝜕𝑥

+
1

2
[2 (𝜆
1
+ 𝜆
2
+ 𝜆
3
) − (𝜇

1
+ 𝜇
3
)]
𝜕
2

𝜕𝑥2

+
ℎ

6
[6 (𝜆
3
− 𝜆
1
) − (𝜇

3
− 𝜇
1
)]
𝜕
3

𝜕𝑥3
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+
ℎ
2

24
[12 (𝜆

1
+ 𝜆
3
) − (𝜇

1
+ 𝜇
3
)]
𝜕
4

𝜕𝑥4

+
ℎ
3

120
[20 (𝜆

3
− 𝜆
1
) − (𝜇

3
− 𝜇
1
)]
𝜕
5

𝜕𝑥5

+
ℎ
4

720
[30 (𝜆

1
+ 𝜆
3
) − (𝜇

1
+ 𝜇
3
)]
𝜕
6

𝜕𝑥6
}

× 𝑢 (𝑥
𝑙
, 𝑡
𝑘
) + O (ℎ

𝑝
) .

(19)

From the previous expression, we find that we can obtain
different difference schemes by choosing different parameters
𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜇
1
, and 𝜇

2
. In this paper, we take 𝜆

1
= 𝜆
3
, 𝜆
2
=

10𝜆
1
, and 𝜇

1
= 𝜇
3
= 12𝜆

1
, and then 𝑝 = 4. Under this

assumption, (18) can be rewritten as

𝜕
2
𝑢 (𝑥𝑙, 𝑡𝑘)

𝜕𝑥2
=
1

ℎ2

12𝛿
2

𝑥
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)

12 + 𝛿2
𝑥

+ O (ℎ
4
) , (20)

which is the same as in [32], where 𝛿2
𝑥
is the second-order

central difference operator with respect to 𝑥.

3. Numerical Algorithms

In the present section, we introduce two schemes for the
fractional diffusion-wave equation (1) together with the
homogeneous initial value conditions (2) and boundary
values conditions (3) and (4).

3.1. Numerical Algorithm I. Based on Lemma 4, (1) can be
written as

RL𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) = 𝐾𝛼

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶
𝛼
𝑢 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)

+

1

∑

𝑗=0

𝜕
𝑗
𝑢 (𝑥, 0)

𝜕𝑡𝑗

𝑡
𝑗−𝛼

Γ (𝑗 + 1 − 𝛼)
.

(21)

Applying the initial value conditions (2) yields

RL𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) = 𝐾𝛼

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶
𝛼
𝑢 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) . (22)

The Riemann-Liouville derivative (with homogeneous
initial value conditions) can be approximated by the following
scheme:

RL𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) =

1

𝜏𝛼

[𝑡/𝜏]

∑

𝑗=0

𝜛
(𝛼)

𝑞,𝑗
𝑢 (𝑥, 𝑡 − 𝑗𝜏) + O (𝜏

𝑞
) . (23)

There exist various choices of the generating functions
which can lead to different approximation order 𝑞.

Let 𝜛𝑞(𝑧, 𝛼) be the generating function with coefficients
𝜛
(𝛼)

𝑞,𝑗
; that is,

𝜛
𝑞 (𝑧, 𝛼) =

∞

∑

𝑗=0

𝜛
(𝛼)

𝑞,𝑗
𝑧
𝑗
. (24)

If we take the generating function in the form

𝜛1 (𝑧, 𝛼) = (1 − 𝑧)
𝛼
, (25)

that is,

(1 − 𝑧)
𝛼
=

∞

∑

𝑗=0

𝜛
(𝛼)

1,𝑗
𝑧
𝑗
, (26)

then we can obtain the following first-order scheme:

RL𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) =

1

𝜏𝛼

[𝑡/𝜏]

∑

𝑗=0

𝜛
(𝛼)

1,𝑗
𝑢 (𝑥, 𝑡 − 𝑗𝜏) + O (𝜏) , (27)

in which

𝜛
(𝛼)

1,0
= 1,

𝜛
(𝛼)

1,𝑗
= (−1)

𝑗
(
𝛼

𝑗
)

= (−1)
𝑗 Γ (1 + 𝛼)

Γ (𝑗 + 1) Γ (1 + 𝛼 − 𝑗)
, 𝑗 ≥ 1,

(28)

and these coefficients have the following recursive relations:

𝜛
(𝛼)

1,0
= 1, 𝜛

(𝛼)

1,𝑗
= (1 −

1 + 𝛼

𝑗
)𝜛
(𝛼)

1,𝑗−1
, 𝑗 ≥ 1. (29)

If we take the generating function as

𝜛
2 (𝑧, 𝛼) = (

3

2
− 2𝑧 +

1

2
𝑧
2
)

𝛼

, (30)

that is,

(
3

2
− 2𝑧 +

1

2
𝑧
2
)

𝛼

=

∞

∑

𝑗=0

𝜛
(𝛼)

2,𝑗
𝑧
𝑗
, (31)

which leads to order 𝑞 = 2 [30], then

RL𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) =

1

𝜏𝛼

[𝑡/𝜏]

∑

𝑗=0

𝜛
(𝛼)

2,𝑗
𝑢 (𝑥, 𝑡 − 𝑗𝜏) + O (𝜏

2
) . (32)

Here we introduce two methods to determine the cor-
responding coefficients 𝜛(𝛼)

2,𝑗
of the formula (32). One of the

most general methods is to use the fast Fourier transform to
calculate them [30].

In the following, we give another simple but interesting
method to obtain the coefficients 𝜛(𝛼)

2,𝑗
.

By using

(
3

2
− 2𝑧 +

1

2
𝑧
2
)

𝛼

= (
3

2
)

𝛼

(1 − 𝑧)
𝛼
(1 −

1

3
𝑧)

𝛼

(33)
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and (26), one gets

(
3

2
− 2𝑧 +

1

2
𝑧
2
)

𝛼

= (
3

2
)

𝛼

(1 − 𝑧)
𝛼
(1 −

1

3
𝑧)

𝛼

= (
3

2
)

𝛼

[

[

∞

∑

𝑗=0

(−1)
𝑗
(
𝛼

𝑗
) 𝑧
𝑗]

]

[

[

∞

∑

𝑗=0

(−
1

3
)

𝑗

(
𝛼

𝑗
) 𝑧
𝑗]

]

= (
3

2
)

𝛼 ∞

∑

𝑚=0

∞

∑

𝑛=0

(−1)
𝑚
(−
1

3
)

𝑛

(
𝛼

𝑚
)(
𝛼

𝑛
) 𝑧
𝑚+𝑛

= (
3

2
)

𝛼 ∞

∑

𝑗=0

[

𝑗

∑

𝑚=0

(−1)
𝑚
(−
1

3
)

𝑗−𝑚

(
𝛼

𝑚
)(

𝛼

𝑗 − 𝑚
)]𝑧
𝑗

=

∞

∑

𝑗=0

[(
3

2
)

𝛼 𝑗

∑

𝑚=0

(−1)
𝑗
(
1

3
)

𝑚

(
𝛼

𝑚
)(

𝛼

𝑗 − 𝑚
)]𝑧
𝑗

=

∞

∑

𝑗=0

[(
3

2
)

𝛼 𝑗

∑

𝑚=0

(
1

3
)

𝑚

𝜛
(𝛼)

1,𝑚
𝜛
(𝛼)

1,𝑗−𝑚
] 𝑧
𝑗
.

(34)

Comparing the previous equation with (31), one obtains

𝜛
(𝛼)

2,𝑗
= (

3

2
)

𝛼 𝑗

∑

𝑚=0

(
1

3
)

𝑚

𝜛
(𝛼)

1,𝑚
𝜛
(𝛼)

1,𝑗−𝑚
,

= (−1)
𝑗
(
3

2
)

𝛼

×

𝑗

∑

𝑚=0

(
1

3
)

𝑚

×
Γ
2
(1 + 𝛼)

𝑚! (𝑗 − 𝑚)!Γ (1 + 𝛼 − 𝑚) Γ (1 + 𝛼 + 𝑚 − 𝑗)
,

(35)

which has the following recursive relation:

𝜛
(𝛼)

2,0
= (

3

2
)

𝛼

,

𝜛
(𝛼)

2,𝑗+1

= (
3

2
)

𝛼 𝑗+1

∑

𝑚=0

(
1

3
)

𝑚

𝜛
(𝛼)

1,𝑚
𝜛
(𝛼)

1,𝑗+1−𝑚

= (
3

2
)

𝛼 𝑗

∑

𝑚=0

(
1

3
)

𝑚

𝜛
(𝛼)

1,𝑚
𝜛
(𝛼)

1,𝑗+1−𝑚

+ (
3

2
)

𝛼

(
1

3
)

𝑗+1

𝜛
(𝛼)

1,𝑗+1

= (
3

2
)

𝛼 𝑗

∑

𝑚=0

(
1

3
)

𝑚

(1 −
1 + 𝛼

𝑗 + 1 − 𝑚
)𝜛
(𝛼)

1,𝑚
𝜛
(𝛼)

1,𝑗−𝑚

+ (
3

2
)

𝛼

(
1

3
)

𝑗+1

𝜛
(𝛼)

1,𝑗+1

= 𝜛
(𝛼)

2,𝑗
− (1 + 𝛼) (

3

2
)

𝛼

(
1

3
)

𝑗 𝑗

∑

𝑚=0

3
𝑚

𝑚 + 1
𝜛
(𝛼)

1,𝑚
𝜛
(𝛼)

1,𝑗−𝑚

+ (
3

2
)

𝛼

(
1

3
)

𝑗+1

(1 −
1 + 𝛼

𝑗 + 1
)𝜛
(𝛼)

1,𝑗
, 𝑗 ≥ 0.

(36)

In summary, we have the following lemma.

Lemma 6. The coefficients 𝜛(𝛼)
2,𝑗
(𝑗 = 0, 1, . . .) (1 < 𝛼 < 2)

satisfy

(1) 𝜛
(𝛼)

2,0
= (

3

2
)

𝛼

> 0,

𝜛
(𝛼)

2,1
= −

4

3
𝛼(
3

2
)

𝛼

< 0,

𝜛
(𝛼)

2,2
=
𝛼 (8𝛼 − 5)

9
(
3

2
)

𝛼

> 0,

𝜛
(𝛼)

2,3
=
4𝛼 (1 − 𝛼) (8𝛼 − 7)

81
(
3

2
)

𝛼

< 0,

𝜛
(𝛼)

2,4
=

𝛼 (𝛼 − 1) (64𝛼
2
− 176𝛼 + 123)

486
(
3

2
)

𝛼

> 0,

𝜛
(𝛼)

2,5
=

2𝛼 (𝛼 − 1) (2 − 𝛼) (64𝛼
2
− 208𝛼 + 183)

3645
(
3

2
)

𝛼

> 0,

...

(2)

∞

∑

𝑗=0

𝜛
(𝛼)

2,𝑗
= 0,

∞

∑

𝑗=0

(−1)
𝑗
𝜛
(𝛼)

2,𝑗
= 4
𝛼
.

(37)

Proof. (1) In view of (36), we easily obtain the expressions of
the coefficients 𝜛(𝛼)

2,𝑗
(𝑗 = 0, 1, . . .).

(2) In (31), if we take 𝑧 ≡ 1, which leads to ∑∞
𝑗=0
𝜛
(𝛼)

2,𝑗
= 0.

Similarly, choosing 𝑧 ≡ −1 and substitution it into (31) yield
∑
∞

𝑗=0
(−1)
𝑗
𝜛
(𝛼)

2,𝑗
= 4
𝛼
.This completes the proof.

Finally, let 𝑢𝑘
𝑙
be the numerical approximation of 𝑢(𝑥𝑙, 𝑡𝑘);

substituting the expansions (20) and (32) in (22) and remov-
ing the higher order term, one obtains Numerical Algorithm
I as follows:

(12𝜅1 − 𝜅2 − 𝜛
(𝛼)

2,0
) 𝑢
𝑘

𝑙−1

− 2 (12𝜅
1
+ 5𝜅
2
+ 5𝜛
(𝛼)

2,0
) 𝑢
𝑘

𝑙
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+ (12𝜅
1
− 𝜅
2
− 𝜛
(𝛼)

2,0
) 𝑢
𝑘

𝑙+1

= 𝜛
(𝛼)

2,1
(𝑢
𝑘−1

𝑙−1
+ 10𝑢

𝑘−1

𝑙
+ 𝑢
𝑘−1

𝑙+1
)

+

𝑘

∑

𝑗=2

𝜛
(𝛼)

2,𝑗
(𝑢
𝑘−𝑗

𝑙−1
+ 10𝑢

𝑘−𝑗

𝑙
+ 𝑢
𝑘−𝑗

𝑙+1
)

− 𝜏
𝛼
(𝑓
𝑘

𝑙−1
+ 10𝑓

𝑘

𝑙
+ 𝑓
𝑘

𝑙+1
) ,

(38)

for 𝑙 = 1, . . . ,𝑀 − 1, 𝑘 = 1, . . . , 𝑁. The initial and boundary
value conditions can be discretized by

𝑢
0

𝑙
= 0, 𝑙 = 0, 1, . . . ,𝑀,

1

𝜏

𝛿
𝑡𝑢
0

𝑙

1 + (1/2) 𝛿𝑡

=
1

𝜏

𝑢
1

𝑙
− 𝑢
0

𝑙

1 + (1/2) 𝛿𝑡

= 0, 𝑙 = 0, 1, . . . ,𝑀,

𝑢
𝑘

0
= 𝜑1 (𝑘𝜏) , 𝑢

𝑘

𝑀
= 𝜑2 (𝑘𝜏) , 𝑘 = 0, 1, . . . , 𝑁,

(39)

where 𝑓𝑘
𝑙
= 𝑓(𝑥

𝑙
, 𝑡
𝑘
), 𝜅
1
= 𝐾
𝛼
𝜏
𝛼
/ℎ
2
, and 𝜅

2
= 𝐶
𝛼
𝜏
𝛼.

Next, we study the solvability and the local truncation
error.

For convenience, denote

U0 = (0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀−1

)

𝑇

,

U𝑘 = (𝑢𝑘
1
, 𝑢
𝑘

2
, . . . , 𝑢

𝑘

𝑀−1
)
𝑇

, 𝑘 = 1, 2, . . . , 𝑁,

F𝑘 = (𝑓𝑘
1
, 𝑓
𝑘

2
, . . . , 𝑓

𝑘

𝑀−1
)
𝑇

, 𝑘 = 0, 1, . . . , 𝑁,

Λ
1
= (

10 1

1 10 1

d d d
1 10 1

1 10

),

Λ
2
= (

−2 1

1 −2 1

d d d
1 −2 1

1 −2

).

(40)

Then we can give the following matrix form of the
difference scheme (38):

(12𝜅1Λ 2 − 𝜅2Λ 1 − 𝐴0)U
𝑘

= 𝐴
1
U𝑘−1 +

𝑘

∑

𝑗=2

𝐴
𝑗
U𝑘−𝑗 − 𝜏𝛼Λ

1
F𝑘 + Ŷ,

(41)

where

𝐴𝑗 = 𝜛
(𝛼)

2,𝑗
Λ 1, 𝑗 = 0, 1, . . . , 𝑘,

Ŷ = (Ψ̂
1
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀−3

, Ψ̂
𝑀−1
)

𝑇

,

Ψ̂
1
= − (12𝜅

1
− 𝜅
2
− 𝜛
(𝛼)

2,0
) 𝜑
1
(𝑡
𝑘
)

+

𝑘

∑

𝑗=1

𝜛
(𝛼)

2,𝑗
𝜑
1
(𝑡
𝑘−𝑗
) − 𝜏
𝛼
𝑓 (𝑥
0
, 𝑡
𝑘
) ,

Ψ̂
𝑀−1 = − (12𝜅1 − 𝜅2 − 𝜛

(𝛼)

2,0
) 𝜑2 (𝑡𝑘)

+

𝑘

∑

𝑗=1

𝜛
(𝛼)

2,𝑗
𝜑2 (𝑡𝑘−𝑗) − 𝜏

𝛼
𝑓 (𝑥𝑀, 𝑡𝑘) .

(42)

Theorem 7. The difference equation (38) is uniquely solvable.

Proof. From Lemma 5, we know that the eigenvalues of the
tridiagonal matrix (12𝜅

1
Λ
2
− 𝜅
2
Λ
1
− 𝐴
0
) are

𝜁
𝑙
= −48𝜅

1
sin2 ( 𝜋𝑙

2𝑀
) − 4 (𝜅

2
+ 𝜛
(𝛼)

2,0
) [3 − sin2 ( 𝜋𝑙

2𝑀
)] ,

𝑙 = 1, 2, . . . ,𝑀 − 1.

(43)

Due to 𝜅
1
, 𝜅
2
, and 𝜛(𝛼)

2,0
> 0, hence,

det (12𝜅
1Λ 2 − 𝜅2Λ 1 − 𝐴0) =

𝑀−1

∏

𝑙=1

𝜁
𝑙 ̸= 0. (44)

That is, the matrix (12𝜅
1
Λ
2
−𝜅
2
Λ
1
−𝐴
0
) is nonsingular.Thus

(41) is uniquely solvable, and so is (38). The proof is finished.

Theorem8. The local truncation error of the difference scheme
(38) is O(𝜏2 + ℎ4).

Proof. We now define the local truncation error as

𝑅̂
𝑘

𝑙
=
1

𝜏𝛼

𝑘

∑

𝑗=0

𝜛
(𝛼)

2,𝑗
𝑢 (𝑥
𝑙
, 𝑡
𝑘−𝑗
) − (

𝐾
𝛼

ℎ2

12𝛿
2

𝑥
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)

12 + 𝛿2
𝑥

)

− 𝐶
𝛼
𝑢 (𝑥
𝑙
, 𝑡
𝑘
) − 𝑓 (𝑥

𝑙
, 𝑡
𝑘
) .

(45)

Applying (20), (22), and (32), we have

𝑅̂
𝑘

𝑙
= [

[

1

𝜏𝛼

𝑘

∑

𝑗=0

𝜛
(𝛼)

2,𝑗
𝑢 (𝑥
𝑙
, 𝑡
𝑘−𝑗
) − RL𝐷

𝛼

0,𝑡
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)]

]

+ 𝐾
𝛼
[
𝜕
2
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)

𝜕𝑥2
− (

1

ℎ2

12𝛿
2

𝑥
𝑢 (𝑥𝑙, 𝑡𝑘)

12 + 𝛿2
𝑥

)]

= O (𝜏
2
+ ℎ
4
) .

(46)

This finishes the proof.
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In the following, we discuss the stability of Numerical
Algorithm I by the fractional Fourier method [16].

Let 𝑈𝑘
𝑙
be the approximate solution of (38) and define

𝜀
𝑘

𝑙
= 𝑢
𝑘

𝑙
− 𝑈
𝑘

𝑙
, 𝑙 = 1, 2, . . . ,𝑀 − 1, 𝑘 = 0, 1, . . . , 𝑁,

𝜀
𝑘
= (𝜀
𝑘

1
, 𝜀
𝑘

2
, . . . , 𝜀

𝑘

𝑀−1
)
𝑇

.

(47)

So, we can easily obtain the following round-off error
equation:

(12𝜅
1 − 𝜅2 − 𝜛

(𝛼)

2,0
) 𝜀
𝑘

𝑙−1
− 2 (12𝜅1 + 5𝜅2 + 5𝜛

(𝛼)

2,0
) 𝜀
𝑘

𝑙

+ (12𝜅
1
− 𝜅
2
− 𝜛
(𝛼)

2,0
) 𝜀
𝑘

𝑙+1

= 𝜛
(𝛼)

2,1
(𝜀
𝑘−1

𝑙−1
+ 10𝜀
𝑘−1

𝑙
+ 𝜀
𝑘−1

𝑙−1
)

+

𝑘

∑

𝑗=2

𝜛
(2−𝛼)

2,𝑗
(𝜀
𝑘−𝑗

𝑙−1
+ 10𝜀
𝑘−𝑗

𝑙
+ 𝜀
𝑘−𝑗

𝑙+1
) .

(48)

We suppose that the solution of (48) has the following
form:

𝜀
𝑘

𝑙
= 𝜉
𝑘
exp (𝑖𝜙𝑙ℎ) , (49)

where 𝜙 is any of the real spatial wave numbers supported by
the lattice. Substituting (49) into (48) gives

[
12𝜅1sin

2
((1/2) 𝜙ℎ)

3 − sin2 ((1/2) 𝜙ℎ)
+ 𝜅2 + 𝜛

(𝛼)

2,0
] 𝜉𝑘 = −

𝑘

∑

𝑗=1

𝜛
(𝛼)

2,𝑗
𝜉𝑘−𝑗. (50)

If we write

𝜉
𝑘+1
= 𝜂𝜉
𝑘 (51)

and assume that 𝜂 ≡ 𝜂(𝜙) is independent of time, then we
obtain the following expression of the amplification factor:

12𝜅
1sin
2
((1/2) 𝜙ℎ)

3 − sin2 ((1/2) 𝜙ℎ)
+ 𝜅2 = −

𝑘

∑

𝑗=0

𝜛
(𝛼)

2,𝑗
𝜂
−𝑗
. (52)

When |𝜂| > 1 for some 𝜙, then the temporal factor of
the solution grows to infinity according to (51); the numerical
method is unstable. Considering the extreme value 𝜂 = −1,
we find that the numerical method is stable when

12𝜅
1
sin2 ((1/2) 𝜙ℎ)

3 − sin2 ((1/2) 𝜙ℎ)
+ 𝜅
2
≥ −

𝑘

∑

𝑗=0

(−1)
𝑗
𝜛
(𝛼)

2,𝑗
= 𝑆
𝛼,𝑘
. (53)

Although 𝑆
𝛼,𝑘

depends on 𝑘, we can estimate it by its limit
value

𝑆
𝛼
= lim
𝑘→∞

𝑆
𝛼,𝑘
= −

∞

∑

𝑗=0

(−1)
𝑗
𝜛
(𝛼)

2,𝑗
= −4
𝛼
. (54)

In this case, the stability condition becomes

12𝜅
1
sin2 ((1/2) 𝜙ℎ)

3 − sin2 ((1/2) 𝜙ℎ)
+ 𝜅
2
≥ 𝑆
𝛼
. (55)

Note that 𝑆
𝛼
is always negative, and then (55) holds for all

𝜅
1
> 0 and 𝜅

2
> 0. That is to say, Numerical Algorithm I (see

(38)) is unconditionally stable.

3.2. Numerical Algorithm II. Differentiating (1) with order
2 − 𝛼 in the sense of Riemann-Liouville yields

RL𝐷
2−𝛼

0,𝑡
(
𝐶
𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡))

= RL𝐷
2−𝛼

0,𝑡
(𝐾
𝛼

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶
𝛼
𝑢 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)) .

(56)

Due to

𝐶
𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) = 𝐷

−(2−𝛼)

0,𝑡
(
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡2
) , (57)

it immediately follows that

RL𝐷
2−𝛼

0,𝑡
(
𝐶
𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡)) = ( RL𝐷

2−𝛼

0,𝑡
𝐷
−(2−𝛼)

0,𝑡
)(
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡2
)

=
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡2
.

(58)

Combing (56) with (58) gives

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑡2
= RL𝐷

2−𝛼

0,𝑡
(𝐾
𝛼

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
− 𝐶
𝛼
𝑢 (𝑥, 𝑡)) + 𝑔 (𝑥, 𝑡) ,

(59)

where 𝑔(𝑥, 𝑡) = RL𝐷
2−𝛼

0,𝑡
𝑓(𝑥, 𝑡).

Next, for the second-order time derivative 𝜕2𝑢(𝑥
𝑙
, 𝑡
𝑘
)/𝜕𝑡
2,

we approximate it by the usual three-point central difference
formula

𝜕
2
𝑢 (𝑥𝑙, 𝑡𝑘)

𝜕𝑡2
=
𝑢 (𝑥𝑙, 𝑡𝑘−1) − 2𝑢 (𝑥𝑙, 𝑡𝑘) + 𝑢 (𝑥𝑙, 𝑡𝑘+1)

𝜏2

+ O (𝜏
2
) .

(60)

Let 𝑢𝑘
𝑙
be the numerical approximation of 𝑢(𝑥

𝑙
, 𝑡
𝑘
).

Substituting the expansions (20), (32), and (60) in (59) and
removing the higher-order terms, one obtains Numerical
Algorithm II as follows:

𝑢
𝑘+1

𝑙−1
+ 10𝑢

𝑘+1

𝑙
+ 𝑢
𝑘+1

𝑙+1

= [2 + 𝜛
(2−𝛼)

2,0
(12𝜅1 − 𝜅2)] 𝑢

𝑘

𝑙−1

+ 2 [10 − 𝜛
(2−𝛼)

2,0
(12𝜅
1
+ 5𝜅
2
)] 𝑢
𝑘

𝑙
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+ [2 + 𝜛
(2−𝛼)

2,0
(12𝜅
1
− 𝜅
2
)] 𝑢
𝑘

𝑙+1

− 𝑢
𝑘−1

𝑙−1
− 10𝑢

𝑘−1

𝑙
− 𝑢
𝑘−1

𝑙+1

+ 12𝜅
1

𝑘

∑

𝑗=1

𝜛
(2−𝛼)

2,𝑗
[𝑢
𝑘−𝑗

𝑙−1
− 2𝑢
𝑘−𝑗

𝑙
+ 𝑢
𝑘−𝑗

𝑙+1
]

− 𝜅
2

𝑘

∑

𝑗=1

𝜛
(2−𝛼)

2,𝑗
[𝑢
𝑘−𝑗

𝑙−1
+ 10𝑢

𝑘−𝑗

𝑙
+ 𝑢
𝑘−𝑗

𝑙+1
]

+ 𝜏
2
[𝑔
𝑘

𝑙−1
+ 10𝑔

𝑘

𝑙
+ 𝑔
𝑘

𝑙+1
] ,

(61)

where 𝑙 = 1, . . . ,𝑀 − 1, 𝑘 = 1, . . . , 𝑁 − 1. The initial and
boundary value conditions can be discretized by

𝑢
0

𝑙
= 0, 𝑙 = 0, 1, . . . ,𝑀,

1

𝜏

𝛿
𝑡
𝑢
0

𝑙

1 + (1/2) 𝛿𝑡

=
1

𝜏

𝑢
1

𝑙
− 𝑢
0

𝑙

1 + (1/2) 𝛿𝑡

= 0, 𝑙 = 0, 1, . . . ,𝑀,

𝑢
𝑘

0
= 𝜑
1 (𝑘𝜏) , 𝑢

𝑘

𝑀
= 𝜑
2 (𝑘𝜏) , 𝑘 = 0, 1, . . . , 𝑁,

(62)

where 𝑓𝑘
𝑙
= 𝑓(𝑥

𝑙
, 𝑡
𝑘
), 𝜅
1
= 𝐾
𝛼
𝜏
𝛼
/ℎ
2, and 𝜅

2
= 𝐶
𝛼
𝜏
𝛼.

Similar toNumerical Algorithm I, we discuss the solvabil-
ity and local truncation error of Numerical Algorithm II.

Denote

G𝑘 = (𝑔𝑘
1
, 𝑔
𝑘

2
, . . . , 𝑔

𝑘

𝑀−1
)
𝑇

, 𝑘 = 0, 1, . . . , 𝑁. (63)

Then the matrix form of Numerical Algorithm II (61) is
written as

Λ
1
U𝑘+1 = (2Λ

1
+ 𝐴
0
)U𝑘 − Λ

1
U𝑘−1 +

𝑘

∑

𝑗=1

𝐴
𝑗
U𝑘−𝑗

+ 𝜏
2
Λ
1
G𝑘 + Ỹ, 𝑘 = 1, . . . , 𝑁 − 1,

(64)

where

𝐴
𝑗
= 𝜛
(2−𝛼)

2,𝑗
(12𝜅
1
Λ
2
− 𝜅
2
Λ
1
) , 𝑗 = 0, 1, . . . , 𝑘,

Ỹ = (Ψ̃1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀−3

, Ψ̃𝑀−1)

𝑇

,

Ψ̃
1 = −𝜑1 (𝑡𝑘+1) + 2𝜑1 (𝑡𝑘) − 𝜑1 (𝑡𝑘−1)

+ (12𝜅
1
− 𝜅
2
)

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
𝜑
1
(𝑡
𝑘−𝑗
) + 𝜏
2
𝑔 (𝑥
0
, 𝑡
𝑘
) ,

Ψ̃
𝑀−1

= −𝜑
2
(𝑡
𝑘+1
) + 2𝜑

2
(𝑡
𝑘
) − 𝜑
2
(𝑡
𝑘−1
)

+ (12𝜅
1
− 𝜅
2
)

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
𝜑
2
(𝑡
𝑘−𝑗
) + 𝜏
2
𝑔 (𝑥
𝑀
, 𝑡
𝑘
) .

(65)

Theorem 9. The difference equation (61) is uniquely solvable.

Proof. Obviously, the eigenvalues of the tridiagonal matrix
Λ
1
are given by

𝜁
𝑙
= 12 − 4sin2 ( 𝜋𝑙

2𝑀
) , 𝑙 = 1, 2, . . . ,𝑀 − 1. (66)

Hence,

det (Λ
1) =

𝑀−1

∏

𝑙=1

𝜁
𝑙 > 0. (67)

Therefore, the solution of (61) exists and is uniquely solvable.

In order to get the local truncation error analysis, we need
the following lemma.

Lemma 10. Consider

1

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
=
(𝑘𝜏)
𝛼−2

Γ (𝛼 − 1)
+ O (𝜏

2
) , 𝑘 = 1, . . . , 𝑁. (68)

Proof. Let 𝑢(𝑥, 𝑡) ≡ 1 and then from Definition 3 we have

RL𝐷
2−𝛼

0,𝑡
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=𝑡𝑘
=

1

Γ (𝛼 − 1)

𝜕

𝜕𝑡
∫

𝑡

0

𝑢 (𝑥, 𝑠)

(𝑡 − 𝑠)
2−𝛼
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝑡𝑘

=
(𝑘𝜏)
𝛼−2

Γ (𝛼 − 1)
.

(69)

It follows from (32) that

RL𝐷
2−𝛼

0,𝑡
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=𝑡𝑘
=

1

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
𝑢 (𝑥, 𝑡

𝑘−𝑗
) + O (𝜏

2
)

=
1

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
+ O (𝜏

2
) .

(70)

Combining (69) and (77) leads to

1

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
=
(𝑘𝜏)
𝛼−2

Γ (𝛼 − 1)
+ O (𝜏

2
) , 𝑘 = 1, . . . , 𝑁. (71)

This ends the proof.

Theorem 11. The local truncation error of difference scheme
(61) is O(𝜏2 + ℎ4).

Proof. We now define

𝑅̃
𝑘

𝑙
=
𝑢 (𝑥
𝑙
, 𝑡
𝑘−1
) − 2𝑢 (𝑥

𝑙
, 𝑡
𝑘
) + 𝑢 (𝑥

𝑙
, 𝑡
𝑘+1
)

𝜏2

−
𝐾
𝛼

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
(
1

ℎ2

12𝛿
2

𝑥
𝑢 (𝑥
𝑙
, 𝑡
𝑘−𝑗
)

12 + 𝛿2
𝑥

)

−
𝐶
𝛼

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
𝑢 (𝑥
𝑙
, 𝑡
𝑘−𝑗
) − 𝑔 (𝑥

𝑙
, 𝑡
𝑘
) .

(72)



Abstract and Applied Analysis 9

By using (20), (32), (59), and (60), one gets

𝑅̃
𝑘

𝑙
=
𝑢 (𝑥
𝑙
, 𝑡
𝑘−1
) − 2𝑢 (𝑥

𝑙
, 𝑡
𝑘
) + 𝑢 (𝑥

𝑙
, 𝑡
𝑘+1
)

𝜏2

−
𝐾
𝛼

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
(
1

ℎ2

12𝛿
2

𝑥
𝑢 (𝑥𝑙, 𝑡𝑘−𝑙)

12 + 𝛿2
𝑥

)

+
𝐶
𝛼

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
𝑢 (𝑥
𝑙
, 𝑡
𝑘−𝑗
) −

𝜕
2
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)

𝜕𝑡2

+ 𝐾
𝛼 RL𝐷

2−𝛼

0,𝑡
(
𝜕
2
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)

𝜕𝑥2
) − 𝐶

𝛼 RL𝐷
2−𝛼

0,𝑡
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)

= [
𝑢 (𝑥
𝑙
, 𝑡
𝑘−1
) − 2𝑢 (𝑥

𝑙
, 𝑡
𝑘
) + 𝑢 (𝑥

𝑙
, 𝑡
𝑘+1
)

𝜏2
−
𝜕
2
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)

𝜕𝑡2
]

+
𝐾
𝛼

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
(
𝜕
2
𝑢 (𝑥
𝑙
, 𝑡
𝑘−𝑙
)

𝜕𝑥2
−
1

ℎ2

12𝛿
2

𝑥
𝑢 (𝑥
𝑙
, 𝑡
𝑘−𝑙
)

12 + 𝛿2
𝑥

)

+ 𝐾
𝛼
[

[

RL𝐷
2−𝛼

0,𝑡
(
𝜕
2
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)

𝜕𝑥2
)

−
1

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
(
𝜕
2
𝑢 (𝑥𝑙, 𝑡𝑘−𝑙)

𝜕𝑥2
)]

]

+ 𝐶
𝛼
[

[

1

𝜏2−𝛼

𝑘

∑

𝑗=0

𝜛
(2−𝛼)

2,𝑗
𝑢 (𝑥
𝑙
, 𝑡
𝑘−𝑗
) − RL𝐷

2−𝛼

0,𝑡
𝑢 (𝑥
𝑙
, 𝑡
𝑘
)]

]

= O (𝜏
2
) + O (𝜏

2
ℎ
4
) +

(𝑘𝜏)
𝛼−2

Γ (𝛼 − 1)
O (ℎ
4
) .

(73)

Noticing that 1 ≤ 𝑘 ≤ 𝑁, then

(
1

𝑇
)

2−𝛼

≤ (𝑘𝜏)
𝛼−2
≤ (

𝑁

𝑇
)

2−𝛼

, (74)

so we can get

𝑅̃
𝑘

𝑙
= O (𝜏

2
+ ℎ
4
) . (75)

This completes the proof.

Next, we study the stability of Numerical Algorithm II
(see (61)).

As before, we can easily obtain the following round-off
error equation:

𝜀
𝑘+1

𝑙−1
+ 10𝜀
𝑘+1

𝑙
+ 𝜀
𝑘+1

𝑙+1
= [2 + 𝜛

(2−𝛼)

2,0
(12𝜅1 − 𝜅2)] 𝜀

𝑘

𝑙−1

+ 2 [10 − 𝜛
(2−𝛼)

2,0
(12𝜅
1
+ 5𝜅
2
)] 𝜀
𝑘

𝑙

+ [2 + 𝜛
(2−𝛼)

2,0
(12𝜅
1
− 𝜅
2
)] 𝜀
𝑘

𝑙+1

− 𝜀
𝑘−1

𝑙−1
− 10𝜀
𝑘−1

𝑙
− 𝜀
𝑘−1

𝑙+1

+ 12𝜅1

𝑘

∑

𝑗=1

𝜛
(2−𝛼)

2,𝑗
[𝜀
𝑘−𝑗

𝑙−1
− 2𝜀
𝑘−𝑗

𝑙
+ 𝜀
𝑘−𝑗

𝑙+1
]

− 𝜅
2

𝑘

∑

𝑗=1

𝜛
(2−𝛼)

2,𝑗
[𝜀
𝑘−𝑗

𝑙−1
+ 10𝜀
𝑘−𝑗

𝑙
+ 𝜀
𝑘−𝑗

𝑙+1
] ,

𝑘 = 1, . . . , 𝑁 − 1.

(76)

Substituting (49) into (76) yields

[3 − sin2 (1
2
𝜙ℎ)] 𝜉

𝑘+1

= {2 [3 − sin2 (1
2
𝜙ℎ)]

− 12𝜅1𝜛
(2−𝛼)

2,0
sin2 (1

2
𝜙ℎ)

− 𝜅
2
𝜛
(2−𝛼)

2,0
[3 − sin2 (1

2
𝜙ℎ)]} 𝜉

𝑘

− [3 − sin2 (1
2
𝜙ℎ)] 𝜉

𝑘−1

− 𝜅
2
[3 − sin2 (1

2
𝜙ℎ)]

×

𝑘

∑

𝑗=1

𝜛
(2−𝛼)

2,𝑗
𝜉
𝑘−𝑗

− 12𝜅1sin
2
(
1

2
𝜙ℎ)

×

𝑘

∑

𝑗=1

𝜛
(2−𝛼)

2,𝑗
𝜉𝑘−𝑗.

(77)

From (51) and (77), we have

[3 − sin2 (1
2
𝜙ℎ)] 𝜂 = {2 [3 − sin2 (1

2
𝜙ℎ)]

− 12𝜅1𝜛
(2−𝛼)

2,0
sin2 (1

2
𝜙ℎ)

−𝜅2𝜛
(2−𝛼)

2,0
[3 − sin2 (1

2
𝜙ℎ)]}

− [3 − sin2 (1
2
𝜙ℎ)] 𝜂

−1
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Table 1: The maximum error and temporal and spatial convergence orders by Numerical Algorithm I (see (38)).

𝛼 Themaximum error Temporal convergence order Spatial convergence order

1.1

ℎ =
1

4
, 𝜏 =

1

2
8.057755𝑒 − 002 — —

ℎ =
1

8
, 𝜏 =

1

8
9.573435𝑒 − 003 1.5366 3.0733

ℎ =
1

16
, 𝜏 =

1

32
6.103333𝑒 − 004 1.9857 3.9714

ℎ =
1

32
, 𝜏 =

1

128
3.827561𝑒 − 005 1.9976 3.9951

ℎ =
1

64
, 𝜏 =

1

512
2.394875𝑒 − 006 1.9992 3.9984

1.3

ℎ =
1

4
, 𝜏 =

1

2
8.079213𝑒 − 002 — —

ℎ =
1

8
, 𝜏 =

1

8
1.170294𝑒 − 002 1.3937 2.7873

ℎ =
1

16
, 𝜏 =

1

32
7.818506𝑒 − 004 1.9519 3.9038

ℎ =
1

32
, 𝜏 =

1

128
5.015017𝑒 − 005 1.9813 3.9626

ℎ =
1

64
, 𝜏 =

1

512
3.166977𝑒 − 006 1.9925 3.9851

1.5

ℎ =
1

4
, 𝜏 =

1

2
7.117932𝑒 − 002 — —

ℎ =
1

8
, 𝜏 =

1

8
1.300290𝑒 − 002 1.2263 2.4526

ℎ =
1

16
, 𝜏 =

1

32
9.519179𝑒 − 004 1.8859 3.7719

ℎ =
1

32
, 𝜏 =

1

128
6.385188𝑒 − 005 1.9490 3.8980

ℎ =
1

64
, 𝜏 =

1

512
4.135300𝑒 − 006 1.9743 3.9487

1.7

ℎ =
1

4
, 𝜏 =

1

2
5.069482𝑒 − 002 — —

ℎ =
1

8
, 𝜏 =

1

8
1.157045𝑒 − 002 1.0657 2.1314

ℎ =
1

16
, 𝜏 =

1

32
9.766015𝑒 − 004 1.7833 3.5665

ℎ =
1

32
, 𝜏 =

1

128
7.054045𝑒 − 005 1.8956 3.7912

ℎ =
1

64
, 𝜏 =

1

512
4.819461𝑒 − 006 1.9358 3.8715

1.9

ℎ =
1

4
, 𝜏 =

1

2
1.938949𝑒 − 002 — —

ℎ =
1

8
, 𝜏 =

1

8
4.643245𝑒 − 003 1.0310 2.0621

ℎ =
1

16
, 𝜏 =

1

32
5.122387𝑒 − 004 1.5901 3.1802

ℎ =
1

32
, 𝜏 =

1

128
4.251159𝑒 − 005 1.7954 3.5909

ℎ =
1

64
, 𝜏 =

1

512
3.231450𝑒 − 006 1.8588 3.7176

− 𝜅2 [3 − sin
2
(
1

2
𝜙ℎ)]

𝑘

∑

𝑗=1

𝜛
(2−𝛼)

2,𝑗
𝜂
−𝑗

− 12𝜅
1
sin2 (1

2
𝜙ℎ)

𝑘

∑

𝑗=1

𝜛
(2−𝛼)

2,𝑗
𝜂
−𝑗
.

(78)

Considering the extreme value 𝜂 = −1, we can obtain the
following stability condition from (78):

sin2 (1
2
𝜙ℎ) ≤

12 − 3𝜅
2

4 + (12𝜅
1
− 𝜅
2
)∑
𝑘

𝑗=0
(−1)
𝑗
𝜛
(2−𝛼)

2,𝑗

≡ 𝑆
𝛼,𝑘
.

(79)
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Table 2: The maximum error and temporal convergence order by Numerical Scheme II (see (61)).

𝛼 Themaximum error The temporal convergence order

1.1

ℎ =
1

5
, 𝜏 =

1

50
5.030598𝑒 − 004 —

ℎ =
1

5
, 𝜏 =

1

100
1.398353𝑒 − 004 1.8470

ℎ =
1

5
, 𝜏 =

1

200
4.521910𝑒 − 005 1.6287

ℎ =
1

5
, 𝜏 =

1

400
2.132246𝑒 − 005 1.0846

1.2

ℎ =
1

6
, 𝜏 =

1

50
4.445704𝑒 − 004 —

ℎ =
1

6
, 𝜏 =

1

100
1.173968𝑒 − 004 1.9210

ℎ =
1

6
, 𝜏 =

1

200
3.399818𝑒 − 005 1.7879

ℎ =
1

6
, 𝜏 =

1

400
1.295545𝑒 − 005 1.3919

1.3

ℎ =
1

5
, 𝜏 =

1

50
3.816458𝑒 − 004 —

ℎ =
1

7
, 𝜏 =

1

100
9.909362𝑒 − 005 1.9454

ℎ =
1

7
, 𝜏 =

1

200
2.713495𝑒 − 005 1.8686

ℎ =
1

7
, 𝜏 =

1

400
8.986675𝑒 − 006 1.5943

1.4

ℎ =
1

5
, 𝜏 =

1

50
3.193648𝑒 − 004 —

ℎ =
1

8
, 𝜏 =

1

100
8.224534𝑒 − 005 1.9572

ℎ =
1

8
, 𝜏 =

1

200
2.186799𝑒 − 005 1.9111

ℎ =
1

8
, 𝜏 =

1

400
6.641262𝑒 − 006 1.7193

1.5

ℎ =
1

10
, 𝜏 =

1

50
2.574223𝑒 − 004 —

ℎ =
1

10
, 𝜏 =

1

100
6.580906𝑒 − 005 1.9678

ℎ =
1

10
, 𝜏 =

1

200
1.700153𝑒 − 005 1.9526

ℎ =
1

10
, 𝜏 =

1

400
4.689779𝑒 − 006 1.8581

1.6

ℎ =
1

15
, 𝜏 =

1

50
1.972538𝑒 − 004 —

ℎ =
1

15
, 𝜏 =

1

100
5.020982𝑒 − 005 1.9740

ℎ =
1

15
, 𝜏 =

1

200
1.272752𝑒 − 005 1.9800

ℎ =
1

15
, 𝜏 =

1

400
3.268637𝑒 − 006 1.9612

1.7

ℎ =
1

20
, 𝜏 =

1

50
1.402871𝑒 − 004 —

ℎ =
1

20
, 𝜏 =

1

100
3.570742𝑒 − 005 1.9741

ℎ =
1

20
, 𝜏 =

1

200
9.023412𝑒 − 006 1.9845

ℎ =
1

20
, 𝜏 =

1

400
2.285957𝑒 − 006 1.9809
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Table 2: Continued.

𝛼 Themaximum error The temporal convergence order

1.8

ℎ =
1

20
, 𝜏 =

1

50
8.770513𝑒 − 005 —

ℎ =
1

20
, 𝜏 =

1

100
2.235014𝑒 − 005 1.9724

ℎ =
1

20
, 𝜏 =

1

200
5.655983𝑒 − 006 1.9824

ℎ =
1

20
, 𝜏 =

1

400
1.438349𝑒 − 006 1.9754

1.9

ℎ =
1

20
, 𝜏 =

1

50
4.067501𝑒 − 005 —

ℎ =
1

20
, 𝜏 =

1

100
1.038309𝑒 − 005 1.9699

ℎ =
1

20
, 𝜏 =

1

200
2.636242𝑒 − 006 1.9777

ℎ =
1

20
, 𝜏 =

1

400
6.778414𝑒 − 007 1.9595

0 0.5

0.5

1 1.5

1.5

2.5

3.5

4.5

2
0

1

2

3

4

x

u
(
x
,
t
=
0
.8
)

𝛼 = 1

𝛼 = 1.4

𝛼 = 1.7

𝛼 = 1.8

Figure 1: Dependence of the numerical solution for different values
of 𝛼 by Numerical Algorithm I (see (38)) with 𝜏 = 0.002, ℎ =

0.0025.

For large enough 𝑘, we can estimate 𝑆
𝛼,𝑘

by its limit value

𝑆
𝛼
= lim
𝑘→∞

𝑆
𝛼,𝑘
=

12 − 3𝜅
2

4 + (12𝜅
1
− 𝜅
2
)∑
∞

𝑗=0
(−1)
𝑗
𝜛
(2−𝛼)

2,𝑗

=
12 − 3𝜅

2

4 + (12𝜅
1
− 𝜅
2
) 42−𝛼

.

(80)

It follows that

sin2 (1
2
𝜙ℎ) ≤

12 − 3𝜅2

4 + (12𝜅
1
− 𝜅
2
) 42−𝛼

= 𝑆𝛼. (81)

Because the sine function is bounded by 1, from (81) one
finds that Numerical Algorithm II is to be stable if 𝑆

𝛼
≥ 1,

x

u
(
x
,
t
=
0
.6
)

𝛼 = 1

𝛼 = 1.4

𝛼 = 1.7

𝛼 = 2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

0.5 1 1.5 2

Figure 2: Dependence of the numerical solution for different values
of 𝛼 by Numerical Algorithm I (see (38)) with 𝜏 = 0.0001, ℎ = 0.05.

that is,

12 − 3𝜅2

4 + (12𝜅
1
− 𝜅
2
) 42−𝛼

≥ 1. (82)

Furthermore, stability condition (82) can be rewritten as

3ℎ
2
(4 − 𝐶𝛼𝜏

𝛼
)

ℎ2 + 41−𝛼𝜏𝛼 (12𝐾
𝛼
− 𝐶
𝛼
ℎ2)

≥ 4, (83)

where 𝐾𝛼 > 0 and 𝐶𝛼 > 0 are diffusion and reaction
coefficients, respectively.

In addition, the numerical check of the validity of the
stability condition (83) will be discussed in Section 4.

Moreover, fromTheorems 8 and 11, we know that Numer-
ical Algorithm I (see (38)) and Numerical Algorithm II
(see (61)) are all consistent with the local truncation errors
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0

−0.02

−0.04

−0.06

−0.08

−0.1

−0.12
2

1.5
1

0.5
0 0

0.5

1

t
x

Er
ro

rU
−
u

(x
,
t
)

Figure 3: The error of the analytical solution and the numerical
solution for 𝛼 = 1.5 by Numerical Algorithm I (see (38)) with
𝜏 = 0.0025, ℎ = 0.01.

x

u
(
x
,
t
=
0
.5
)

𝛼 = 1

𝛼 = 1.2

𝛼 = 1.6

𝛼 = 2

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

0.5 1 1.5 2

Figure 4: Dependence of the numerical solution for different values
of𝛼 byNumerical Algorithm II (see (61)) with 𝜏 = 0.002, ℎ = 0.0025.

𝑅̂
𝑘

𝑙
= O(𝜏2 + ℎ4) and 𝑅̃𝑘

𝑙
= O(𝜏2 + ℎ4) because 𝑅̂𝑘

𝑙
, 𝑅̃
𝑘

𝑙
→ 0 as

𝜏, ℎ → 0.Therefore, according to Lax’s EquivalenceTheorem
[33], Numerical Algorithm I unconditionally converges at the
same orderO(𝜏2+ℎ4), but Numerical Algorithm II converges
at the same order O(𝜏2 + ℎ4) under condition (83).

4. Numerical Example

In this section, we give a numerical example to demonstrate
the efficiency of the derived numerical algorithms.

Example 1. Consider the following equation:

𝐶𝐷
𝛼

0,𝑡
𝑢 (𝑥, 𝑡) =

𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2
− 𝑢 (𝑥, 𝑡) + 𝑓 (𝑥, 𝑡) ,

0 ≤ 𝑡 ≤ 1, 0 < 𝑥 < 2,

(84)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

𝛼 = 1

𝛼 = 1.2

𝛼 = 1.6

𝛼 = 2

0 0.5 1 1.5 2

u
(
x
,
t
=
0
.2
)

Figure 5: Dependence of the numerical solution for different values
of 𝛼 by Numerical Algorithm II (see (61)) with 𝜏 = 0.0001, ℎ = 0.05.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

u
(
x
,
t
=
0
.5
)

𝛼 = 1

𝛼 = 1.2

𝛼 = 1.6

𝛼 = 2

x

Figure 6: The error of the analytical solution and the numerical
solution for 𝛼 = 1.5 by Numerical Algorithm II (see (61)) with
𝜏 = 0.04, ℎ = 0.002.

where 𝑓(𝑥, 𝑡) = 𝛼3[(6𝑡3−𝛼/Γ(4 − 𝛼)) + 𝑡3(1 + (𝜋2/4))] sin((𝜋/
2)𝑥).

The analytical solution of this equation is 𝑢(𝑥, 𝑡) =

(𝛼𝑡)
3 sin((𝜋/2)𝑥). The initial conditions and the boundary

conditions are satisfied with the exact solution 𝑢(𝑥, 𝑡) given
previously.

On one hand, we use Numerical Algorithm I (see (38)) to
solve the previous equation. At first, we give the comparisons
of the analytical and numerical solutions for different order,
𝛼, 𝜏, and ℎ in Figures 1 and 2, respectively, andwe observe that
the numerical solution is in line with the analytical solution
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Numerical solution
Exact solution

0
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0.2

0.3

0.4
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0 0.5 1 1.5 2

u
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x
,
t
=
0
.5
)

Figure 7: Comparison of the analytical solution and numerical
solution for 𝛼 = 1.6 by Numerical Algorithm II (see (61)) with
ℎ = 0.04, 𝜏 = 0.005, which satisfy the stability (83).

Numerical solution
Exact solution

2

1.5

1

0.5

0

−0.5

−1

−1.5

−2

×10
57

x

0 0.5 1 1.5 2

u
(
x
,
t
=
0
.5
)

Figure 8: Comparison of the analytical solution and numerical
solution for 𝛼 = 1.6 by Numerical Algorithm II (see (61)) with
ℎ = 0.01, 𝜏 = 0.01, which do not satisfy the stability (83).

and the velocity 𝑢 increases with the increase of order 𝛼.
Meanwhile, the errors are shown in Figure 3 with 𝛼 = 1.5.
Finally, the temporal and spatial convergence orders are listed
in Table 1.

Next, we use Numerical Algorithm II (61). In this situ-
ation, we take (60), the equivalence equation of (1), where
𝑔(𝑥, 𝑡) = 6𝑡𝛼

3
[1 + (𝑡

𝛼
/Γ(2 + 𝛼))(1 + (𝜋

2
/4))] sin((𝜋/2)𝑥).

Figures 4 and 5 display that the velocity 𝑢 increases with
the increase of order 𝛼 for different 𝜏 and ℎ. Figure 6 presents

the error between the analytical solution and numerical
solution of (60). Table 2 lists the temporal convergence
orders.

Finally, we checked the stability condition given in (83)
in the following way. Firstly, we choose ℎ = 0.04, 𝜏 =

0.005, and 𝛼 = 1.6, which satisfy stability condition (83), the
comparison result of the numerical solution and analytical
solution is shown in Figure 7. Secondly, we choose ℎ =

0.01, 𝜏 = 0.01, and 𝛼 = 1.6, and then these parameters
do not satisfy stability condition (83); the comparison result
of the numerical solution and analytical solution is shown
in Figure 8. From Figures 7 and 8, we declare that stability
condition (83) is valid.

5. Conclusion

In this paper, we construct two difference schemes for solving
the fractional diffusion-wave equation with reaction term. It
is proved that Numerical Algorithm I (38) is unconditionally
stable andNumerical Algorithm II (61) is conditionally stable
by using the fractional Fourier method. The local truncation
errors of twodifference schemes are bothO(𝜏2+ℎ4), which are
the best results till now. Finally, the numerical results given
in this paper show the effectiveness of the derived numerical
algorithms.
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