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This paper is concerned with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractional 𝑞-
difference equations with nonlocal integral boundary conditions. The existence results are obtained by applying some well-known
fixed point theorems and illustrated with examples.

1. Introduction

Several kinds of boundary value problems of fractional-
order have recently been investigated by many researchers.
Fractional derivatives appear naturally in the mathematical
modelling of dynamical systems involving fractals and chaos.
In fact, the concept of fractional calculus has played a key
role in improving the work based on integer-order (classical)
calculus in several diverse disciplines of science and engi-
neering. This might have been due to the fact that fractional-
differential operators help to understand the hereditary
phenomena in many materials and processes in a better way
than the corresponding integer-order differential operators.
Examples include physics, chemistry, biology, biophysics,
blood flow phenomena, control theory, signal and image
processing, and economics [1–4]. For some recent results on
the topic, see a series of papers [5–12] and the references
therein.

Fractional 𝑞-difference equations, regarded as fractional
analogue of 𝑞-difference equations, have been studied by
several researchers. For some earlier work on the subject,
we refer to [13, 14], whereas the recent development on
the existence theory of fractional 𝑞-difference equations can
be found in [15–25]. In a recent paper [26], the authors
investigated a nonlocal boundary value problem of nonlinear
fractional 𝑞-difference equations:

𝑐

𝐷
𝛼

𝑞
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 0 ≤ 𝑡 ≤ 1, 1 < 𝛼 ≤ 2,

𝛼
1
𝑥 (0) − 𝛽

1
𝐷
𝑞
𝑥 (0) = 𝛾

1
𝑥 (𝜂
1
) ,

𝛼
2
𝑥 (1) + 𝛽

2
𝐷
𝑞
𝑥 (1) = 𝛾

2
𝑥 (𝜂
2
) ,

(1)

where 𝑓 ∈ 𝐶([0, 1] ×R,R), 𝑐𝐷𝛼
𝑞
is the fractional 𝑞-derivative

of the Caputo type, 𝐷
𝑞
is 𝑞-derivative, and 𝛼

𝑖
, 𝛽
𝑖
, 𝛾
𝑖
∈ R, 𝜂

𝑖
∈

(0, 1), 𝑖 = 1, 2.
The purpose of the present paper is to study the following

nonlocal boundary value problem of nonlinear fractional 𝑞-
difference equations:

𝑐

𝐷
𝛽

𝑞
𝑥 (𝑡) + 𝜆𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝑡 ∈ [0, 1] , 1 < 𝛽 ≤ 2, 0 < 𝑞 < 1,

𝑥 (0) = 0, 𝑥 (1) = 𝐼
𝑞
𝑥 (𝜂) = ∫

𝜂

0

𝑥 (𝑠) 𝑑
𝑞
𝑠, 0 < 𝜂 < 1,

(2)

where 𝑓 ∈ 𝐶([0, 1] ×R,R), 𝑐𝐷𝛽
𝑞
is the fractional 𝑞-derivative

of the Caputo type, and 𝜆 is a real number.
Thepaper is organized as follows. Section 2 contains some

necessary background material on the topic, while the main
results are presented in Section 3. We make use of Banach’s
contraction principle, Krasnoselskii’s fixed point theorem,
and Leray-Schauder nonlinear alternative to establish the
existence results for the problem at hand.
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2. Preliminaries on Fractional 𝑞-Calculus

Here we recall some definitions and fundamental results on
fractional 𝑞-calculus.

Definition 1 (see [13]). Let 𝛽 ≥ 0, let 0 < 𝑞 < 1, and let 𝑓 be
a function defined on [0, 1]. The fractional 𝑞-integral of the
Riemann-Liouville type is (𝐼0

𝑞
𝑓)(𝑡) = 𝑓(𝑡) and

(𝐼
𝛽

𝑞
𝑓) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑓 (𝑠) 𝑑
𝑞
(𝑠) , 𝛽 > 0, 𝑡 ∈ [0, 1] ,

(3)
where

Γ
𝑞
(𝛽) =

(1 − 𝑞)
(𝛽−1)

(1 − 𝑞)
𝛽−1

, 0 < 𝑞 < 1. (4)

Recall that Γ
𝑞
(𝛽 + 1) = ⌈𝛽⌉

𝑞
Γ
𝑞
(𝛽), with

⌈𝛽⌉
𝑞
=
𝑞
𝛽

− 1

𝑞 − 1
, (1 − 𝑞)

(0)

= 1,

(1 − 𝑞)
(𝑛)

=

𝑛−1

∏

𝑘=0

(1 − 𝑞
𝑘+1

) , 𝑛 ∈ N.

(5)

More generally, if 𝛽 ∈ R, then

(1 − 𝑞)
(𝛽)

=

∞

∏

𝑖=0

(1 − 𝑞
𝑖+1

)

(1 − 𝑞𝛽+𝑖+1)
. (6)

Lemma 2 (see [27]). For 𝛽 ∈ R+, 𝜆 ∈ (−1,∞), the following
is valid:

𝐼
𝛽

𝑞
((𝑡 − 𝑎)

(𝜆)

) =
Γ
𝑞
(𝜆 + 1)

Γ
𝑞
(𝛽 + 𝜆 + 1)

(𝑡 − 𝑎)
(𝛽+𝜆)

, 0 < 𝑎 < 𝑡 < 𝑏.

(7)
In particular, for 𝜆 = 0, 𝑎 = 0, using 𝑞-integration by

parts, we have

(𝐼
𝛽

𝑞
1) (𝑡) =

1

Γ
𝑞
(𝛽)
∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

𝑑
𝑞
𝑠

=
1

Γ
𝑞
(𝛽)
∫

𝑡

0

𝐷
𝑞
((𝑡 − 𝑠)

(𝛽)

)

−[𝛽]
𝑞

𝑑
𝑞
𝑠

=
−1

Γ
𝑞
(𝛽 + 1)

∫

𝑡

0

𝐷
𝑞
((𝑡 − 𝑠)

(𝛽)

) 𝑑
𝑞
𝑠

=
1

Γ
𝑞
(𝛽 + 1)

𝑡
(𝛽)

.

(8)

For 0 < 𝑞 < 1, we define the 𝑞-derivative of a real valued
function 𝑓 as

𝐷
𝑞
𝑓 (𝑡) =

𝑓 (𝑡) − 𝑓 (𝑞𝑡)

(1 − 𝑞) 𝑡
, 𝑡 ̸= 0,

𝐷
𝑞
𝑓 (0) = lim

𝑛→∞

𝑓 (𝑠𝑞
𝑛

) − 𝑓 (0)

𝑠𝑞𝑛
, 𝑠 ̸= 0.

(9)

For more details, see [28].

Definition 3 (see [29]). The fractional 𝑞-derivative of the
Riemann-Liouville type of order 𝛽 ≥ 0 is defined by
(𝐷
0

𝑞
𝑓)(𝑡) = 𝑓(𝑡) and

(𝐷
𝛽

𝑞
𝑓) (𝑡) = (𝐷

[𝛽]

𝑞
𝐼
[𝛽]−𝛽

𝑞
𝑓) (𝑡) , 𝛽 > 0, (10)

where [𝛽] is the smallest integer greater than or equal to 𝛽.

Definition 4 (see [29]). The fractional 𝑞-derivative of the
Caputo type of order 𝛽 ≥ 0 is defined by

(
𝑐

𝐷
𝛽

𝑞
𝑓) (𝑡) = (𝐼

[𝛽]−𝛽

𝑞
𝐷
[𝛽]

𝑞
𝑓) (𝑡) , 𝛽 > 0, (11)

where [𝛽] is the smallest integer greater than or equal to 𝛽.

Now we state some known results involving 𝑞-derivatives
and 𝑞-integrals.

Lemma 5 (see [29]). Let 𝛽, 𝛾 ≥ 0, and let 𝑓 be a function
defined on [0, 1]. Then

(i) (𝐼𝛽
𝑞
𝐼
𝛾

𝑞
𝑓)(𝑡) = (𝐼

𝛽+𝛾

𝑞
𝑓)(𝑡),

(ii) (𝐷𝛽
𝑞
𝐼
𝛽

𝑞
𝑓)(𝑡) = 𝑓(𝑡),

(iii) (𝐼𝛽
𝑞

𝑐

𝐷
𝛽

𝑞
𝑓)(𝑡) = 𝑓(𝑡) − ∑

[𝛽]−1

𝑘=0
(𝑡
𝑘

/Γ
𝑞
(𝑘 + 1))(

𝑐

𝐷
𝑘

𝑞
𝑓)(0),

𝛽 > 0.

Lemma 6 (see [19]). Let 𝛽 ≥ 0 and 𝑛 ∈ N. Then, the following
equality holds:

(𝐼
𝛽

𝑞
𝐷
𝑛

𝑞
𝑓) (𝑡) = 𝐷

𝑛

𝑞
𝐼
𝛽

𝑞
𝑓 (𝑡) −

[𝛽]−1

∑

𝑘=0

𝑡
𝛽−𝑛+𝑘

Γ
𝑞
(𝛽 − 𝑛 + 𝑘)

(𝐷
𝑘

𝑞
𝑓) (0) .

(12)

In the forthcoming analysis, the following lemma plays a
pivotal role.

Lemma 7. Let ℎ ∈ 𝐶([0, 1],R) be a given function. Then the
unique solution of the boundary value problem,

𝑐

𝐷
𝛽

𝑞
𝑥 (𝑡) + 𝜆𝑥 (𝑡) = ℎ (𝑡) ,

𝑡 ∈ [0, 1] , 1 < 𝛽 ≤ 2, 0 < 𝑞 < 1,

𝑥 (0) = 0, 𝑥 (1) = ∫

𝜂

0

𝑥 (𝑠) 𝑑
𝑞
𝑠, 0 < 𝜂 < 1,

(13)

is given by

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(ℎ (𝑠) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

+ 𝛿
1
𝑡 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

(ℎ (𝑠) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

− 𝛿
1
𝑡 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(ℎ (𝑠) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠,

(14)

where

𝛿
1
=
1 + 𝑞

1 + 𝑞 − 𝜂2
. (15)
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Proof. Using Lemma 5, we canwrite the solution of fractional
𝑞-difference equation in (13) as

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(ℎ (𝑠) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

+ 𝑐
0
𝑡 + 𝑐
1
, 𝑡 ∈ [0, 1] .

(16)

Using the boundary conditions of (13) in (16), we get 𝑐
1
=

0 and

𝑐
0
= 𝛿
1
[∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

(ℎ (𝑠) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

− ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(ℎ (𝑠) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠] ,

(17)

where 𝛿
1
is given by (15). Substituting the values of 𝑐

0
, 𝑐
1
in

(16), we obtain (14).

Let C := 𝐶([0, 1],R) denote the Banach space of all
continuous functions from [0, 1] to R endowed with the
norm defined by ‖𝑥‖ = sup{|𝑥(𝑡)| : 𝑡 ∈ [0, 1]}.

By virtue of Lemma 7, we define an operatorG : C → C
as

(G𝑥) (𝑡) = ∫
𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

+ 𝛿
1
𝑡 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

− 𝛿
1
𝑡 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

(18)

and note that the given problem (2) has solutions only if the
operator equationG𝑥 = 𝑥 has fixed points.

3. Main Results

In the sequel, we assume that
(𝐴
1
) 𝑓 : [0, 1] ×R → R is a continuous function and that
there exists a 𝑞-integrable function 𝜁 : [0, 1] → R

such that |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝜁(𝑡)|𝑥 − 𝑦|, 𝑡 ∈ [0, 1], 𝑥,
𝑦 ∈ R.

For computational convenience, we introduce the nota-
tions:

Λ = 𝜇
1
+ |𝜆| 𝜇

2
, (19)

where

𝜇
1
:= (1 +

𝛿1
) (𝐼
𝛽

𝑞
𝜁) (1) +

𝛿1
 (𝐼
𝛽+1

𝑞
𝜁) (𝜂) ,

𝜇
2
:= (

1

Γ
𝑞
(𝛽 + 1)

(1 +
𝛿1
) +

𝛿1
 𝜂
𝛽+1

Γ
𝑞
(𝛽 + 2)

) .

(20)

Our first existence result is based on Leray-Schauder
nonlinear alternative.

Lemma 8 (nonlinear alternative for single valuedmaps [30]).
Let 𝐸 be a Banach space,𝐶 a closed, convex subset of 𝐸, and 𝑉
an open subset of 𝐶 with 0 ∈ 𝑉. Suppose thatG : 𝑉 → 𝐶 is a
continuous, compact (i.e., G(𝑉) is a relatively compact subset
of 𝐶) map. Then either

(i)G has a fixed point in 𝑉, or
(ii) there is 𝑥 ∈ 𝜕𝑉 (the boundary of 𝑉 in 𝐶) and 𝜀 ∈ (0, 1)

with 𝑥 = 𝜀G(𝑥).

Theorem 9. Suppose that 𝑓 : [0, 1] ×R → R is a continuous
function. In addition, it is assumed that

(𝐴
2
) there exist functions ℎ

1
, ℎ
2
∈ 𝐿
1

([0, 1],R+) and a
nondecreasing function 𝜗 : R+ → R+ such that
|𝑓(𝑡, 𝑥)| ≤ ℎ

1
(𝑡)𝜗(|𝑥|) + ℎ

2
(𝑡), for (𝑡, 𝑥) ∈ [0, 1] ×R.

Then the problem (2) has at least one solution on [0, 1] if
there exists a positive number 𝜔 such that

𝜔 >
𝜗 (𝜔) ]

1
+ ]
2

1 − |𝜆| 𝜇
2

, (21)

where

|𝜆| ̸=
1

𝜇
2

,

]
𝑖
:= (1 +

𝛿1
) (𝐼
𝛽

𝑞
ℎ
𝑖
) (1) +

𝛿1
 (𝐼
𝛽+1

𝑞
ℎ
𝑖
) (𝜂) , 𝑖 = 1, 2.

(22)

Proof. As a first step, it will be shown that the operator G :
C → C (defined by (18)) maps bounded sets into bounded
sets in𝐶([0, 1],R). Notice thatG is continuous. For a positive
number 𝜎, let 𝐵

𝜎
= {𝑥 ∈ 𝐶([0, 1],R) : ‖𝑥‖ ≤ 𝜎} be a bounded

set in 𝐶([0, 1],R). Then, for any 𝑥 ∈ 𝐵
𝜎
, we find that

|(G𝑥) (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(
𝑓 (𝑠, 𝑥 (𝑠))

 + |𝜆| |𝑥 (𝑠)|) 𝑑𝑞𝑠

+
𝛿1
 |𝑡| ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

(
𝑓 (𝑠, 𝑥 (𝑠))

 + |𝜆| |𝑥 (𝑠)|) 𝑑𝑞𝑠

+
𝛿1
 |𝑡| ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(
𝑓 (𝑠, 𝑥 (𝑠))

 + |𝜆| |𝑥 (𝑠)|) 𝑑𝑞𝑠

≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

[ℎ
1
(𝑠) 𝜗 (‖𝑥‖) + ℎ

2
(𝑠)] 𝑑
𝑞
𝑠

+
𝛿1
 |𝑡| ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

[ℎ
1
(𝑠) 𝜗 (‖𝑥‖) + ℎ

2
(𝑠)] 𝑑
𝑞
𝑠

+
𝛿1
 |𝑡| ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

[ℎ
1
(𝑠) 𝜗 (‖𝑥‖) + ℎ

2
(𝑠)] 𝑑
𝑞
𝑠
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≤ 𝜗 (𝜎){∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

ℎ
1
(𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

ℎ
1
(𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

ℎ
1
(𝑠) 𝑑
𝑞
𝑠}

+ {∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

ℎ
2
(𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

ℎ
2
(𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

ℎ
2
(𝑠) 𝑑
𝑞
𝑠}

+ 𝜎 |𝜆| {∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠 +
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠}

≤ 𝜗 (𝜎) ]
1
+ ]
2
+ 𝜎 |𝜆| 𝜇

2
.

(23)

This establishes our assertion.
Next, we show that the operator G maps bounded sets

into equicontinuous sets of 𝐶([0, 1],R). Taking 𝑡
1
, 𝑡
2
∈ [0, 1]

with 𝑡
1
< 𝑡
2
and 𝑥 ∈ 𝐵

𝜎
together with the inequality:

(𝑡
2
− 𝑞𝑠)
(𝛽−1)

− (𝑡
1
− 𝑞𝑠)
(𝛽−1)

≤ (𝑡
2
− 𝑡
1
) for 0 < 𝑡

1
< 𝑡
2
(see

[19] p. 4), we obtain

(G𝑥) (𝑡2) − (G𝑥) (𝑡1)


≤



∫

𝑡
2

0

(𝑡
2
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

−∫

𝑡
1

0

(𝑡
1
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠



+
𝛿1
 (𝑡2 − 𝑡1) ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

× (
𝑓 (𝑠, 𝑥 (𝑠))

 + |𝜆| |𝑥 (𝑠)|) 𝑑𝑞𝑠.

+
𝛿1
 (𝑡2 − 𝑡1) ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

× (
𝑓 (𝑠, 𝑥 (𝑠))

 + |𝜆| |𝑥 (𝑠)|) 𝑑𝑞𝑠.

≤



∫

𝑡
1

0

(𝑡
2
− 𝑡
1
)

Γ
𝑞
(𝛽)

[ℎ
1
(𝑠) 𝜗 (𝜎) + ℎ

2
(𝑠) + |𝜆| 𝜎] 𝑑

𝑞
𝑠

+ ∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

[ℎ
1
(𝑠) 𝜗 (𝜎) + ℎ

2
(𝑠) + |𝜆| 𝜎] 𝑑

𝑞
𝑠



+
𝛿1
 (𝑡2 − 𝑡1) ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

× [ℎ
1
(𝑠) 𝜗 (𝜎) + ℎ

2
(𝑠) + |𝜆| 𝜎] 𝑑

𝑞
𝑠.

+
𝛿1
 (𝑡2 − 𝑡1) ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

× [ℎ
1
(𝑠) 𝜗 (𝜎) + ℎ

2
(𝑠) + |𝜆| 𝜎] 𝑑

𝑞
𝑠.

(24)
It is obvious that the right hand side of the above inequality
tends to zero independently of 𝑥 ∈ 𝐵

𝜎
as 𝑡
2
→ 𝑡
1
. Therefore

the operatorG is completely continuous by the Arzelá-Ascoli
theorem.

Thus the operator G satisfies the hypothesis of Lemma 8
and hence by its conclusion, either condition (i) or condition
(ii) holds. We claim that the conclusion (ii) is not possible.

Let 𝑉 = {𝑥 ∈ 𝐶([0, 1],R) : ‖𝑥‖ < 𝜔} with 𝜔 given by (21).
Then we will show that ‖G𝑥‖ < 𝜔. Indeed, by means of (𝐴

4
),

we get
‖G𝑥‖

≤ 𝜗 (‖𝑥‖){∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

ℎ
1
(𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

ℎ
1
(𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

ℎ
1
(𝑠) 𝑑
𝑞
𝑠}

+ {∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

ℎ
2
(𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

ℎ
2
(𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

ℎ
2
(𝑠) 𝑑
𝑞
𝑠}

+ 𝜔 |𝜆| {∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠 +
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠}

≤ 𝜗 (𝜔) ]
1
+ ]
2
+ 𝜔 |𝜆| 𝜇

2
< 𝜔.

(25)
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Assume that there exist 𝑥 ∈ 𝜕𝑉 and 𝜀 ∈ (0, 1) such that 𝑥 =
𝜀G𝑥.Then for such a choice of 𝑥 and 𝜀, we get a contradiction:

𝜔 = ‖𝑥‖ = 𝜀 ‖G𝑥‖ < 𝜗 (‖𝑥‖) ]
1
+ ]
2
+ 𝜔 |𝜆| 𝜇

2

= 𝜗 (𝜔) ]
1
+ ]
2
+ 𝜔 |𝜆| 𝜇

2
< 𝜔.

(26)

Thus it follows by Lemma 8 that G has a fixed point 𝑥 ∈ 𝑉
which is a solution of the problem (2). This completes the
proof.

Remark 10. In case we take ℎ
1
, ℎ
2
in (𝐴
2
) to be continuous,

then ]
𝑖
= 𝜇
2
‖ℎ
𝑖
‖, 𝑖 = 1, 2, where 𝜇

2
is given by (20).

Our next result deals with existence and uniqueness of
solutions for the problem (2) and is based on Banach’s fixed
point theorem.

Theorem 11. Suppose that the assumption (𝐴
1
) holds and that

Λ < 1, where Λ is given by (19). Then the boundary value
problem (2) has a unique solution.

Proof. Fix 𝑁 = sup
𝑡∈[0,1]

|𝑓(𝑡, 0)| < ∞, 𝑟 ≥ (𝑁𝜇
2
/1 − Λ)

(𝜇
2
is given by (20)), and define 𝐵

𝑟
= {𝑥 ∈ C : ‖𝑥‖ ≤ 𝑟}.

We will show that G𝐵
𝑟
⊂ 𝐵
𝑟
, where G is defined by (18). For

𝑥 ∈ 𝐵
𝑟
, 𝑡 ∈ [0, 1], it follows by the assumption (𝐴

1
) that

𝑓 (𝑡, 𝑥 (𝑡))
 ≤
𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 0)

 +
𝑓 (𝑡, 0)



≤ 𝜁 (𝑡) |𝑥 (𝑡)| +
𝑓 (𝑡, 0)

 ≤ 𝜁 (𝑡) 𝑟 + 𝑁.

(27)

Then, for 𝑥 ∈ 𝐵
𝑟
, 𝑡 ∈ [0, 1], we have

|(G𝑥) (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

[𝜁 (𝑠) 𝑟 + 𝑁] 𝑑
𝑞
𝑠

+ 𝑟 |𝜆| ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠 + |𝑡|

𝛿1


× ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

[𝜁 (𝑠) 𝑟 + 𝑁] 𝑑
𝑞
𝑠

+ 𝑟 |𝜆| ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝑑
𝑞
𝑠 + |𝑡|

𝛿1


× ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

[𝜁 (𝑠) 𝑟 + 𝑁] 𝑑
𝑞
𝑠

+ 𝑟 |𝜆| ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠

≤ 𝑟{∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝜁 (𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝜁 (𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝜁 (𝑠) 𝑑
𝑞
𝑠}

+ 𝑁{∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠 +
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠}

+ 𝑟 |𝜆| {∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠 +
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝑑
𝑞
𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠}

≤ 𝑟 {(𝐼
𝛽

𝑞
𝜁) (1) +

𝛿1
 (𝐼
𝛽+1

𝑞
𝜁) (𝜂) +

𝛿1
 (𝐼
𝛽

𝑞
𝜁) (1)}

+ 𝑁{
1

Γ
𝑞
(𝛽 + 1)

+

𝛿1
 𝜂
𝛽+1

Γ
𝑞
(𝛽 + 2)

+

𝛿1


Γ
𝑞
(𝛽 + 1)

}

+ 𝑟 |𝜆| {
1

Γ
𝑞
(𝛽 + 1)

+

𝛿1
 𝜂
𝛽+1

Γ
𝑞
(𝛽 + 2)

+

𝛿1


Γ
𝑞
(𝛽 + 1)

} ,

(28)

which, in view of (19), implies that

‖G𝑥‖ ≤ 𝑁𝜇
2
+ 𝑟Λ ≤ 𝑟. (29)

This shows thatG𝐵
𝑟
⊂ 𝐵
𝑟
.

Now, for 𝑥, 𝑦 ∈ C, we have

(G𝑥) − (G𝑦)


≤ sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

× (
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))



+ |𝜆|
𝑥 (𝑠) − 𝑦 (𝑠)

) 𝑑𝑞𝑠

+
𝛿1
 |𝑡| ∫

𝜂

0

(𝜂−𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

(
𝑓 (𝑠, 𝑥 (𝑠))−𝑓 (𝑠, 𝑦 (𝑠))



+ |𝜆|
𝑥 (𝑠) − 𝑦 (𝑠)

) 𝑑𝑞𝑠

+
𝛿1
 |𝑡| ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

× (
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))



+ |𝜆|
𝑥 (𝑠) − 𝑦 (𝑠)

) 𝑑𝑞𝑠}

≤
𝑥 − 𝑦

 sup
𝑡∈[0,1]

{∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝜁 (𝑠) 𝑑
𝑞
𝑠

+
𝛿1
 |𝑡| ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝜁 (𝑠) 𝑑
𝑞
𝑠
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+
𝛿1
 |𝑡| ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝜁 (𝑠) 𝑑
𝑞
𝑠

+ |𝜆| (∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠

+
𝛿1
 |𝑡| ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝑑
𝑞
𝑠

+
𝛿1
 |𝑡| ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠)} ,

(30)

which, by (19), takes the form
(G𝑥) (𝑡) − (G𝑦) (𝑡)

 ≤ Λ
𝑥 − 𝑦

 . (31)

As Λ < 1 (the given assumption), therefore G is a contrac-
tion. Hence, by Banach’s contraction mapping principle, the
problem (2) has a unique solution.

If we take 𝜁(𝑡) = 𝐿 (𝐿 is a positive constant), the condition
Λ < 1 becomes 𝐿 < ((1/𝜇

2
) − |𝜆|) and Theorem 11 can be

phrased as follows.

Corollary 12. Let there exists a constant 𝐿 ∈ (0, (1/𝜇
2
) − |𝜆|)

with 𝜇
2
given by (20), and let 𝑓 : [0, 1] × R → R be

a continuous function satisfying the assumption: |𝑓(𝑡, 𝑥) −
𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥 − 𝑦|, 𝑡 ∈ [0, 1], 𝑥, 𝑦 ∈ R. Then the boundary
value problem (2) has a unique solution.

Our last result relies on Krasnoselskii’s fixed point theo-
rem [31].

Lemma 13 (Krasnoselskii). Let 𝑌 be a closed, bounded,
convex, and nonempty subset of a Banach space 𝑋. Let 𝑄

1
, 𝑄
2

be two operators such that (i) 𝑄
1
𝑥 + 𝑄

2
𝑦 ∈ 𝑌 whenever 𝑥, 𝑦 ∈

𝑌; (ii) 𝑄
1
is compact and continuous; (iii) 𝑄

2
is a contraction

mapping. Then there exists 𝑧 ∈ 𝑌 such that 𝑧 = 𝑄
1
𝑧 + 𝑄

2
𝑧.

Theorem 14. Let𝑓 : [0, 1]×R → R be a continuous function
satisfying (𝐴

1
). Furthermore, it is assumed that

(𝐴
3
) there exist a function 𝜉 ∈ 𝐶([0, 1],R+) and a
nondecreasing function 𝜒 ∈ 𝐶([0, 1],R+) such that
𝑓 (𝑡, 𝑥)

 ≤ 𝜉 (𝑡) 𝜒 (|𝑥|) , (𝑡, 𝑥) ∈ [0, 1] ×R. (32)

If

𝛿1
 [∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

𝜁 (𝑠) 𝑑
𝑞
𝑠 + ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝜁 (𝑠) 𝑑
𝑞
𝑠]

+ |𝜆|
𝛿1
 [

𝜂
𝛽+1

Γ
𝑞
(𝛽 + 2)

+
1

Γ
𝑞
(𝛽 + 1)

] < 1,

(33)

with |𝜆|𝜇
2
< 1, then the boundary value problem (2) has at

least one solution on [0, 1].

Proof. Let us consider the set 𝐵
𝑟
= {𝑥 ∈ C : ‖𝑥‖ ≤ 𝑟}, where

𝑟 is given by

𝑟 ≥
𝜒 (𝑟)
𝜉


1 − |𝜆| 𝜇
2

,
𝜉
 = sup
𝑡∈[0,𝑡]

𝜉 (𝑡)
 , (34)

and introduce the operatorsG
1
andG

2
on 𝐵
𝑟
as

(G
1
𝑥) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠,

𝑡 ∈ [0, 1] ,

(G
2
𝑥) (𝑡) = 𝛿

1
𝑡 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

− 𝛿
1
𝑡 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠,

𝑡 ∈ [0, 1] .

(35)

In order to show the hypothesis of Krasnoselskii’s fixed point
theorem, we proceed as follows.

(i) For 𝑥, 𝑦 ∈ 𝐵
𝑟
, we find that

(G1𝑥 +G2𝑦) (𝑡)


≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝜉 (𝑠) 𝜒 (|𝑥 (𝑠)|) + |𝜆| |𝑥 (𝑠)|) 𝑑
𝑞
𝑠

+
𝛿1
 ∫

𝜂

0

(𝜂 − 𝑞𝑠)
(𝛽)

Γ
𝑞
(𝛽 + 1)

(𝜉 (𝑠) 𝜒 (
𝑦 (𝑠)

) + |𝜆|
𝑦 (𝑠)

) 𝑑𝑞𝑠

+
𝛿1
 ∫

1

0

(1 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝜉 (𝑠) 𝜒 (
𝑦 (𝑠)

) + |𝜆|
𝑦 (𝑠)

) 𝑑𝑞𝑠

≤ 𝜒 (𝑟)
𝜉
 [

1

Γ
𝑞
(𝛽 + 1)

(1 +
𝛿1
) +
𝛿1


𝜂
𝛽+1

Γ
𝑞
(𝛽 + 2)

]

+ 𝑟 |𝜆| [
1

Γ
𝑞
(𝛽 + 1)

(1 +
𝛿1
) +
𝛿1


𝜂
𝛽+1

Γ
𝑞
(𝛽 + 2)

]

≤ 𝜒 (𝑟)
𝜉
 𝜇2 + 𝑟 |𝜆| 𝜇2 ≤ 𝑟.

(36)

This implies thatG
1
𝑥 +G

2
𝑦 ∈ 𝐵

𝑟
.

(ii) From the continuity of 𝑓, it follows that the operator
G
1
is continuous. Also, G

1
is uniformly bounded on

𝐵
𝑟
as

G1𝑥
 ≤
𝜒 (𝑟)
𝜉


Γ
𝑞
(𝛽 + 1)

+
|𝜆| 𝑟

Γ
𝑞
(𝛽 + 1)

. (37)
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Next, for any 𝑥 ∈ 𝐵
𝑟
, and 𝜏

1
, 𝜏
2
∈ [0, 1] with 𝜏

1
< 𝜏
2
,

we have
(G1𝑥) (𝜏2) − (G1𝑥) (𝜏1)



=



∫

𝜏
2

0

(𝜏
2
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠

− ∫

𝜏
1

0

(𝜏
1
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠



≤



∫

𝜏
1

0

(𝜏
2
− 𝑞𝑠)
(𝛽−1)

− (𝜏
1
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

× (𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠



+



∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

(𝑓 (𝑠, 𝑥 (𝑠)) − 𝜆𝑥 (𝑠)) 𝑑
𝑞
𝑠



≤ (𝜒 (𝑟)
𝜉
 + |𝜆| 𝑟)

× [∫

𝜏
1

0

(𝜏
2
− 𝑞𝑠)
(𝛽−1)

− (𝜏
1
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠

+ ∫

𝜏
2

𝜏
1

(𝜏
2
− 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑑
𝑞
𝑠]

(38)

which is independent of 𝑥 and tends to zero as 𝜏
2
→

𝜏
1
. Thus, G

1
is equicontinuous. So G

1
is relatively

compact on 𝐵
𝑟
. Hence, by the Arzelá-Ascoli theorem,

G
1
is compact on 𝐵

𝑟
.

(iii) From (𝐴
1
) and (33) it follows thatG

2
is a contraction

mapping.

Thus all the conditions of Lemma 13 are satisfied. Hence,
by the conclusion of Lemma 13, the problem (2) has at least
one solution on [0, 1].

As a special case, for 𝜒(𝑥) ≡ 1, there always exists a
positive 𝑟 such that (34) holds true. In consequence, we have
the following corollary.

Corollary 15. Let 𝑓 : [0, 1] × R → R be a continuous
function satisfying (𝐴

1
). Furthermore, |𝑓(𝑡, 𝑥)| ≤ 𝜉(𝑡),

∀(𝑡, 𝑥) ∈ [0, 1] ×R, and 𝜉 ∈ 𝐶([0, 1],R+). Then the boundary
value problem (2) has at least one solution on [0, 1] provided
(33) holds.

4. Examples

Example 1. Consider the problem

𝑐

𝐷
3/2

𝑞
𝑥 (𝑡) +

1

4
𝑥 (𝑡) =

1

5
𝑥 + cos𝑥, 0 ≤ 𝑡 ≤ 1,

𝑥 (0) = 0, 𝑥 (1) = 𝐼
𝑞
𝑥(
1

3
) ,

(39)

where 𝑞 = 1/2, 𝜆 = 1/4, 𝜂 = 1/3. It is easy to find that 𝛿
1
=

27/25, and

𝑓 (𝑡, 𝑥)
 =



1

5
𝑥 + cos𝑥


≤
1

5
|𝑥| + 1. (40)

Obviously ℎ
1
= 1/5, ℎ

2
= 1, 𝜗(𝜔) = 𝜔. In consequence,

]
1
= 0.3002935758, ]

2
= 1.501467879, and condition (21)

yields 𝜔 > 4.629306104. Thus, the hypothesis of Theorem 9
is satisfied. Hence it follows by the conclusion of Theorem 9
that there exists at least one solution for the problem (39).

Example 2. Consider the nonlocal boundary value problem
given by

𝑐

𝐷
3/2

𝑞
𝑥 (𝑡) +

1

4
𝑥 (𝑡) = 𝐿 (cos 𝑡 + tan−1𝑥) , 0 ≤ 𝑡 ≤ 1,

𝑥 (0) = 0, 𝑥 (1) = 𝐼
𝑞
𝑥(
1

3
) .

(41)

Here 𝑞 = 1/2, 𝜆 = 1/4, 𝜂 = 1/3 and 𝐿 is a constant to
be fixed later on. With the given data, it is found that 𝛿

1
=

27/25, |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥 − 𝑦| and

Λ =
1

Γ
1/2
(5/2)

(1 +
27√3 (4√2 − 1) + 6√2

25√3 (4√2 − 1)
)(𝐿 +

1

4
) .

(42)

Letting

𝐿 < [
1

Γ
1/2
(5/2)

(1 +
27√3 (4√2 − 1) + 6√2

25√3 (4√2 − 1)
)]

−1

−
1

4
,

(43)

all the conditions of Corollary 12 are satisfied. Therefore, the
conclusion of Corollary 12 applies to the problem (41).
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