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∇-Laplace transform, fractional ∇-power function, ∇-Mittag-Leffler function, fractional ∇-integrals, and fractional ∇-differential
on time scales are defined. Some of their properties are discussed in detail. After then, by using Laplace transform method, the
existence of the solution and the dependency of the solution upon the initial value for Cauchy-type problem with the Riemann-
Liouville fractional∇-derivative are studied. Also the explicit solutions to homogeneous equations and nonhomogeneous equations
are derived by using Laplace transform method.

1. Introduction

The subject of fractional calculus (see [1]) has gained consid-
erable popularity and importance during the past three dec-
ades or so due mainly to its demonstrated applications in
numerous seemingly diverse and widespread fields of science
and engineering. It does indeed provide several potentially
useful tools for solving differential and integral equations and
various other problems involving special functions of mathe-
matical physics as well as their extensions and generalizations
in one and more variables.

On the other hand, in real applications, it is not always a
continuous case, but also a discrete case. So, an useful tool as
that time scale is considered. In order to unify differential
equations and difference equations,Higer proposed firstly the
time scale and built the relevant basic theories (see [2–4]).
Recently, some authors studied fractional calculus on time
scales (see [5–7]). Williams [6] gives a definition of fractional
integral and derivative on time scales to unify three cases of
specific time scales, which improved the results in [5]. Bastos
gives definition of fractional Δ-integral and Δ-derivative on
time scales in [7]. In [8], the theory of fractional difference
equations has been studied in detail. In the light of the above
work, we will further study the theory of fractional integral
and derivative on general time scales.

FromTheorem 3.1.3 in [6], we know that the integer order
∇-integral on time scales is

𝐼
𝑚

∇,𝑡0

𝑓 (𝑡) = ∫

𝑡

𝑡0

∇𝑡
1
∫

𝑡1

𝑡0

∇𝑡
2
⋅ ⋅ ⋅ ∫

𝑡𝑚−1

𝑡0

𝑓 (𝑡
𝑚
) ∇𝑡

𝑚

= ∫

𝑡

𝑡0

ℎ̂
𝑚−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏

= ℎ̂
𝑚−1

(𝑡, 𝑡
0
) ∗ 𝑓 (𝑡) ,

(1)

where ∗ is defined in Definition 31. For continuous case, the
fractional ∇-integral (see, e.g., [3]) is defined by

𝐼
𝛼

𝑎+
𝑓 (𝑥) = ∫

𝑥

𝑎

(𝑥 − 𝑡)
𝛼−1

Γ (𝛼)
𝑓 (𝑡) 𝑑𝑡

=
(𝑥 − 𝑎)

𝛼−1

Γ (𝛼)
∗ 𝑓 (𝑥) (𝑥 > 𝑎; 𝛼 > 0) ,

(2)

while for discrete case, the fractional sum (see, e.g., [8]) is
defined by

𝑛0
∇
−]
𝑛

𝑥 (𝑛) =

𝑛

∑

𝑟=0

[
]

𝑛 − 𝑟
] 𝑥 (𝑟)

= [
]
𝑛
] ∗ 𝑥 (𝑛) (] > 0) .

(3)
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Thus, we expect that fractional ∇-integral general on time
scales can be defined by

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) = ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ 𝑓 (𝑡) . (4)

To do this, the key problem is that how to define generalized
∇-power function ℎ̂

𝛼
(𝑡, 𝑡

0
) on time scales. In [6],Williams, by

using axiomatization method, gives a definition of fractional
generalized ∇-power function. However, this definition has
no specific form, but it only has an abstract expression. On
the other hand,we find that someproperties of∇-power func-
tion ℎ̂

𝑘
(𝑡, 𝑡

0
) on time scales under the Laplace transform are

important to define fractional generalized ∇-power function
ℎ̂
𝛼
(𝑡, 𝑡

0
) on time scales. So, in Section 3, we will give a def-

inition of ∇-Laplace transform, fractional generalized ∇-
power function ℎ̂

𝛼
(𝑡, 𝑡

0
) on time scales. Then by using these

definitions, we define and study the Riemann-Liouville frac-
tional ∇-integral, Riemann-Liouville fractional ∇-derivative,
and ∇-Mittag-Leffler function on time scales. In Section 4,
we present some properties of fractional ∇-integral and frac-
tional ∇-differential on time scales. Then, in Section 5,
Cauchy-type problem with the Riemann-Liouville fractional
∇-derivative is discussed. In Section 6, for the Riemann-
Liouville fractional ∇-differential initial value problem, we
discuss the dependency of the solution upon the initial value.
In Section 7, by applying the Laplace transform method, we
derive explicit solutions to homogeneous equations with con-
stant coefficients. In Section 8, we also use the Laplace trans-
form method to find particular solutions of the correspond-
ing nonhomogeneous equations.

2. Preliminaries

First, we present some preliminaries about time scales in [2].

Definition 1 (see [2]). A time scale T is an nonempty closed
subset of the real numbers.

Definition 2 (see [2]). For 𝑡 ∈ T , we define the forward jump
operator 𝜎 : T → T by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , (5)

while the backward jump operator 𝜌 : T → T is defined by

𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} . (6)

If 𝜎(𝑡) > 𝑡, we say that 𝑡 is right-scattered, while if 𝜌(𝑡) < 𝑡, we
say that 𝑡 is left-scattered. Points that are right-scattered and
left-scattered at the same time are called isolated. Also, if 𝑡 <

sup T and𝜎(𝑡) = 𝑡, then 𝑡 is called right-dense, and if 𝑡 > inf T
and 𝜌(𝑡) = 𝑡, then 𝑡 is called left-dense. Finally, the graininess
function ] : T → [0,∞) is defined by

] (𝑡) := 𝑡 − 𝜌 (𝑡) . (7)

Definition 3 (see [2]). If T has a right-scattered minimum𝑚,
then we define T

𝑘
= T − {𝑚}; otherwise, T

𝑘
= T . Assume that

𝑓 : T → R is a function and let 𝑡 ∈ T
𝑘
. Then we define 𝑓

∇

(𝑡)

to be the number (provided it exists) with the property that,
given any 𝜀 > 0, there is a neighborhood 𝑈 of 𝑡 (i.e., 𝑈 =

(𝑡 − 𝛿, 𝑡 + 𝛿) ∩ T for some 𝛿 > 0) such that
󵄨󵄨󵄨󵄨󵄨
[𝑓 (𝜌 (𝑡)) − 𝑓 (𝑠)] − 𝑓

∇

(𝑡) [𝜌 (𝑡) − 𝑠]
󵄨󵄨󵄨󵄨󵄨

≤ 𝜀
󵄨󵄨󵄨󵄨𝜌 (𝑡) − 𝑠

󵄨󵄨󵄨󵄨 , ∀𝑠 ∈ 𝑈.

(8)

We call 𝑓∇(𝑡) the nabla derivative of 𝑓 at 𝑡.

Definition 4 (see [2]). A function 𝑓 : T → R is called regu-
lated provided its right-sided limits exist (finite) at all right-
dense points in T and its left-sided limits exist (finite) at all
left-dense points in T .

Definition 5 (see [2, page 100]). The generalized polynomials
are the functions ℎ̂

𝑘
: T2 := T × T → R, 𝑘 ∈ N

0
, defined re-

cursively as follows: The function ℎ̂
0
is

ℎ̂
0
(𝑡, 𝑠) = 1, ∀𝑠, 𝑡 ∈ T , (9)

and given ℎ̂
𝑘
for 𝑘 ∈ N

0
, the function ℎ̂

𝑘+1
is

ℎ̂
𝑘+1

(𝑡, 𝑠) = ∫

𝑡

𝑠

ℎ̂
𝑘
(𝜏, 𝑠) ∇𝜏, ∀𝑠, 𝑡 ∈ T . (10)

Definition 6 (see [3, page 38]). The generalized polynomials
are the functions ℎ

𝑘
: T2 := T × T → R, 𝑘 ∈ N

0
, defined re-

cursively as follows: The function ℎ
0
is

ℎ
0
(𝑡, 𝑠) = 1, ∀𝑠, 𝑡 ∈ T , (11)

and given ℎ
𝑘
for 𝑘 ∈ N

0
, the function ℎ

𝑘+1
is

ℎ
𝑘+1

(𝑡, 𝑠) = ∫

𝑡

𝑠

ℎ
𝑘
(𝜏, 𝑠) Δ𝜏, ∀𝑠, 𝑡 ∈ T . (12)

Theorem 7 (see [2], Taylor’s Formula). Let 𝑛 ∈ N. Suppose
that the function 𝑓 is such that 𝑓∇

𝑛+1

is ld-continuous on T
𝑘
𝑛+1 .

Let 𝛼 ∈ T
𝑘
𝑛 , 𝑡 ∈ T . Then one has

𝑓 (𝑡) =

𝑛

∑

𝑘=0

ℎ̂
𝑘
(𝑡, 𝛼) 𝑓

∇
𝑘

(𝛼) + ∫

𝑡

𝛼

ℎ̂
𝑛
(𝑡, 𝜌 (𝜏)) 𝑓

∇
𝑛+1

(𝜏) ∇𝜏.

(13)

Definition 8 (see [6]). A subset 𝐼 ⊂ T is called a time scale
interval, if it is of the form 𝐼 = 𝐴 ∩ T for some real interval
𝐴 ⊂ R. For a time scale interval 𝐼, a function 𝑓 : 𝐼 → R is
said to be left dense absolutely continuous if for all 𝜀 > 0 there
exist 𝛿 > 0 such that ∑𝑛

𝑘=1
|𝑓(𝑏

𝑘
) − 𝑓(𝑎

𝑘
)| < 𝜀 whenever a

disjoint finite collection of subtime scale intervals (𝑎
𝑘
, 𝑏
𝑘
] ∩

T ⊂ 𝐼 for 1 ≤ 𝑘 ≤ 𝑛 satisfies ∑
𝑛

𝑘=1
|𝑏
𝑘
− 𝑎

𝑘
| < 𝛿. We denote

𝑓 ∈ 𝐴𝐶. If 𝑓∇
𝑚−1

∈ 𝐴𝐶, then we denote 𝑓 ∈ 𝐴𝐶
𝑚

∇
.

According to Theorem 4.13 in [9], we have the following
lemma.

Lemma 9. Let 𝐸 ⊂ T − {max T} be a measurable set. If 𝑓 :

T → R is integrable on 𝐸, then

∫
𝐸

𝑓
𝜎

(𝑠) Δ𝑠 = ∫
𝐸

𝑓 (𝑠) ∇𝑠. (14)
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Proof. FromTheorem 4.13 in [9], we have that

∫
𝐸

𝑓
𝜎

(𝑠) Δ𝑠 = ∫
𝐸

𝑓
𝜎

(𝑠) 𝑑𝑠 + ∑

𝑖∈𝐼𝐸

𝑓
𝜎

(𝑡
𝑖
) 𝜇 (𝑡

𝑖
)

= ∫
𝐸

𝑓 (𝑠) 𝑑𝑠 + ∑

𝑖∈𝐼𝐸

𝑓 (𝜎 (𝑡
𝑖
)) 𝜇 (𝑡

𝑖
)

= ∫
𝐸

𝑓 (𝑠) ∇𝑠,

(15)

where 𝐼
𝐸
denotes the indices set of right-scattered points of𝐸.

Definition 10 (see [8]). The increasing factorial function is
defined as

(𝑥)
(𝑛)

= 𝑥 (𝑥 + 1) (𝑥 + 2) ⋅ ⋅ ⋅ (𝑥 + 𝑛 − 1) , (16)

where 𝑛 is a positive integer and 𝑥 is a real number, and the
symbol [ 𝑥

𝑛
] is defined as

[
𝑥

𝑛
] =

𝑥 (𝑥 + 1) (𝑥 + 2) ⋅ ⋅ ⋅ (𝑥 + 𝑛 − 1)

𝑛!
. (17)

Definition 11 (see [8]). Let 𝑝 > 0. The fractional sum whose
lower limit is 𝑛

0
is defined as

𝑛0
∇
−𝑝

𝑛
𝑓 (𝑛) =

𝑛

∑

𝑟=𝑛0

[
𝑝

𝑛 − 𝑟
]𝑓 (𝑟) . (18)

Definition 12 (see [8]). Let 𝑝 > 0 and 𝑚 = [𝑝] + 1. The frac-
tional difference whose lower limit is 𝑛

0
is defined as

𝑛0
∇
𝑝

𝑛
𝑓 (𝑛) = ∇

𝑚

[
𝑛0
∇
−(𝑚−𝑝)

𝑛
𝑓 (𝑛)] . (19)

In our discussion, we also need some information about
∇-exponential function.

Definition 13 (see [2, Definition 3.4]). The function 𝑝 is ]-
regressive if

1 − ] (𝑡) 𝑝 (𝑡) ̸= 0 (20)

for all 𝑡 ∈ T
𝑘
. Define the ]-regressive class of functions on T

𝑘

to be

R] = {𝑝 : T 󳨀→ R | 𝑝 is ld continuous and ]-regressive} .
(21)

For 𝑝 ∈ R], define circle minus 𝑝 by

⊖]𝑝 := −
𝑝

1 − 𝑝]
. (22)

Definition 14 (see [2, Definition 3.9]). For ℎ > 0, let

Z
ℎ
:= {𝑧 ∈ C :

−𝜋

ℎ
< 𝐼𝑚 (𝑧) <

𝜋

ℎ
} ,

C
ℎ
:= {𝑧 ∈ C : 𝑧 ̸=

1

ℎ
} .

(23)

Define the ]-cylinder transformation 𝜉
ℎ
: C

ℎ
→ Z

ℎ
by

𝜉
ℎ
(𝑧) := −

1

ℎ
Log (1 − 𝑧ℎ) , (24)

where Log is the principal logarithm function.

Definition 15 (see [2, Definition 3.10]). If 𝑝 ∈ R], then one
defines the nabla exponential function by

𝑒
𝑝
(𝑡, 𝑠) := exp(∫

𝑡

𝑠

𝜉](𝜏) (𝑝 (𝜏)) ∇𝜏) , for 𝑠, 𝑡 ∈ T , (25)

where the ]-cylinder transformation 𝜉
ℎ
is as in (24).

Definition 16 (see [2, Definition 3.12]). If 𝑝 ∈ R], then the
first-order linear dynamic equation

𝑦
∇

= 𝑝 (𝑡) 𝑦 (26)

is called ]-regressive.

Lemma 17 (see [2, Lemma 3.11]). If 𝑝 ∈ R], then the
semigroup property

𝑒
𝑝
(𝑡, 𝑢) 𝑒

𝑝
(𝑢, 𝑠) = 𝑒

𝑝
(𝑡, 𝑠) , ∀𝑢, 𝑠, 𝑡 ∈ T (27)

is satisfied.

Theorem 18 (see [2, Theorem 3.13]). Suppose that (26) is ]-
regressive and fix 𝑡

0
∈ T .Then 𝑒

𝑝
(⋅, 𝑡

0
) is a solution of the initial

value problem

𝑦
∇

= 𝑝 (𝑡) 𝑦, 𝑦 (𝑡
0
) = 1 (28)

on T .

Theorem 19 (see [2, Theorem 3.15(ii)]). If 𝑝 ∈ R], then

𝑒
𝑝
(𝜌 (𝑡) , 𝑠) := 𝑒

𝜌

𝑝
(𝑡, 𝑠) = (1 − ] (𝑡) 𝑝 (𝑡)) 𝑒

𝑝
(𝑡, 𝑠) . (29)

3. ∇-Laplace Transform, Fractional
Generalized ∇-Power Function,
Fractional ∇-Integral and Derivative,
and ∇-Mittag-Leffler Function

In this section, we first define ∇-Laplace transform and dis-
cuss the properties of ∇-Laplace transform. By using the
inverse∇-Laplace transform, we define fractional generalized
∇-power function, which is a basis of our definitions of frac-
tional ∇-integral and fractional ∇-derivative.

From now on, we always assume that 𝑡
0
∈ T , sup T = ∞.

Note that if we assume that 𝑧 ∈ R] is a constant, then ⊖]𝑧 ∈

R] and 𝑒
⊖]𝑧

(𝑡, 𝑡
0
) is well defined. With this in mind we make

the following definition.

Definition 20. Assume that 𝑥 : T → R is regulated and 𝑡
0
∈

T . Then, the Laplace transform of 𝑥 is defined by

L
∇,𝑡0

{𝑥} (𝑧) = ∫

∞

𝑡0

𝑥 (𝑡) 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡, (30)

for 𝑧 ∈ D{𝑥}, where D{𝑥} consists of all complex numbers
𝑧 ∈ R] for which the improper integral exists.
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The following result is needed frequently.

Lemma 21. If 𝑧 ∈ C is regressive, then

𝑒
𝜌

⊖V𝑧
(𝑡, 𝑡

0
) =

𝑒
⊖V𝑧

(𝑡, 𝑡
0
)

1 − ] (𝑡) 𝑧
= −

⊖V𝑧

𝑧
𝑒
⊖V𝑧

(𝑡, 𝑡
0
) . (31)

Proof. ByTheorem 19, we have

𝑒
𝜌

⊖V𝑧
(𝑡, 𝑡

0
) = (1 − ] (𝑡) (⊖V𝑧)) 𝑒⊖V𝑧

(𝑡, 𝑡
0
)

= (1 −
] (𝑡) (−𝑧)

1 − V (𝑡) 𝑧
) 𝑒

⊖V𝑧
(𝑡, 𝑡

0
)

=

𝑒
⊖V𝑧

(𝑡, 𝑡
0
)

1 − V (𝑡) 𝑧

= −
⊖V𝑧

𝑧
𝑒
⊖V𝑧

(𝑡, 𝑡
0
) .

(32)

This proves our claim.

We now will use the Lemma 21 to find the Laplace trans-
form of 𝑥(𝑡) ≡ 1 as follows:

L
∇,𝑡0

{1} (𝑧) = ∫

∞

𝑡0

1 ⋅ 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= −
1

𝑧
∫

∞

𝑡0

⊖]𝑧𝑒⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= −
1

𝑧
𝑒
⊖]𝑧

(𝑡, 𝑡
0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

𝑡0

=
1

𝑧
,

(33)

for all complex values of 𝑧 ∈ R] such that lim
𝑡→∞

𝑒
⊖]𝑧

(𝑡, 𝑡
0
)

= 0 holds. The following two results are derived using integr-
ation by parts.

Theorem 22. Assume that 𝑥 : T → C is such that 𝑥∇ is regu-
lated. Then,

L
∇,𝑡0

{𝑥
∇

} (𝑧) = −𝑥 (𝑡
0
) + 𝑧L

∇,𝑡0
{𝑥} (𝑧) , (34)

for those regressive 𝑧 ∈ C satisfying

lim
𝑡→∞

{𝑥 (𝑡) 𝑒
⊖]𝑧

(𝑡, 𝑡
0
)} = 0. (35)

Proof. Integration by parts and Lemma 21 directly yield

L
∇,𝑡0

{𝑥
∇

} (𝑧) = ∫

∞

𝑡0

𝑥
∇

(𝑡) ⋅ 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= 𝑥 (𝑡) 𝑒
⊖]𝑧

(𝑡, 𝑡
0
)
󵄨󵄨󵄨󵄨󵄨

∞

𝑡0

− ∫

∞

𝑡0

𝑥 (𝑡) ⊖]𝑧𝑒⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= −𝑥 (𝑡
0
) + 𝑧∫

∞

𝑡0

𝑥 (𝑡) ⋅ 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= −𝑥 (𝑡
0
) + 𝑧L

∇,𝑡0
{𝑥} (𝑧) ,

(36)

provided that (35) holds.

By a similar way, we have

L
∇,𝑡0

{𝑥
∇∇

} (𝑧) = ∫

∞

𝑡0

𝑥
∇∇

(𝑡) ⋅ 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= 𝑥
∇

(𝑡) 𝑒
⊖]𝑧

(𝑡, 𝑡
0
)
󵄨󵄨󵄨󵄨󵄨

∞

𝑡0

− ∫

∞

𝑡0

𝑥
∇

(𝑡) ⊖]𝑧𝑒⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= −𝑥
∇

(𝑡
0
) + 𝑧∫

∞

𝑡0

𝑥
∇

(𝑡) ⋅ 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= −𝑥
∇

(𝑡
0
) + 𝑧L

∇,𝑡0
{𝑥
∇

} (𝑧)

= −𝑥
∇

(𝑡
0
) − 𝑧𝑥 (𝑡

0
) + 𝑧

2

L
∇,𝑡0

{𝑥} (𝑧) ,

(37)

provided that lim
𝑡→∞

{𝑥
∇

(𝑡)𝑒
⊖]𝑧

(𝑡, 𝑡
0
)} = 0 and (35) holds

and thus we can get the following result by induction:

L
∇,𝑡0

{𝑥
∇
𝑘

} (𝑧) = 𝑧
𝑘

L
∇,𝑡0

{𝑥} (𝑧) −

𝑘−1

∑

𝑖=0

𝑧
𝑘−𝑖−1

𝑥
∇
𝑖

(𝑡
0
) ,

(38)

for those regressive 𝑧 ∈ C satisfying lim
𝑡→∞

{𝑥
∇
𝑖

(𝑡)𝑒
⊖]𝑧

(𝑡, 𝑡
0
)}

= 0, 𝑖 = 0, 1, . . . , 𝑘 − 1.

Theorem 23. Assume that 𝑥 : T → R is regulated. If

𝑋(𝑡) = ∫

𝑡

𝑡0

𝑥 (𝜏) ∇𝜏, (39)

for 𝑡, 𝑡
0
∈ T ; then

L
∇,𝑡0

{𝑋} (𝑧) =
1

𝑧
L
∇,𝑡0

{𝑥} (𝑧) , (40)

for those regressive 𝑧 ∈ C/{0} satisfying

lim
𝑡→∞

{𝑒
⊖]𝑧

(𝑡, 𝑡
0
) ∫

𝑡

𝑡0

𝑥 (𝜏) ∇𝜏} = 0. (41)

Proof. By using integration by parts and Lemma 21, we obtain
that
L
∇,𝑡0

{𝑋} (𝑧)

= ∫

∞

𝑡0

𝑋 (𝑡) ⋅ 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= −
1

𝑧
∫

∞

𝑡0

𝑋(𝑡) ⊖]𝑧𝑒⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= −
1

𝑧
[𝑋 (𝑡) 𝑒

⊖]𝑧
(𝑡, 𝑡

0
)
󵄨󵄨󵄨󵄨󵄨

∞

𝑡0

− ∫

∞

𝑡0

𝑥 (𝑡) 𝑒
𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡]

=
1

𝑧
L
∇,𝑡0

{𝑥} (𝑧) ,

(42)

provided that (41) holds.
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Theorem 24. Assume that ℎ̂
𝑘
(𝑡, 𝑡

0
), 𝑘 ∈ N

0
are defined as in

Definition 5. Then,

L
∇,𝑡0

{ℎ̂
𝑘
(⋅, 𝑡

0
)} (𝑧) =

1

𝑧𝑘+1
, (43)

for those regressive 𝑧 ∈ C satisfying

lim
𝑡→∞

{ℎ̂
𝑘
(𝑡, 𝑡

0
) 𝑒
⊖]𝑧

(𝑡, 𝑡
0
)} = 0. (44)

Proof. It follows from (33) that (43) holds for 𝑘 = 0. Assume
that (43) is valid for 𝑘, andwewill show that it is right for 𝑘+1.
In fact, by usingTheorem 23, we have that

L
∇,𝑡0

{ℎ̂
𝑘+1

(𝑡, 𝑡
0
)} (𝑧) = L

∇,𝑡0
{∫

𝑡

𝑡0

ℎ̂
𝑘
(𝜏, 𝑡

0
) ∇𝜏} (𝑧)

=
1

𝑧
L
∇,𝑡0

{ℎ̂
𝑘
(⋅, 𝑡

0
)} (𝑧)

=
1

𝑧
⋅

1

𝑧𝑘+1
=

1

𝑧𝑘+2
.

(45)

The claim follows by the principle ofmathematical induction.

It is similar to the proof of Theorems 1.5 and 1.3 in [10],
we get the following uniqueness result about the inverse of
Laplace transform and initial value theorem.

Theorem 25 (uniqueness of the inverse). If the functions 𝑓 :

T → R and 𝑔 : T → R have the same Laplace transform,
then 𝑓 = 𝑔.

Theorem26 (initial value theorem). Let𝑓 : T → R have gen-
eralized Laplace transform𝐹(𝑧).Then,𝑓(𝑡

0
) = lim

𝑧→∞
𝑧𝐹(𝑧).

By the uniqueness of inverse Laplace transform and fixing
𝑠 = 𝑡

0
, we can define fractional ∇-power function ℎ̂

𝛼
(𝑡, 𝑡

0
).

Definition 27. We define fractional generalized ∇-power
function on time scales as follows:

ℎ̂
𝛼
(𝑡, 𝑡

0
) = L

−1

∇,𝑡0

{
1

𝑧𝛼+1
} (𝑡) , (46)

to those suitable regressive 𝑧 ∈ C\{0} such thatL−1

∇,𝑡0

exist for
𝛼 ∈ R, 𝑡 ≥ 𝑡

0
.

Applying the initial value theorem of Laplace transform,
for 𝛼 > 0, we have

ℎ̂
𝛼
(𝑡
0
, 𝑡
0
) = lim

𝑧→∞

𝑧 ⋅
1

𝑧𝛼+1
= 0. (47)

In particular, when 𝛼 = 𝑘 ∈ N, it follows from Theorems 24
and 25, we can know that ℎ̂

𝑘
(𝑡, 𝑡

0
) is usual power function on

time scales for 𝑡 ≥ 𝑡
0
defined in Definition 5.

Example 28. When T = R, the time scale power functions

ℎ̂
𝛼
(𝑡, 𝑡

0
) =

𝑒
𝛼 log(𝑡−𝑡0)

Γ (𝛼 + 1)
, (48)

provided that ℎ̂
𝛼
(𝑡, 𝑡

0
) makes sense. In fact, it follows from

Definition 27 that

L
∇,𝑡0

{ℎ̂
𝛼
(𝑡, 𝑡

0
)} (𝑧) = L

𝑡0
{ℎ̂
𝛼
(𝑡, 𝑡

0
)} (𝑧) =

1

𝑧𝛼+1
. (49)

On the other hand,

L
∇,𝑡0

{
𝑒
𝛼 log(𝑡−𝑡0)

Γ (𝛼 + 1)
} (𝑧) = L

𝑡0
{

(𝑡 − 𝑡
0
)
𝛼

Γ (𝛼 + 1)
} (𝑧)

=
1

Γ (𝛼 + 1)
∫

∞

𝑡0

(𝑡 − 𝑡
0
)
𝛼

𝑒
−𝑧(𝑡−𝑡0)𝑑𝑡

=
1

Γ (𝛼 + 1)
⋅

1

𝑧𝛼+1
∫

∞

0

𝑢
𝛼

𝑒
−𝑢

𝑑𝑢

=
1

Γ (𝛼 + 1)
⋅

1

𝑧𝛼+1
⋅ Γ (𝛼 + 1)

=
1

𝑧𝛼+1
.

(50)

Thus, we have that

L
𝑡0
{ℎ̂
𝛼
(𝑡, 𝑡

0
)} (𝑧) = L

𝑡0
{
𝑒
𝛼 log(𝑡−𝑡0)

Γ (𝛼 + 1)
} (𝑧)

=
1

𝑧𝛼+1
.

(51)

By using uniqueness of the inverse Laplace transform, we
imply that

ℎ̂
𝛼
(𝑡, 𝑡

0
) =

𝑒
𝛼 log(𝑡−𝑡0)

Γ (𝛼 + 1)
. (52)

Next, in order to define fractional generalized ∇-power
function for general 𝑠, we will present some preliminaries
about convolution on time scales. In [11], the definitions of
shift and convolution, and some properties about convolu-
tion, such as convolution theorem and associativity, are pre-
sented for delta case, and in the following, we give them sim-
ilarly for nabla case.

Let T be a time scale such that sup T = ∞ and fix 𝑡
0
∈ T .

Definition 29. For a given 𝑓 : [𝑡
0
,∞)T → C, the solution of

the following shifting problem:

𝑢
∇𝑡 (𝑡, 𝜌 (𝑠)) = −𝑢

∇𝑠
(𝑡, 𝑠) , 𝑡, 𝑠 ∈ T , 𝑡 ≥ 𝑠 ≥ 𝑡

0
,

𝑢 (𝑡, 𝑡
0
) = 𝑓 (𝑡) , 𝑡 ∈ T , 𝑡 ≥ 𝑡

0
,

(53)

is denoted by 𝑓 and is called the shift of 𝑓.

Example 30. Let 𝑡
0
∈ T . Then, for 𝑘 ∈ N

0
,

̃
ℎ̂
𝑘
(⋅, 𝑡

0
) (𝑡, 𝑠) = ℎ̂

𝑘
(𝑡, 𝑠) , 𝑡, 𝑠 ∈ T , independent of 𝑡

0
.

(54)
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In fact, it is similar to the discussion for the delta case (refer to
[3, page 38]), and we can prove that

ℎ̂
∇𝑡

𝑘
(𝑡, 𝑠) = ℎ̂

𝑘−1
(𝑡, 𝑠) ,

ℎ̂
∇𝑠

𝑘
(𝑡, 𝑠) = (−1)

𝑘

𝑔
∇𝑠

𝑘
(𝑠, 𝑡) = (−1)

𝑘

𝑔
𝑘−1

(𝑠, 𝑡) = −ℎ̂
𝑘−1

(𝑡, 𝑠) ,

(55)

where 𝑔
𝑘
is defined by

𝑔
0
(𝑡, 𝑠) = 1, ∀𝑠, 𝑡 ∈ T ,

𝑔
𝑘+1

(𝑡, 𝑠) = ∫

𝑡

𝑠

𝑔
𝑘
(𝜌 (𝜏) , 𝑠) ∇𝜏, ∀𝑠, 𝑡 ∈ T .

(56)

Thus, according to Definition 29, we can derive the result.

Definition 31. For given functions𝑓, 𝑔 : T → R, their convo-
lution 𝑓 ∗ 𝑔 is defined by

(𝑓 ∗ 𝑔) (𝑡) = ∫

𝑡

𝑡0

𝑓 (𝑡, 𝜌 (𝜏)) 𝑔 (𝜏) ∇𝜏, 𝑡 ∈ T , (57)

where 𝑓 is the shift introduced in Definition 29.

Theorem 32 (associativity of the convolution). The convolu-
tion is associative; that is,

(𝑓 ∗ 𝑔) ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ) . (58)

Theorem 33. If 𝑓 is nabla differentiable, then

(𝑓 ∗ 𝑔)
∇

= 𝑓
∇

∗ 𝑔 + 𝑓 (𝑡
0
) 𝑔, (59)

and if 𝑔 is nabla differentiable, then

(𝑓 ∗ 𝑔)
∇

= 𝑓 ∗ 𝑔
∇

+ 𝑓𝑔 (𝑡
0
) . (60)

Theorem 34 (convolution theorem). Suppose that 𝑓, 𝑔 : T →

R are locally ∇-integrable functions on T . Then,

L
∇
{𝑓 ∗ 𝑔} (𝑧)

= L
∇
{𝑓} (𝑧)L

∇
{𝑔} (𝑧) , 𝑧 ∈ D {𝑓} ∩D {𝑔} .

(61)

In the following, we will define fractional generalized ∇-
power function for general 𝑠.

Definition 35. Fractional generalized ∇-power function
ℎ̂
𝛼
(𝑡, 𝑠) on time scales is defined as the shift of ℎ̂

𝛼
(𝑡, 𝑡

0
), that is

ℎ̂
𝛼
(𝑡, 𝑠) =

̃
ℎ̂
𝛼
(⋅, 𝑡

0
) (𝑡, 𝑠) , (𝑡 ≥ 𝑠 ≥ 𝑡

0
) . (62)

According to convolution theorem and Definition 27, we
have

L
∇,𝑡0

{ℎ̂
𝛼
(𝑡, 𝑡

0
) ∗ ℎ̂

𝛽
(𝑡, 𝑡

0
)} (𝑧)

= L
∇,𝑡0

{ℎ̂
𝛼
(𝑡, 𝑡

0
)} (𝑧)L

∇,𝑡0
{ℎ̂
𝛽
(𝑡, 𝑡

0
)} (𝑧)

=
1

𝑧𝛼+1
⋅

1

𝑧𝛽+1

=
1

𝑧𝛼+𝛽+1+1

= L
∇,𝑡0

{ℎ̂
𝛼+𝛽+1

(𝑡, 𝑡
0
)} (𝑧) .

(63)

By the uniqueness of inverse Laplace transform, we obtain

ℎ̂
𝛼
(𝑡, 𝑡

0
) ∗ ℎ̂

𝛽
(𝑡, 𝑡

0
) = ℎ̂

𝛼+𝛽+1
(𝑡, 𝑡

0
) , (64)

that is,

∫

𝑡

𝑡0

ℎ̂
𝛼
(𝑡, 𝜌 (𝜏)) ℎ̂

𝛽
(𝜏, 𝑡

0
) ∇𝜏 = ℎ̂

𝛼+𝛽+1
(𝑡, 𝑡

0
) . (65)

In particular, if 𝛼 = 0, then

∫

𝑡

𝑡0

ℎ̂
0
(𝑡, 𝜌 (𝜏)) ℎ̂

𝛽
(𝜏, 𝑡

0
) ∇𝜏 = ℎ̂

𝛽+1
(𝑡, 𝑡

0
) , (66)

that is,

∫

𝑡

𝑡0

ℎ̂
𝛽
(𝜏, 𝑡

0
) ∇𝜏 = ℎ̂

𝛽+1
(𝑡, 𝑡

0
) . (67)

Thus,

ℎ̂
∇

𝛽+1
(𝑡, 𝑡

0
) = ℎ̂

𝛽
(𝑡, 𝑡

0
) . (68)

If 𝛽 = 0, then

∫

𝑡

𝑡0

ℎ̂
𝛼
(𝑡, 𝜌 (𝜏)) ℎ̂

0
(𝜏, 𝑡

0
) ∇𝜏 = ℎ̂

𝛼+1
(𝑡, 𝑡

0
) , (69)

that is,

∫

𝑡

𝑡0

ℎ̂
𝛼
(𝑡, 𝜌 (𝜏)) ∇𝜏 = ℎ̂

𝛼+1
(𝑡, 𝑡

0
) . (70)

According toTheorem 33 and (47), (68), for 𝛼 > 0, we have

(ℎ̂
𝛼
(𝑡, 𝑡

0
) ∗ 𝑔 (𝑡))

∇

= ℎ̂
∇

𝛼
(𝑡, 𝑡

0
) ∗ 𝑔 (𝑡) + ℎ̂

𝛼
(𝑡
0
, 𝑡
0
) ∗ 𝑔 (𝑡)

= ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ 𝑔 (𝑡) .

(71)

Now, we can give definitions of fractional ∇-integral and
fractional ∇-derivative on time scales.

From now on, we will always denoteΩ := [𝑡
0
, 𝑡
1
]T a finite

interval on a time scale T (sup T = ∞).

Definition 36. Let 𝑡, 𝑡
0
∈ Ω.TheRiemann-Liouville fractional

∇-integral 𝐼𝛼
∇,𝑡0

𝑓 of order 𝛼 > 0 is defined by

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) : = ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ 𝑓 (𝑡)

= ∫

𝑡

𝑡0

̃
ℎ̂
𝛼−1

(⋅, 𝑡
0
) (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏

= ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏 (𝑡 > 𝑡
0
) .

(72)

Definition 37. Let 𝑡, 𝑡
0
∈ Ω.The Riemann-Liouville fractional

∇-derivative𝐷
𝛼

∇,𝑡0

𝑓 of order 𝛼 ≥ 0 is defined by

𝐷
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝑚

∇
𝐼
𝑚−𝛼

∇,𝑡0

𝑓 (𝑡) (𝑚 = [𝛼] + 1; 𝑡 > 𝑡
0
) . (73)

Throughout this paper, we denote 𝑓
∇
𝑛

= 𝐷
𝑛

∇
𝑓 = 𝐷

𝑛

∇,𝑡0

𝑓,
𝑛 ∈ N.

In the following, we will give the Laplace transform of
fractional ∇-integral and fractional ∇-derivative.
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Lemma 38. Let 𝛼 > 0,𝑚− 1 < 𝛼 ≤ 𝑚 (𝑚 ∈ N) and 𝑓 : Ω →

R. For 𝑡
0
, 𝑡 ∈ Ω

𝑘
𝑚 with 𝑡

0
< 𝑡. Then, we have

(1) if 𝑓 ∈ 𝐿
∇,𝑝

(Ω), then

L
∇,𝑡0

{𝐼
𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧) =
1

𝑧𝛼
L
∇,𝑡0

{𝑓 (𝑡)} (𝑧) ; (74)

(2) if 𝑓 ∈ 𝐴𝐶
𝑚

∇
(Ω), then

L
∇,𝑡0

{𝐷
𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧) = 𝑧
𝛼

L
∇,𝑡0

{𝑓 (𝑡)} (𝑧)

−

𝑚

∑

𝑗=1

𝑧
𝑗−1

𝐷
𝛼−𝑗

∇,𝑡0

𝑓 (𝑡
0
) ,

(75)

for those regressive 𝑧 ∈ C satisfying
lim

𝑡→∞
{𝐷

𝑗

∇
𝐼
𝑚−𝛼

∇,𝑡0

𝑓(𝑡)𝑒
⊖]𝑧

(𝑡, 𝑡
0
)} = 0, 𝑗 = 0, 1, . . . , 𝑚 − 1.

Proof. According to Definition 36, Definition 27 and convo-
lution theorem, we have

L
∇,𝑡0

{𝐼
𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧)

= L
∇,𝑡0

{ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ 𝑓 (𝑡)} (𝑧)

= L
∇,𝑡0

{ℎ̂
𝛼−1

(𝑡, 𝑡
0
)} (𝑧)L

∇,𝑡0
{𝑓 (𝑡)} (𝑧)

=
1

𝑧𝛼
L
∇,𝑡0

{𝑓 (𝑡)} (𝑧) .

(76)

By Definition 37, (3), and taking the Laplace transform of
fractional ∇-integral into account, we get

L
∇,𝑡0

{𝐷
𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧) = L
∇,𝑡0

{𝐷
𝑚

∇
𝐼
𝑚−𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧)

= 𝑧
𝑚

L
∇,𝑡0

{𝐼
𝑚−𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧)

−

𝑚−1

∑

𝑗=0

𝑧
𝑚−𝑗−1

𝐷
𝑗

∇
𝐼
𝑚−𝛼

∇,𝑡0

𝑓 (𝑡
0
)

= 𝑧
𝑚

1

𝑧𝑚−𝛼
L
∇,𝑡0

{𝑓 (𝑡)} (𝑧)

−

𝑚−1

∑

𝑗=0

𝑧
𝑚−𝑗−1

𝐷
𝑗−𝑚+𝛼

∇,𝑡0

𝑓 (𝑡
0
)

= 𝑧
𝛼

L
∇,𝑡0

{𝑓 (𝑡)} (𝑧)

−

𝑚

∑

𝑗=1

𝑧
𝑗−1

𝐷
𝛼−𝑗

∇,𝑡0

𝑓 (𝑡
0
) ,

(77)

where 𝐷
𝑗

∇
𝐼
𝑚−𝛼

∇,𝑡0

𝑓(𝑡
0
) = 𝐷

𝑗−𝑚+𝛼

∇,𝑡0

𝑓(𝑡
0
) follows from the

definition of fractional ∇-derivative, and 𝐷
𝛼−𝑚

∇,𝑡0

𝑓(𝑡
0
) =

lim
𝑡→ 𝑡0

𝐼
𝑚−𝛼

∇,𝑡0

𝑓(𝑡
0
) (𝑡

0
is right-dense); 𝐷𝛼−𝑚

∇,𝑡0

𝑓(𝑡
0
) = 0 (𝑡

0
is

right scattered).

Finally, we present the definition of ∇-Mittag-Leffler
function which is an important tool for solving fractional

differential equation. We have known that the Mittag-Leffler
function 𝐸

𝛼
(𝑧) := ∑

∞

𝑘=0
𝑧
𝑘

/(Γ(𝛼𝑘 + 1)) is the fractional order
case of exponential function 𝑒

𝑧, and𝐸
𝛼,𝛽

(𝑧) := ∑
∞

𝑘=0
𝑧
𝑘

/(Γ(𝛼𝑘

+ 𝛽)) is generalized from 𝐸
𝛼
(𝑧). Inspired by these results and

exponential function on time scales 𝑒
𝜆
(𝑡, 0) = ∑

∞

𝑘=0
𝜆
𝑘

ℎ̂
𝑘
(𝑡, 0)

(see [7, Remark 124]), we give the following definition.

Definition 39. ∇-Mittag-Leffler function is defined as

∇
𝐹
𝛼,𝛽

(𝜆; 𝑡, 𝑡
0
) =

∞

∑

𝑗=0

𝜆
𝑗

ℎ̂
𝛼𝑗+𝛽−1

(𝑡, 𝑡
0
) , (78)

provided that the right hand series is convergent, where 𝛼 >

0, 𝜆, 𝛽 ∈ R.

As to the Laplace transform of ∇-Mittag-Leffler function,
we have the following theorem.

Theorem40. TheLaplace transform of ∇-Mittag-Leffler func-
tion is

L
∇,𝑡0

{
∇
𝐹
𝛼,𝛽

(𝜆; 𝑡, 𝑡
0
)} (𝑧) =

𝑧
𝛼−𝛽

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼

) . (79)

Proof. From the definition of Laplace transform, it is obtained
that

L
∇,𝑡0

{
∇

𝐹
𝛼,𝛽

(𝜆; 𝑡, 𝑡
0
)} (𝑧)

= ∫

∞

𝑡0

∇

𝐹
𝛼,𝛽

(𝜆; 𝑡, 𝑡
0
) ⋅ 𝑒

𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

= ∫

∞

𝑡0

∞

∑

𝑗=0

𝜆
𝑗

ℎ̂
𝛼𝑗+𝛽−1

(𝑡, 𝑡
0
) ⋅ 𝑒

𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

=

∞

∑

𝑗=0

𝜆
𝑗

∫

∞

𝑡0

ℎ̂
𝛼𝑗+𝛽−1

(𝑡, 𝑡
0
) ⋅ 𝑒

𝜌

⊖]𝑧
(𝑡, 𝑡

0
) ∇𝑡

=

∞

∑

𝑗=0

𝜆
𝑗

L
∇,𝑡0

{ℎ̂
𝛼𝑗+𝛽−1

(𝑡, 𝑡
0
)} (𝑧)

=

∞

∑

𝑗=0

𝜆
𝑗

1

𝑧𝛼𝑗+𝛽

= 𝑧
−𝛽

∞

∑

𝑗=0

𝜆
𝑗

(𝑧
−𝛼

)
𝑗

=
𝑧
𝛼−𝛽

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼

) .

(80)

By differentiating 𝑘 times with respect to 𝜆 on both sides
of the formula in the theorem above, we get the following
result:

L
∇,𝑡0

{
𝜕
𝑘

𝜕𝜆𝑘
∇
𝐹
𝛼,𝛽

(𝜆; 𝑡, 𝑡
0
)} (𝑧) =

𝑘!𝑧
𝛼−𝛽

(𝑧
𝛼 − 𝜆)

𝑘+1

. (81)
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4. Properties of Fractional ∇-Integral
and Fractional ∇-Derivative

In this section, we mainly give the properties of fractional ∇-
integral and ∇-derivative on time scales which are often used
in the following sections.

Property 1. Let 𝛼 > 0, 𝑚 = [𝛼] + 1, 𝛽 ∈ R, 𝑡, 𝑡
0
∈ Ω

𝑘
𝑚 . Then

(1) 𝐼
𝛼

∇,𝑡0

ℎ̂
𝛽−1

(𝑡, 𝑡
0
) = ℎ̂

𝛼+𝛽−1
(𝑡, 𝑡

0
) ; (82)

(2) 𝐷
𝛼

∇,𝑡0

ℎ̂
𝛽−1

(𝑡, 𝑡
0
) = ℎ̂

𝛽−𝛼−1
(𝑡, 𝑡

0
) . (83)

In particular, if 𝛽 = 1, 𝛼 > 0, then the Riemann-Liouville
fractional∇-derivatives of a constant are, in general, not equal
to zero as follows:

𝐷
𝛼

∇,𝑡0

1 = ℎ̂
−𝛼

(𝑡, 𝑡
0
) , (0 < 𝛼 < 1) . (84)

On the other hand, for 𝑗 = 1, 2, . . . , [𝛼] + 1,

𝐷
𝛼

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) = 0. (85)

In fact,

𝐷
𝛼

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) = 𝐷

𝑚

∇
𝐼
𝑚−𝛼

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
)

= 𝐷
𝑚

∇
ℎ̂
𝑚−𝑗

(𝑡, 𝑡
0
) = 0.

(86)

Proof. (1) According to Definition 36 and (64), we have

𝐼
𝛼

∇,𝑡0

ℎ̂
𝛽−1

(𝑡, 𝑡
0
) = ℎ̂

𝛼−1
(𝑡, 𝑡

0
) ∗ ℎ̂

𝛽−1
(𝑡, 𝑡

0
)

= ℎ̂
𝛼+𝛽−1

(𝑡, 𝑡
0
) .

(87)

(2) From Definition 37 and (82), (68), it is obtained that

𝐷
𝛼

∇,𝑡0

ℎ̂
𝛽−1

(𝑡, 𝑡
0
) = 𝐷

𝑚

∇
𝐼
𝑚−𝛼

∇,𝑡0

ℎ̂
𝛽−1

(𝑡, 𝑡
0
)

= 𝐷
𝑚

∇
ℎ̂
𝑚+𝛽−𝛼−1

(𝑡, 𝑡
0
) = ℎ̂

𝛽−𝛼−1
(𝑡, 𝑡

0
) .

(88)

From Property 1, we derive the following result in [1]
when T = R.

Corollary 41 (see [1]). IfR(𝛼) ≥ 0 andR(𝛽) > 0, then

(𝐼
𝛼

𝑎+
(𝑡 − 𝑎)

𝛽−1

) (𝑥)

=
Γ (𝛽)

Γ (𝛽 + 𝛼)
(𝑥 − 𝑎)

𝛽+𝛼−1

, (R (𝛼) > 0) ,

(𝐷
𝛼

𝑎+
(𝑡 − 𝑎)

𝛽−1

) (𝑥)

=
Γ (𝛽)

Γ (𝛽 − 𝛼)
(𝑥 − 𝑎)

𝛽−𝛼−1

, (R (𝛼) ≥ 0) .

(89)

In particular, if 𝛽 = 1 and R(𝛼) ≥ 0, then the Riemann-
Liouville fractional derivatives of a constant are, in general, not
equal to zero as follows:

(𝐷
𝛼

𝑎+
1) (𝑥) =

(𝑥 − 𝑎)
−𝛼

Γ (1 − 𝛼)
, (0 < R (𝛼) < 1) . (90)

On the other hand, for 𝑗 = 1, 2, . . . , [R(𝛼)] + 1,

(𝐷
𝛼

𝑎+
(𝑡 − 𝑎)

𝛼−𝑗

) (𝑥) = 0. (91)

As to the fractional sumanddifference, there is also a sim-
ilar result in [8].

Corollary 42 (see [8]). Let 𝑝 > 0, V > 0. Then,

(1)
𝑛0
∇
−𝑝

𝑛

[
V

𝑛 − 𝑛
0

] = [
V + 𝑝

𝑛 − 𝑛
0

] ,

(2)
𝑛0
∇
𝑝

𝑛

[
V

𝑛 − 𝑛
0

] = [
V − 𝑝

𝑛 − 𝑛
0

] .

(92)

Property 2. Let 𝛼 > 0 and 𝑚 = [𝛼] + 1, 𝑡, 𝑡
0
∈ Ω

𝑘
𝑚 . If 𝑓(𝑡) ∈

𝐴𝐶
𝑚

∇
(Ω), then the fractional ∇-derivative 𝐷

𝛼

∇,𝑡0

𝑓(𝑡) which
exists almost everywhere on Ω

𝑘
𝑚 can be represented in the

following forms:

𝐷
𝛼

∇,𝑡0

𝑓 (𝑡) =

𝑚−1

∑

𝑘=0

ℎ̂
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ∫

𝑡

𝑡0

ℎ̂
−𝛼+𝑚−1

(𝑡, 𝜌 (𝜏)) 𝑓
∇
𝑚

(𝜏) ∇𝜏.

(93)

Proof. By Taylor’s formula,

𝑓 (𝑡) =

𝑚−1

∑

𝑘=0

ℎ̂
𝑘
(𝑡, 𝑡

0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ∫

𝑡

𝑡0

ℎ̂
𝑚−1

(𝑡, 𝜌 (𝜏)) 𝑓
∇
𝑚

(𝜏) ∇𝜏

=

𝑚−1

∑

𝑘=0

ℎ̂
𝑘
(𝑡, 𝑡

0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ℎ̂
𝑚−1

(𝑡, 𝑡
0
) ∗ 𝑓

∇
𝑚

(𝑡) ,

(94)

and using (82) and (64), we have

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) =

𝑚−1

∑

𝑘=0

𝐼
𝛼

∇,𝑡0

ℎ̂
𝑘
(𝑡, 𝑡

0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ ℎ̂

𝑚−1
(𝑡, 𝑡

0
) ∗ 𝑓

∇
𝑚

(𝑡)

=

𝑚−1

∑

𝑘=0

ℎ̂
𝑘+𝛼

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ℎ̂
𝛼+𝑚−1

(𝑡, 𝑡
0
) ∗ 𝑓

∇
𝑚

(𝑡)

=

𝑚−1

∑

𝑘=0

ℎ̂
𝑘+𝛼

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ∫

𝑡

𝑡0

ℎ̂
𝛼+𝑚−1

(𝑡, 𝜌 (𝜏)) 𝑓
∇
𝑚

(𝜏) ∇𝜏.

(95)
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Besides, according to (95) and taking (68) and (71) into
account, we have

𝐷
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝑚

∇
𝐼
𝑚−𝛼

∇,𝑡0

𝑓 (𝑡)

= 𝐷
𝑚

∇
[

𝑚−1

∑

𝑘=0

ℎ̂
𝑘+𝑚−𝛼

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ℎ̂
𝑚−𝛼+𝑚−1

(𝑡, 𝑡
0
) ∗ 𝑓

∇
𝑚

(𝑡) ]

=

𝑚−1

∑

𝑘=0

ℎ̂
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ℎ̂
−𝛼+𝑚−1

(𝑡, 𝑡
0
) ∗ 𝑓

∇
𝑚

(𝑡)

=

𝑚−1

∑

𝑘=0

ℎ̂
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ∫

𝑡

𝑡0

ℎ̂
−𝛼+𝑚−1

(𝑡, 𝜌 (𝜏)) 𝑓
∇
𝑚

(𝜏) ∇𝜏.

(96)

When T = R, there is the following corollary.

Corollary 43 (see [1]). Let R(𝛼) ≥ 0, and 𝑛 = [R(𝛼)] + 1.
If 𝑦(𝑥) ∈ 𝐴𝐶

𝑛

[𝑎, 𝑏], then the fractional derivative 𝐷𝛼

𝑎+
𝑦 exists

almost everywhere on [𝑎, 𝑏] and can be represented in the fol-
lowing form:

(𝐷
𝛼

𝑎+
𝑦) (𝑥) =

𝑛−1

∑

𝑘=0

𝑦
(𝑘)

(𝑎)

Γ (1 + 𝑘 − 𝛼)
(𝑥 − 𝑎)

𝑘−𝛼

+
1

Γ (𝑛 − 𝛼)
∫

𝑥

𝑎

𝑦
(𝑛)

(𝑡) 𝑑𝑡

(𝑥 − 𝑡)
𝛼−𝑛+1

.

(97)

Similarly, for the fractional sum and difference, there is
also the following corollary.

Corollary 44 (see [8]). For 𝑝 > 0 and 𝑚 ∈ N, it is valid that

𝑛0
∇
−𝑝

𝑛

𝑓 (𝑛) =

𝑚

∑

𝑘=0

∇
𝑘

𝑓 (𝑛
0
− 1) [

𝑝 + 𝑘 + 1

𝑛 − 𝑛
0

]

+

𝑛

∑

𝑟=𝑛0

[
𝑝 + 𝑚 + 1

𝑛 − r ]∇
𝑚+1

𝑓 (𝑟) ,

𝑛0
∇
𝑝

𝑛

𝑓 (𝑛) =

𝑚

∑

𝑘=0

∇
𝑘

𝑓 (𝑛
0
− 1) [

−𝑝 + 𝑘 + 1

𝑛 − 𝑛
0

]

+

𝑛

∑

𝑟=𝑛0

[
−𝑝 + 𝑚 + 1

𝑛 − r ]∇
𝑚+1

𝑓 (𝑟) .

(98)

The semigroup property of the fractional∇-integral oper-
ator is given by the following result.

Property 3. If 𝛼 > 0 and 𝛽 > 0, then the equation

𝐼
𝛼

∇,𝑡0

𝐼
𝛽

∇,𝑡0

𝑓 (𝑡) = 𝐼
𝛼+𝛽

∇,𝑡0

𝑓 (𝑡) (99)

is satisfied at almost every point 𝑡 ∈ Ω for𝑓(𝑡) ∈ 𝐿
∇,𝑝

(Ω) (1 ≤

𝑝 ≤ ∞).

Proof. According to Definition 36 and (64), and using asso-
ciativity of the convolution, we have

𝐼
𝛼

∇,𝑡0

𝐼
𝛽

∇,𝑡0

𝑓 (𝑡) = ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ 𝐼

𝛽

∇,𝑡0

𝑓 (𝑡)

= ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ ℎ̂

𝛽−1
(𝑡, 𝑡

0
) ∗ 𝑓 (𝑡)

= ℎ̂
𝛼+𝛽−1

(𝑡, 𝑡
0
) ∗ 𝑓 (𝑡)

= 𝐼
𝛼+𝛽

∇,𝑡0

𝑓 (𝑡) .

(100)

The following assertion shows that the fractional differ-
entiation is an operation inverse to the fractional integration
from the left.

Property 4. If 𝛼 > 0 and 𝑓(𝑡) ∈ 𝐿
∇,𝑝

(Ω) (1 ≤ 𝑝 ≤ ∞), then
the following equality

𝐷
𝛼

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) (101)

holds almost everywhere onΩ.

Proof. According to the definition of the fractional ∇-deriv-
ative and using (99), we get

𝐷
𝛼

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝑚

∇
𝐼
𝑚−𝛼

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡)

= 𝐷
𝑚

∇,𝑡0

𝐼
𝑚

∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) .

(102)

In the following, we will derive the composition relations
between fractional ∇-differentiation and fractional ∇-integr-
ation operators.

Property 5. If 𝛼 > 𝛽 > 0, then, for 𝑓(𝑡) ∈ 𝐿
∇,𝑝

(Ω) (1 ≤ 𝑝 ≤

∞), the relation

𝐷
𝛽

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐼
𝛼−𝛽

∇,𝑡0

𝑓 (𝑡) (103)

holds almost everywhere onΩ. In particular, when𝛽 = 𝑘 ∈ N

and 𝛼 > 𝑘, then

𝐷
𝑘

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐼
𝛼−𝑘

∇,𝑡0

𝑓 (𝑡) . (104)

Proof. The proof is the same with the proof of Property 4, so
we omit it.
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Property 6. Let𝛼 > 0,𝑚 = [𝛼]+1, 𝑛 ∈ N. If𝑓(𝑡) ∈ 𝐴𝐶
𝑚+𝑛

∇
(Ω),

then

(1) 𝐷
𝑛

∇
𝐷
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼+𝑛

∇,𝑡0

𝑓 (𝑡) ,

(2) 𝐷
𝛼

∇,𝑡0

𝐷
𝑛

∇
𝑓 (𝑡) = 𝐷

𝛼+𝑛

∇,𝑡0

𝑓 (𝑡)

−

𝑛−1

∑

𝑘=0

ℎ̂
−𝛼−𝑛+𝑘

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
) .

(105)

Thus,

𝐷
𝛼

∇,𝑡0

𝐷
𝑛

∇
𝑓 (𝑡) = 𝐷

𝛼+𝑛

∇,𝑡0

𝑓 (𝑡) (106)

is valid if and only if

𝑓
∇
𝑘

(𝑡
0
) = 0, 𝑘 = 0, . . . , 𝑛 − 1. (107)

Proof. Since𝑓(𝑡) ∈ 𝐴𝐶
𝑚+𝑛

∇
(Ω), by (93) in Property 2 and (71),

(68), we have

𝐷
𝑛

∇
𝐷
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝑛

∇
[

𝑚+𝑛−1

∑

𝑘=0

ℎ̂
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)

+ℎ̂
−𝛼+𝑚+𝑛−1

(𝑡, 𝑡
0
) ∗ 𝑓

∇
𝑚+𝑛

(𝑡) ]

=

𝑚+𝑛−1

∑

𝑘=0

ℎ̂
𝑘−𝛼−𝑛

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)

+ ℎ̂
−𝛼+𝑚−1

(𝑡, 𝑡
0
) ∗ 𝑓

∇
𝑚+𝑛

(𝑡)

= 𝐷
𝛼+𝑛

∇,𝑡0

𝑓 (𝑡) .

(108)

On the other hand, from 𝑓(𝑡) ∈ 𝐴𝐶
𝑚+𝑛

∇
(Ω), we know that

𝐷
𝑛

∇
𝑓(𝑡) ∈ 𝐴𝐶

𝑚

∇
(Ω) and thus, we have

𝐷
𝛼

∇,𝑡0

𝐷
𝑛

∇
𝑓 (𝑡) =

𝑚−1

∑

𝑘=0

ℎ̂
𝑘−𝛼

(𝑡, 𝑡
0
) 𝑓

∇
𝑘+𝑛

(𝑡
0
)

+ ℎ̂
−𝛼+𝑚−1

(𝑡, 𝑡
0
) ∗ 𝑓

∇
𝑚+𝑛

(𝑡) .

(109)

Comparing with (108) and (109), we can get that

𝐷
𝛼

∇,𝑡0

𝐷
𝑛

∇
𝑓 (𝑡) = 𝐷

𝛼+𝑛

∇,𝑡0

𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

ℎ̂
−𝛼−𝑛+𝑘

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
) ,

(110)

which proves the result.

Property 7. Let 𝛼 > 0, 𝑚 = [𝛼] + 1, 𝑛 ∈ N. If 𝑓(𝑡) ∈ 𝐴𝐶
𝑛

∇
(Ω),

then

𝐼
𝛼

∇,𝑡0

𝐷
𝑛

∇
𝑓 (𝑡) = 𝐷

𝑛

∇
𝐼
𝛼

∇,𝑡0

𝑓 (𝑡)

−

𝑛−1

∑

𝑘=0

ℎ̂
𝛼−𝑛−𝑘

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
) .

(111)

Proof. Applying Laplace transform to 𝐼
𝛼

∇,𝑡0

𝐷
𝑛

∇
𝑓(𝑡), we have

L
∇,𝑡0

{𝐼
𝛼

∇,𝑡0

𝐷
𝑛

∇
𝑓 (𝑡)} (𝑧)

= L
∇,𝑡0

{ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ 𝐷

𝑛

∇
𝑓 (𝑡)} (𝑧)

= L
∇,𝑡0

{ℎ̂
𝛼−1

(𝑡, 𝑡
0
)} (𝑧)L

∇,𝑡0
{𝐷

𝑛

∇
𝑓 (𝑡)} (z)

=
1

𝑧𝛼
[𝑧

𝑛

L
∇,𝑡0

{𝑓 (𝑡)} (𝑧) −

𝑛−1

∑

𝑘=0

𝑧
𝑛−𝑘−1

𝑓
∇
𝑘

(𝑡
0
)]

=
1

𝑧𝛼−𝑛
L
∇,𝑡0

{𝑓 (𝑡)} (𝑧) −

𝑛−1

∑

𝑘=0

1

𝑧𝛼−𝑛+𝑘+1
𝑓
∇
𝑘

(𝑡
0
)

= L
∇,𝑡0

{ℎ̂
𝛼−𝑛−1

(𝑡, 𝑡
0
) ∗ 𝑓 (𝑡)} (𝑧)

−

𝑛−1

∑

𝑘=0

L
∇,𝑡0

{ℎ̂
𝛼−𝑛−𝑘

(𝑡, 𝑡
0
)} (𝑧) 𝑓

∇
𝑘

(𝑡
0
)

= L
∇,𝑡0

{𝐷
𝑛

∇
𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

ℎ̂
𝛼−𝑛−𝑘

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
)} (𝑧) .

(112)

Using the uniqueness of the inverse Laplace transform, we
can derive that

𝐼
𝛼

∇,𝑡0

𝐷
𝑛

∇
𝑓 (𝑡) = 𝐷

𝑛

∇
𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

ℎ̂
𝛼−𝑛−𝑘

(𝑡, 𝑡
0
) 𝑓

∇
𝑘

(𝑡
0
) .

(113)

The proof is finished.

To present the next property, we use the space of function
𝐼
𝛼

∇,𝑡0

(𝐿
∇,𝑝

) defined for 𝛼 > 0 and 1 ≤ 𝑝 ≤ ∞ by

𝐼
𝛼

∇,𝑡0

(𝐿
∇,𝑝

) := {𝑓 : 𝑓 = 𝐼
𝛼

∇,𝑡0

𝜑, 𝜑 ∈ 𝐿
∇,𝑝

(Ω)} . (114)

The composition of the fractional ∇-integral operator 𝐼
𝛼

∇,𝑡0

with the fractional∇-differentiation operator𝐷𝛼

∇,𝑡0

is given by
the following result.

Property 8. Let𝛼 > 0, 𝑚 = [𝛼]+1 and let𝑓
𝑚−𝛼

(𝑡) = 𝐼
𝑚−𝛼

∇,𝑡0

𝑓(𝑡).

(1) If 1 ≤ 𝑝 ≤ ∞ and 𝑓(𝑡) ∈ 𝐼
𝛼

∇,𝑡0

(𝐿
∇,𝑝

), then

𝐼
𝛼

∇,𝑡0

𝐷
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) . (115)

(2) If 𝑓(𝑡) ∈ 𝐿
∇,1

(Ω) and 𝑓
𝑚−𝛼

(𝑡) ∈ 𝐴𝐶
𝑚

∇
(Ω), then the

equality

𝐼
𝛼

∇,𝑡0

𝐷
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) −

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛼−𝑘

∇,𝑡0

𝑓 (𝑡
0
) (116)

holds almost everywhere on Ω, where 𝐷
𝛼−𝑚

∇,𝑡0

𝑦(𝑡
0
) =

lim
𝑡→ 𝑡
+

0

𝐼
𝑚−𝛼

∇,𝑡0

𝑦(𝑡).
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Proof. (1)From the definition of 𝐼𝛼
∇,𝑡0

(𝐿
∇,𝑝

) and (101), it is easy
to obtain the result.

(2) Applying Laplace transform to 𝐼
𝛼

∇,𝑡0

𝐷
𝛼

∇,𝑡0

𝑓(𝑡), we can
get

L
∇,𝑡0

{𝐼
𝛼

∇,𝑡0

𝐷
𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧)

= L
∇,𝑡0

{ℎ̂
𝛼−1

(𝑡, 𝑡
0
) ∗ 𝐷

𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧)

= L
∇,𝑡0

{ℎ̂
𝛼−1

(𝑡, 𝑡
0
)} (𝑧)L

∇,𝑡0
{𝐷

𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧)

=
1

𝑧𝛼
[𝑧

𝛼

L
∇,𝑡0

{𝑓 (𝑡)} (𝑧) −

𝑚

∑

𝑘=1

𝑧
𝑘−1

𝐷
𝛼−𝑘

∇,𝑡0

𝑓 (𝑡
0
)]

= L
∇,𝑡0

{𝑓 (𝑡)} (𝑧) −

𝑚

∑

𝑘=1

1

𝑧𝛼−𝑘+1
𝐷
𝛼−𝑘

∇,𝑡0

𝑓 (𝑡
0
)

= L
∇,𝑡0

{𝑓 (𝑡)} (𝑧)

−

𝑚

∑

𝑘=1

L
∇,𝑡0

{ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
)} (𝑧)𝐷

𝛼−𝑘

∇,𝑡0

𝑓 (𝑡
0
)

= L
∇,𝑡0

{𝑓 (𝑡) −

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛼−𝑘

∇,𝑡0

𝑓 (𝑡
0
)} (𝑧) .

(117)

By the uniqueness of Laplace transform, we have

𝐼
𝛼

∇,𝑡0

𝐷
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) −

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛼−𝑘

∇,𝑡0

𝑓 (𝑡
0
) . (118)

Property 9. Let 𝑓
𝑀−𝛽

(𝑡) = 𝐼
𝑀−𝛽

∇,𝑡0

𝑓(𝑡). When 𝛽 > 𝛼 > 0, 𝑀 =

[𝛽] + 1, if 𝑓(𝑡) ∈ 𝐿
∇,1

(Ω) and 𝑓
𝑀−𝛽

(𝑡) ∈ 𝐴𝐶
𝑀

(Ω), then we
have the following equation:

(1) 𝐷
𝛽

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛽−𝛼

∇,𝑡0

𝑓 (𝑡) ,

(2) 𝐼
𝛼

∇,𝑡0

𝐷
𝛽

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛽−𝛼

∇,𝑡0

𝑓 (𝑡)

−

𝑀

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛽−𝑘

∇,𝑡0

𝑓 (𝑡
0
) .

(119)

Proof. Let 𝑚 = [𝛼] + 1. According to Property 3 and the
definition of fractional ∇-derivative, we have

𝐷
𝛽

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝑀

∇
𝐼
𝑀−𝛽

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡)

= 𝐷
𝑀

∇
𝐼
𝑀−𝛽+𝛼

∇,𝑡0

𝑓 (𝑡)

= 𝐷
𝑀−𝑚

∇
𝐷
𝑚

∇
𝐼
𝑚

∇,𝑡0

𝐼
(𝑀−𝑚)−(𝛽−𝛼)

∇,𝑡0

𝑓 (𝑡)

= 𝐷
𝑀−𝑚

∇
𝐼
(𝑀−𝑚)−(𝛽−𝛼)

∇,𝑡0

𝑓 (𝑡)

= 𝐷
𝛽−𝛼

∇,𝑡0

𝑓 (𝑡) .

(120)

In addition,

𝐼
𝛼

∇,𝑡0

𝐷
𝛽

∇,𝑡0

𝑓 (𝑡) = 𝐼
𝛼

∇,𝑡0

𝐷
𝑀

∇
𝐼
𝑀−𝛽

∇,𝑡0

𝑓 (𝑡)

= 𝐷
𝑀

∇
𝐼
𝛼

∇,𝑡0

𝐼
𝑀−𝛽

∇,𝑡0

𝑓 (𝑡)

−

𝑀−1

∑

𝑘=0

ℎ̂
𝛼−𝑀+𝑘

(𝑡, 𝑡
0
)𝐷

𝑘+𝛽−𝑀

∇,𝑡0

𝑓 (𝑡
0
)

= 𝐷
𝛽−𝛼

∇,𝑡0

𝑓 (𝑡)

−

𝑀

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛽−𝑘

∇,𝑡0

𝑓 (𝑡
0
) .

(121)

Property 10. Let 𝑓
𝑀−𝛽

(𝑡) = 𝐼
𝑀−𝛽

∇,𝑡0

𝑓(𝑡) and 𝑛 − 1 < 𝛼 ≤ 𝑛,
𝑚 − 1 < 𝛽 ≤ 𝑚 (𝑛,𝑚 ∈ N). If 𝑓(𝑡) ∈ 𝐿

∇,1
(Ω) and 𝑓

𝑀−𝛽
(𝑡) ∈

𝐴𝐶
𝑀+𝑚

∇
(Ω), then we have the following equation:

𝐷
𝛼

∇,𝑡0

𝐷
𝛽

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼+𝛽

∇,𝑡0

𝑓 (𝑡) −

𝑀

∑

𝑘=1

ℎ̂
−𝑘−𝛼

(𝑡, 𝑡
0
)𝐷

𝛽−𝑘

∇,𝑡0

𝑓 (𝑡
0
) .

(122)

Proof. According to Property 6 and Property 9, we have

𝐷
𝛼

∇,𝑡0

𝐷
𝛽

∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼

∇,𝑡0

𝐷
𝑀

∇
𝐼
𝑀−𝛽

∇,𝑡0

𝑓 (𝑡)

= 𝐷
𝛼+𝑀

∇,𝑡0

𝐼
𝑀−𝛽

∇,𝑡0

𝑓 (𝑡)

−

𝑀−1

∑

𝑘=0

ℎ̂
−𝛼−𝑀+𝑘

(𝑡, 𝑡
0
)𝐷

𝑘

∇
𝐼
𝑀−𝛽

∇,𝑡0

𝑓 (𝑡
0
)

= 𝐷
𝛼+𝛽

∇,𝑡0

𝑓 (𝑡)

−

𝑀−1

∑

𝑘=0

ℎ̂
−𝛼−𝑀+𝑘

(𝑡, 𝑡
0
)𝐷

𝑘−𝑀+𝛽

∇,𝑡0

𝑓 (𝑡
0
)

= 𝐷
𝛼+𝛽

∇,𝑡0

𝑓 (𝑡) −

𝑀

∑

𝑘=1

ℎ̂
−𝑘−𝛼

(𝑡, 𝑡
0
)𝐷

𝛽−𝑘

∇,𝑡0

𝑓 (𝑡
0
) .

(123)

From Property 10, we derive the following result in [1]
when T = R.

Corollary 45 (see [1]). Let𝛼 > 0 and𝛽 > 0 be such that 𝑛−1 <

𝛼 ≤ 𝑛, 𝑚 − 1 < 𝛽 ≤ 𝑚 (𝑛,𝑚 ∈ N) and 𝛼 + 𝛽 < 𝑛, and let
𝑓 ∈ 𝐿

1
(𝑎, 𝑏) and 𝑓

𝑚−𝛼
∈ 𝐴𝐶

𝑚

([𝑎, 𝑏]). Then, there is the fol-
lowing index rule:

(𝐷
𝛼

𝑎+
𝐷
𝛽

𝑎+
𝑓) (𝑥) = (𝐷

𝛼+𝛽

𝑎+
𝑓) (𝑥)

−

𝑚

∑

𝑗=1

(𝐷
𝛽−𝑗

𝑎+
𝑓) (𝑎+)

(𝑥 − 𝑎)
−𝑗−𝛼

Γ (1 − 𝑗 − 𝛼)
.

(124)
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It follows from Property 10, for fractional sum and differ-
ence, that there is also the following theorem in [8].

Corollary 46 (see [8]). Let 𝑝 > 0, 𝑀 = [𝑝] + 1. Then

𝑛0
∇
𝑞

𝑛

[
𝑛0
∇
𝑝

𝑛
𝑓 (𝑛)]=

𝑛0
∇
𝑝+𝑞

𝑛
𝑓 (𝑛)

−

𝑀

∑

k=1
[
−𝑞 − 𝑘 + 1

𝑛 − 𝑛
0

] [
𝑛0
∇
𝑝−𝑘

𝑛

𝑓 (𝑛
0
− 1)] .

(125)

5. Cauchy-Type Problem with
Riemann-Liouville Fractional Derivative

In this section, we consider Cauchy-type problem with
Riemann-Liouville fractional nabla derivative

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) (𝛼 > 0) , (126)

𝐷
𝛼−𝑘

∇,𝑡0

𝑦 (𝑡
0
) = 𝑏

𝑘
(𝑘 = 1, . . . , 𝑚) , (127)

where 𝑚 = [𝛼] + 1 for 𝛼 ∉ N and 𝛼 = 𝑚 for 𝛼 ∈ N, and the
notation𝐷

𝛼−𝑘

∇,𝑡0

𝑦(𝑡
0
) means that if 𝑡

0
is right-dense, then

𝐷
𝛼−𝑘

∇,𝑡0

𝑦 (𝑡
0
) = lim

t→𝑡
+

0

𝐷
𝛼−𝑘

∇,𝑡0

𝑦 (𝑡) (1 ≤ 𝑘 ≤ 𝑚 − 1) ,

𝐷
𝛼−𝑚

∇,𝑡0

𝑦 (𝑡
0
) = lim

𝑡→ 𝑡
+

0

𝐼
𝑚−𝛼

∇,𝑡0

𝑦 (𝑡) (𝛼 ̸=𝑚) ,

𝐷
0

∇,𝑡0

𝑦 (𝑡
0
) = 𝑦 (𝑡

0
) (𝛼 = 𝑚) ,

(128)

if 𝑡
0
is right-scatter, then𝐷

𝛼−𝑘

∇,𝑡0

𝑦(𝑡
0
) = 0.

We discuss this Cauchy-type problem in the space 𝐿𝛼
∇
(Ω)

defined for 𝛼 > 0 by

𝐿
𝛼

∇
(Ω) := {𝑦 ∈ 𝐿

∇
(Ω) : 𝐷

𝛼

∇,𝑡0

∈ 𝐿
∇
(Ω)} . (129)

Here,𝐿
∇
(Ω) := 𝐿

∇,1
(Ω) is the space of∇-Lebesgue summable

functions in a finite intervalΩ.
In particular, if 𝛼 = 𝑚 ∈ N, then the problem in (126) and

(127) is reduced to the usual Cauchy problem for the ordinary
differential equation of order 𝑚 ∈ N on the following time
scales:

𝑦
∇
𝑚

(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝑦
∇
𝑚−𝑘

(𝑡
0
) = 𝑏

𝑘
(𝑘 = 1, . . . , 𝑚) .

(130)

In the following, we prove that Cauchy-type problem and
the nonlinear Volterra integral equation are equivalent in the
sense that, if𝑦(𝑡) ∈ 𝐿

∇
(Ω) satisfies one of these relations, then

it also satisfies the other.

Theorem 47. Let 𝛼 > 0, 𝑚 = −[−𝛼], 𝑡
0
, 𝑡 ∈ Ω

𝑘
𝑚 . Let 𝐺 be an

open set in R and let 𝑓 : Ω × 𝐺 → R be a function such that
𝑓(𝑡, 𝑦) ∈ 𝐿

∇
(Ω) for any 𝑦 ∈ 𝐺. If 𝑦(𝑡) ∈ 𝐿

∇
(Ω), then Cauchy-

type problem (126) and (127) is equivalent of the following
equation:

𝑦 (𝑡) =

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏
𝑘

+ ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏.

(131)

Proof. First we prove the necessity. Let 𝑦(𝑡) ∈ 𝐿
∇
(Ω) satisfy

a.e. the relations (126) and (127). Since 𝑓(𝑡, 𝑦) ∈ 𝐿
∇
(Ω),

(126) means that there exists a.e. on Ω the fractional nabla
derivative𝐷

𝛼

∇,𝑡0

𝑦(𝑡) ∈ 𝐿
∇
(Ω). According to

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) = 𝐷
𝑚

∇
𝐼
𝑚−𝛼

∇,𝑡0

𝑦 (𝑡) ,

(𝑚 = − [−𝛼]) , 𝐼
0

∇,𝑡0

𝑦 (𝑡) = 𝑦 (𝑡) ,

(132)

we have 𝐼
𝑚−𝛼

∇,𝑡0

𝑦(𝑡) ∈ 𝐴𝐶
𝑚

∇
(Ω). Thus, we apply 𝐼

𝛼

∇,𝑡0

to both
sides of (126) and, in accordance with (116), we have

𝐼
𝛼

∇,𝑡0

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) = 𝑦 (𝑡) −

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
)𝐷

𝛼−𝑘

∇,𝑡0

𝑦 (𝑡
0
)

= ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏.

(133)

Thus,

𝑦 (𝑡) =

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏
𝑘
+ ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏.

(134)

Now, we prove the sufficiency. Let 𝑦(𝑡) ∈ 𝐿
∇
(Ω) satisfy a.e.

(131). Applying the operator 𝐷
𝛼

∇,𝑡0

to both sides of (131), we
have

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) =

𝑚

∑

𝑘=1

𝐷
𝛼

∇,𝑡0

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏
𝑘
+ 𝐷

𝛼

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡, 𝑦 (𝑡)) .

(135)

From here, in accordance with the formula (85) and (101), we
arrive at (131).
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Now, we show that the relations in (127) also hold. For
this, applying the operators 𝐷𝛼−𝑘

∇,𝑡0

(𝑘 = 1, . . . , 𝑚) to both sides
of (131) and using (83) and (103), we have

𝐷
𝛼−𝑘

∇,𝑡0

𝑦 (𝑡) =

𝑚

∑

𝑗=1

𝐷
𝛼−𝑘

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) 𝑏
𝑗
+ 𝐷

𝛼−𝑘

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡, 𝑦 (𝑡))

=

𝑘

∑

𝑗=1

𝐷
𝛼−𝑘

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) 𝑏
𝑗

+

𝑚

∑

𝑗=𝑘+1

𝐷
𝛼−𝑘

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) 𝑏
𝑗

+ 𝐷
𝛼−𝑘

∇,𝑡0

𝐼
𝛼

∇,𝑡0

𝑓 (𝑡, 𝑦 (𝑡))

=

𝑘

∑

𝑗=1

ℎ̂
𝑘−𝑗

(𝑡, 𝑡
0
) 𝑏
𝑗
+ 0 + 𝐼

𝑘

∇,𝑡0

𝑓 (𝑡, 𝑦 (𝑡))

=

𝑘

∑

𝑗=1

ℎ̂
𝑘−𝑗

(𝑡, 𝑡
0
) 𝑏
𝑗

+ ∫

𝑡

𝑡0

ℎ̂
𝑘−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏.

(136)

Thus, we obtain the relations in (127).

In the following, we establish the existence of a unique
solution to the Cauchy-type problem (126)-(127) in the space
𝐿
𝛼

∇
(Ω) defined in (129) under the conditions of Theorem 47,

and an additional Lipschitzian-type condition on𝑓(𝑡, 𝑦)with
respect to the second variable, for all 𝑡 ∈ Ω and for all 𝑦

1
, 𝑦
2
∈

𝐺 ⊂ R,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦
1
) − 𝑓 (𝑡, 𝑦

2
)
󵄨󵄨󵄨󵄨 ≤ 𝐴

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨 (𝐴 > 0) , (137)

where 𝐴 > 0 does not depend on 𝑡 ∈ Ω. we will derive a
unique solution to the Cauchy-problem (126)-(127).

Theorem 48. Let 𝛼 > 0,𝑚 = −[−𝛼]. Let𝐺 be an open set inR
and let 𝑓 : Ω × 𝐺 → R be a function such that 𝑓(𝑡, 𝑦) ∈

𝐿
∇
(Ω) for any 𝑦 ∈ 𝐺. Let 𝑓(𝑡, 𝑦) satisfy the Lipschitzian con-

dition (137) and max
𝑦∈𝐺,𝑡,𝑠∈Ω

{|𝑓(𝑡, 𝑦)|, |ℎ̂
𝛼−1

(𝑡, 𝑠)|} ≤ 𝑀.
Then, there exists a unique solution 𝑦(𝑡) to the Cauchy-type
problem (126)-(127) in the space 𝐿𝛼

∇
(Ω).

Proof. Since the Cauchy-type problem (126)-(127) and the
nonlinear Volterra integral equation (131) are equivalent, we
only need to prove there exists a unique solution to (131).

We define function sequences as follows:

𝑦
𝑙
(𝑡) = 𝑦

0
(𝑡)

+∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦
𝑙−1

(𝜏)) ∇𝜏 (𝑙 = 1, 2, . . .),

(138)

where

𝑦
0
(𝑡) =

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏
𝑘
. (139)

We obtain by induction

󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑦
𝑙−1

(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀

𝑙+1

𝐴
𝑙−1

ℎ̂
𝑙
(𝑡, 𝑡

0
) . (140)

In fact, for 𝑙 = 1, since max
𝑦∈𝐺,𝑡,𝑠∈Ω

{|𝑓(𝑡, 𝑦)|, |ℎ̂
𝛼−1

(𝑡, 𝑠)|} ≤

𝑀, we have

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦
0
(𝑡)

󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏))
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑦
𝑙−1

(𝜏))
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝑀
2

∫

𝑡

𝑡0

∇𝜏 = 𝑀
2

ℎ̂
1
(𝑡, 𝑡

0
) .

(141)

If

󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝑡) − 𝑦
𝑙−2

(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀

𝑙

𝐴
𝑙−2

ℎ̂
𝑙−1

(𝑡, 𝑡
0
) . (142)

Then,
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑦

𝑙−1
(𝑡)

󵄨󵄨󵄨󵄨

≤ 𝐴∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏))
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝜏) − 𝑦
𝑙−2

(𝜏)
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡0

𝑀
𝑙

𝐴
𝑙−2

ℎ̂
𝑙−1

(𝜏, 𝑡
0
) ∇𝜏

= 𝑀
𝑙+1

𝐴
𝑙−1

∫

𝑡

𝑡0

ℎ̂
𝑙−1

(𝜏, 𝑡
0
) ∇𝜏

= 𝑀
𝑙+1

𝐴
𝑙−1

ℎ̂
𝑙
(𝑡, 𝑡

0
) .

(143)

Thus, from Lemma 9, we have

∞

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑡) − 𝑦

𝑗−1
(𝑡)

󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑗=1

𝑀
𝑗+1

𝐴
𝑗−1

ℎ̂
𝑗
(𝑡, 𝑡

0
)

=
𝑀

𝐴

∞

∑

𝑗=1

𝑀
𝑗

𝐴
𝑗

ℎ̂
𝑗
(𝑡, 𝑡

0
)

=
𝑀

𝐴

∞

∑

𝑗=1

𝑀
𝑗

𝐴
𝑗

ℎ
𝑗
(𝜎 (𝑡) , 𝑡

0
)

≤
𝑀

𝐴

∞

∑

𝑗=1

𝑀
𝑗

𝐴
𝑗
(𝜎 (𝑡) − 𝑡

0
)
𝑗

𝑗!

≤
𝑀

𝐴

∞

∑

𝑗=1

𝑀
𝑗

𝐴
𝑗
(𝜎 (𝑡

1
) − 𝑡

0
)
𝑗

𝑗!
.

(144)
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ByWeierstrass discriminance, we obtain 𝑦
𝑙
(𝑡) convergent

uniformly. Let 𝑦(𝑡) = lim
𝑙→∞

𝑦
𝑙
(𝑡), then 𝑦(𝑡) is a solution of

(131). Next, we will show the uniqueness. Assume that 𝑧(𝑡) is
another solution to (131), that is,

𝑧 (𝑡) = 𝑦
0
(𝑡) + ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑧 (𝜏)) ∇𝜏. (145)

As

max
𝑦∈𝐺,𝑡,𝑠∈Ω

{
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨 , ℎ̂𝛼 (𝑡, 𝑠)} ≤ 𝑀,

󵄨󵄨󵄨󵄨𝑦0 (𝑡) − 𝑧 (𝑡)
󵄨󵄨󵄨󵄨 ≤ ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏))
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑧 (𝜏))
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝑀
2

∫

𝑡

𝑡0

∇𝜏 = 𝑀
2

ℎ̂
1
(𝑡, 𝑡

0
) .

(146)

If
󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑀
𝑙+1

𝐴
𝑙−1

ℎ̂
𝑙
(𝑡, 𝑡

0
) , (147)

then
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨

≤ ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏))
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑦
𝑙−1

(𝜏) − 𝑓 (𝜏, 𝑧 (𝜏)))
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝑀𝐴∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨𝑦𝑙−1 (𝜏) − 𝑧 (𝜏)
󵄨󵄨󵄨󵄨 ∇𝜏

≤ 𝑀𝐴∫

𝑡

𝑡0

𝑀
𝑙+1

𝐴
𝑙−1

ℎ̂
𝑙
(𝜏, 𝑡

0
) ∇𝜏

= 𝑀
𝑙+2

𝐴
𝑙

∫

𝑡

𝑡0

ℎ̂
𝑙
(𝜏, 𝑡

0
) ∇𝜏

= 𝑀
𝑙+2

𝐴
𝑙

ℎ̂
𝑙+1

(𝑡, 𝑡
0
) .

(148)

By mathematical induction, we have
󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑧 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑀
𝑙+2

𝐴
𝑙

ℎ̂
𝑙+1

(𝑡, 𝑡
0
) , (149)

and then, from Lemma 9, we get that
∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝑦𝑙 (𝑡) − 𝑧 (𝑡)
󵄨󵄨󵄨󵄨

≤
𝑀

𝐴

∞

∑

𝑙=0

(𝑀𝐴)
𝑙+1

ℎ̂
𝑙+1

(𝑡, 𝑡
0
)

=
𝑀

𝐴

∞

∑

𝑙=0

(𝑀𝐴)
𝑙+1

ℎ
𝑙+1

(𝜎 (𝑡) , 𝑡
0
)

≤
𝑀

𝐴

∞

∑

𝑙=0

(𝑀𝐴)
𝑙+1

(𝜎 (𝑡) − 𝑡
0
)
𝑙+1

(𝑙 + 1)!
.

(150)

Thus, lim
𝑙→∞

𝑦
𝑙
(𝑡) = 𝑧(𝑡), and then get 𝑧(𝑡) = 𝑦(𝑡) owing

to the uniqueness of the limit. To complete the proof of

Theorem 48, wemust show that such a unique solution𝑦(𝑡) ∈

𝐿
∇
(Ω) belongs to the space 𝐿

𝛼

∇
(Ω). In accordance with (129),

it is sufficient to prove that 𝐷𝛼

∇,𝑡0

𝑦(𝑡) ∈ 𝐿
∇
(Ω). By the above

proof, the solution 𝑦(𝑡) ∈ 𝐿
∇
(Ω) is a limit of the sequence

𝑦
𝑚
(𝑡) ∈ 𝐿

∇
(Ω) as follows

lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑦𝑚 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 = 0. (151)

By (126) and (137), we have
󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼

∇,𝑡0

𝑦
𝑚
(𝑡) − 𝐷

𝛼

∇,𝑡0

𝑦 (𝑡)
󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑦
𝑚
) − 𝑓 (𝑡, 𝑦)

󵄩󵄩󵄩󵄩

≤ 𝐴
󵄩󵄩󵄩󵄩𝑦𝑚 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 .

(152)

Thus, by (151), we get

lim
𝑚→∞

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼

∇,𝑡0

𝑦
𝑚
(𝑡) − 𝐷

𝛼

∇,𝑡0

𝑦 (𝑡)
󵄩󵄩󵄩󵄩󵄩
= 0, (153)

and hence 𝐷
𝛼

∇,𝑡0

𝑦(𝑡) ∈ 𝐿
∇
(Ω). This completes the proof of

Theorem 48.

Next, we consider the generalized Cauchy-type problem
as follows:

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝐷
𝛼1

∇,𝑡0

𝑦 (𝑡) , . . . , 𝐷
𝛼𝑙

∇,𝑡0

𝑦 (𝑡))

(0 = 𝛼
0
≤ 𝛼

1
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑙
< 𝛼) ,

𝐷
𝛼−𝑘

∇,𝑡0

𝑦 (𝑡
0
) = 𝑏

𝑘
(𝑘 = 1, . . . , 𝑚,𝑚 = − [−𝛼]) .

(154)

Theorem 49. Let 𝑓 : Ω × 𝐺 → R be a function such that
𝑓(𝑡, 𝑦, 𝑦

1
, . . . , 𝑦

𝑙
) ∈ 𝐿

∇
(Ω) for any (𝑦, 𝑦

1
, . . . , 𝑦

𝑙
) ∈ 𝐺. If𝑦(𝑡) ∈

𝐿
∇
(Ω), then 𝑦(𝑡) satisfies a.e. the relations (154) if and only if

satisfies a.e. the integral equation as follows

𝑦 (𝑡) =

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏
𝑘

+ ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏))

× 𝑓 (𝜏, 𝑦 (𝜏) , 𝐷
𝛼1

∇,𝑡0

𝑦 (𝜏) , . . . , 𝐷
𝛼𝑙

∇,𝑡0

𝑦 (𝜏)) ∇𝜏.

(155)

Assume that 𝑓 satisfies generalized Lipschitzian condi-
tion as follows:

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦, 𝑦
1
, . . . , 𝑦

𝑙
) − 𝑓 (𝑡, 𝑧, 𝑧

1
, . . . , 𝑧

𝑙
)
󵄨󵄨󵄨󵄨

≤ 𝐴[

[

𝑙

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
− 𝑧

𝑗

󵄨󵄨󵄨󵄨󵄨
]

]

(𝐴 > 0) .

(156)

According to the theorem above and by a similar proof of
Theorem 48, we have the following theorem

Theorem 50. Let the condition of Theorem 49 be valid and let
𝑓(𝑡, 𝑦, 𝑦

1
, . . . , 𝑦

𝑙
) satisfy the Lipschitzian condition (156) and

max
𝑦∈𝐺,𝑡,𝑠∈Ω

{|𝑓(𝑡, 𝑦, 𝑦
1
, . . . , 𝑦

𝑙
)|, ℎ̂

𝛼
(𝑡, 𝑠)} ≤ 𝑀. Then there

exists a unique solution 𝑦(𝑡) to be the generalized Cauchy-type
problem in the space 𝐿𝛼

∇
(Ω).
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6. The Dependency of the Solution
upon the Initial Value

We consider fractional differential initial value problem
(126)-(127) again as follows

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝐷
𝛼−𝑘

∇,𝑡0

𝑦 (𝑡
0
) = 𝑏

𝑘
(𝑘 = 1, . . . , 𝑚 = − [−𝛼]) ,

(157)

where 𝛼 > 0.
UsingTheorem 47, we have

𝑦 (𝑡) = 𝑦
0
(𝑡) + ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏, (158)

where

𝑦
0
(𝑡) =

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏
𝑘
. (159)

Suppose that 𝑧(𝑡) is the solution to the initial value problem
as follows

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝐷
𝛼−𝑘

∇,𝑡0

𝑦 (𝑡
0
) = 𝑐

𝑘
(𝑘 = 1, . . . , 𝑚 = − [−𝛼]) .

(160)

We denote ‖𝑦(𝑡)‖ := max
𝑡∈Ω

𝑦(𝑡). We can derive the depend-
ency of the solution upon the initial value.

Theorem 51. Let 𝑡
0
, 𝑡, 𝑠 ∈ Ω

𝑘
, |ℎ̂

𝛼−1
(𝑡, 𝑠)| ≤ 𝑀 and suppose 𝑓

satisfy the Lipschitz condition, that is,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑧) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐴

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨 (𝐴 > 0) . (161)

Then, we have

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑧0 − 𝑦
0

󵄩󵄩󵄩󵄩

∞

∑

𝑗=0

𝑀
𝑗

𝐴
𝑗
(𝜌 (𝑡) − 𝑡

0
)
𝑗

𝑗!
. (162)

Proof. By the proof of Theorem 48, we know that 𝑦(𝑡) =

lim
𝑚→∞

𝑦
𝑚
(𝑡), 𝑧(𝑡) = lim

𝑚→∞
𝑧
𝑚
(𝑡), where

𝑦
0
(𝑡) =

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑏
𝑘
,

𝑦
𝑚
(𝑡) = 𝑦

0
(𝑡) + ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦
𝑚−1

(𝜏)) ∇𝜏,

𝑧
0
(𝑡) =

𝑚

∑

𝑘=1

ℎ̂
𝛼−𝑘

(𝑡, 𝑡
0
) 𝑐
𝑘
,

𝑧
𝑚
(𝑡) = 𝑧

0
(𝑡) + ∫

𝑡

𝑡0

ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑧
𝑚−1

(𝜏)) ∇𝜏.

(163)

Using the Lipschitz condition, we have

󵄨󵄨󵄨󵄨𝑧1 (𝑡) − 𝑦
1
(𝑡)

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

+ ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏))
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑧
0
(𝜏)) − 𝑓 (𝜏, 𝑦

0
(𝜏))

󵄨󵄨󵄨󵄨 ∇𝜏

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 + 𝑀∫

𝑡

𝑡0

𝐴
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 ∇𝜏

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 + 𝑀𝐴
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 ∫

𝑡

𝑡0

∇𝜏

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 + 𝑀𝐴
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 ℎ̂1 (𝑡, 𝑡0)

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩 (1 + 𝑀𝐴 ℎ̂
1
(𝑡, 𝑡

0
)) .

(164)

Suppose that
󵄨󵄨󵄨󵄨𝑧𝑚−1 (𝑡) − 𝑦

𝑚−1
(𝑡)

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑗=0

(𝑀𝐴)
𝑗

ℎ̂
𝑗
(𝑡, 𝑡

0
) .

(165)

Then,
󵄨󵄨󵄨󵄨𝑧𝑚 (𝑡) − 𝑦

𝑚
(𝑡)

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

+ ∫

𝑡

𝑡0

󵄨󵄨󵄨󵄨󵄨
ℎ̂
𝛼−1

(𝑡, 𝜌 (𝜏))
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜏, 𝑧
𝑚−1

(𝜏)) − 𝑓 (𝜏, 𝑦
𝑚−1

(𝜏))
󵄨󵄨󵄨󵄨 ∇𝜏

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

+ 𝑀∫

𝑡

𝑡0

𝐴
󵄨󵄨󵄨󵄨𝑧𝑚−1 (𝜏) − 𝑦

𝑚−1
(𝜏)

󵄨󵄨󵄨󵄨 ∇𝜏

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

+ 𝑀∫

𝑡

𝑡0

𝐴
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑗=0

(𝑀𝐴)
𝑗

ℎ̂
𝑗
(𝜏, 𝑡

0
) ∇𝜏

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

+ 𝑀𝐴
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑗=0

(𝑀𝐴)
𝑗

∫

𝑡

𝑡0

ℎ̂
𝑗
(𝜏, 𝑡

0
) ∇𝜏

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

+ 𝑀𝐴
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

𝑚−1

∑

𝑗=0

(𝑀𝐴)
𝑗

ℎ̂
𝑗+1

(𝑡, 𝑡
0
)

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

𝑚

∑

𝑗=0

(𝑀𝐴)
𝑗

ℎ̂
𝑗
(𝑡, 𝑡

0
) .

(166)
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According to mathematical induction, we have

󵄨󵄨󵄨󵄨𝑧𝑚 (𝑡) − 𝑦
𝑚
(𝑡)

󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

𝑚

∑

𝑗=0

(𝑀𝐴)
𝑗

ℎ̂
𝑗
(𝑡, 𝑡

0
) . (167)

Taking the limit𝑚 → ∞ and from Lemma 9, we obtain that

󵄨󵄨󵄨󵄨𝑧 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑧0 − 𝑦
0

󵄩󵄩󵄩󵄩

∞

∑

𝑗=0

(𝑀𝐴)
𝑗

ℎ̂
𝑗
(𝑡, 𝑡

0
)

=
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

∞

∑

𝑗=0

(𝑀𝐴)
𝑗

ℎ
𝑗
(𝜎 (𝑡) , 𝑡

0
)

≤
󵄩󵄩󵄩󵄩𝑧0 − 𝑦

0

󵄩󵄩󵄩󵄩

∞

∑

𝑗=0

(𝑀𝐴)
𝑗
(𝜎 (𝑡) − 𝑡

0
)
𝑗

𝑗!
.

(168)

As a special case, when fractional equation is linear, we
can obtain its explicit solutions and we will explain it in the
next section.

7. Homogeneous Equations with
Constant Coefficients

In this section, we apply the Laplace transform method to
derive the fundamental system of solutions to homogeneous
equations of the following form:

𝑚

∑

𝑘=1

𝐴
𝑘
[𝐷

𝛼𝑘

∇,𝑡0

𝑦 (𝑡)] + 𝐴
0
𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑚 ∈ N; 0 < 𝛼

1
< ⋅ ⋅ ⋅ < 𝛼

𝑚
) ,

(169)

with the Riemann-Liouville fractional derivatives𝐷𝛼𝑘

∇,𝑡0

𝑦(𝑘 =

1, . . . , 𝑚). Here,𝐴
𝑘
∈ R(𝑘 = 0, . . . , 𝑚) are real constants, and,

generally speaking, we can take 𝐴
𝑚

= 1.
The Laplace transform method is based on the relation

(75) which is equivalent to the following one:

L
∇,𝑡0

{𝐷
𝛼

∇,𝑡0

𝑓 (𝑡)} (𝑧) = 𝑧
𝛼

L
∇,𝑡0

{𝑓 (𝑡)} (𝑧)

−

𝑙

∑

𝑗=1

𝑑
𝑗
𝑧
𝑗−1

(𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N) ,

(170)

𝑑
𝑗
= 𝐷

𝛼−𝑗

∇,𝑡0

𝑓 (𝑡
0
) (𝑗 = 1, . . . , 𝑙) . (171)

First, we derive explicit solutions to (169) with 𝑚 = 1 as
follows:

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 𝜆 ∈ R) .

(172)

In order to prove our result, we also need the following
definition and lemma.

Definition 52. The function𝑊
𝛼
(𝑡) is defined by

𝑊
𝛼
(𝑡) = det ((𝐷𝛼−𝑘

∇,𝑡0

𝑦
𝑗
) (𝑡))

𝑛

𝑘,𝑗=1

(𝑛 = [𝛼] + 1, 𝑡 ∈ Ω) .

(173)

Lemma 53. The solutions 𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡) are linearly

independent if and only if 𝑊
𝛼
(𝑡
∗

) ̸= 0 at some point 𝑡∗ ∈ Ω.

Proof. We first prove sufficiency. If, to the contrary, 𝑦
𝑗
(𝑡)(𝑗 =

1, 2, . . . , 𝑛) are linearly dependent in Ω, then there exists 𝑛

constants {𝑐
𝑗
}
𝑛

𝑗=1
, not all zero, such that,

((𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑗
) (𝑡))

𝑛

𝑘,𝑗=1

(

𝑐
1

𝑐
2

⋅ ⋅ ⋅

𝑐
𝑛

) ≡ 0 (174)

holds, and thus, 𝑊
𝛼
(𝑡) ≡ 0 which leads to a contradiction.

Therefore, if 𝑊
𝛼
(𝑡
∗

) ̸= 0 at some point 𝑡
∗

∈ Ω, then
𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡) are linearly independent.Now,we prove

necessity. Suppose, to the contrary, for 𝑡 ∈ Ω, 𝑊
𝛼
(𝑡) = 0.

Consider the following equations:

((𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑗
) (𝑡

∗

))
𝑛

𝑘,𝑗=1

𝐶 = 0, (175)

where 𝑡
∗

∈ Ω, 𝐶 = (

𝑐1

𝑐2

⋅⋅⋅

𝑐𝑛

). As 𝑊
𝛼
(𝑡
∗

) = 0, the equations has

nontrivial solution 𝑐
𝑗
(𝑗 = 1, 2, . . . , 𝑛). Now we construct a

function using these constants:

𝑦 (𝑡) =

𝑛

∑

𝑗=1

𝑐
𝑗
𝑦
𝑗
(𝑡) , (176)

and we get that 𝑦(𝑡) is a solution. From (175), we obtain that
𝑦(𝑡) satisfies the following initial value condition:

(𝐷
𝛼−𝑘

∇,𝑡0

𝑦 (𝑡
∗

)) = 0, 𝑘 = 1, . . . , 𝑛. (177)

However, 𝑦(𝑡) = 0 is also a solution to equation satisfying the
initial value condition. By the uniqueness of solution, we have

𝑛

∑

𝑗=1

𝑐
𝑗
𝑦
𝑗
(𝑡) = 0, (178)

and thus, 𝑦
𝑗
(𝑡) (𝑗 = 1, 2, . . . , 𝑛) are linearly dependant which

leads to a contradiction.Thus, if the solutions 𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . ,

𝑦
𝑛
(𝑡) are linearly independent, then𝑊

𝛼
(𝑡
∗

) ̸= 0 at some point
𝑡
∗

∈ Ω.

There holds the following statements.

Theorem54. Let 𝑙−1 < 𝛼 ≤ 𝑙(𝑙 ∈ N) and 𝜆 ∈ R.Then, the fol-
lowing functions:

𝑦
𝑗
(𝑡) =

∇
𝐹
𝛼,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
)

=

∞

∑

𝑘=0

𝜆
𝑘

ℎ̂
𝑘𝛼+𝛼−𝑗

(𝑡, 𝑡
0
) (𝑗 = 1, . . . , 𝑙)

(179)



Abstract and Applied Analysis 17

yield the fundamental system of solutions to (172). Moreover,
𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙 satisfy

𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 0 (𝑘, 𝑗 = 1, . . . , 𝑙; 𝑘 ̸= 𝑗) ,

𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑘
(𝑡
0
) = 1 (𝑘 = 1, . . . , 𝑙) .

(180)

Proof. Applying the Laplace transform to (172) and taking
(170) into account, we have

L
∇,𝑡0

{𝑦 (𝑡)} (𝑧) =

𝑙

∑

𝑗=1

𝑑
𝑗

𝑧
𝑗−1

𝑧𝛼 − 𝜆
, (181)

where 𝑑
𝑗
(𝑗 = 1, . . . , 𝑙) are given by (171).

Formula (79) with 𝛽 = 𝛼 + 1 − 𝑗 yields

L
∇,𝑡0

{
∇
𝐹
𝛼,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
)} (𝑧) =

𝑧
𝑗−1

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼

) . (182)

Thus, from (181), we derive the following solution to (172) as
follows:

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑑
𝑗
𝑦
𝑗
(𝑡) , 𝑦

𝑗
(𝑡) =

∇
𝐹
𝛼,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
) , (183)

which shows that an arbitrary solution 𝑦(𝑡) can be repre-
sented by 𝑦

𝑗
(𝑡), 𝑗 = 1, . . . , 𝑙. It is easily verified that the

functions 𝑦
𝑗
(𝑡) are solutions to (172) as follows:

𝐷
𝛼

∇,𝑡0

[
∇
𝐹
𝛼,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
)]

= 𝜆
∇
𝐹
𝛼,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
) (𝑗 = 1, . . . , 𝑙) .

(184)

In fact,

𝐷
𝛼

∇,𝑡0

[
∇
𝐹
𝛼,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
)]

= 𝐷
𝛼

∇,𝑡0

[

∞

∑

𝑘=0

𝜆
𝑘

ℎ̂
𝑘𝛼+𝛼−𝑗

(𝑡, 𝑡
0
)]

= 𝐷
𝛼

∇,𝑡0

[ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) +

∞

∑

𝑘=1

𝜆
𝑘

ℎ̂
𝑘𝛼+𝛼−𝑗

(𝑡, 𝑡
0
)]

= 𝐷
𝛼

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) +

∞

∑

𝑘=1

𝜆
𝑘

ℎ̂
𝑘𝛼−𝑗

(𝑡, 𝑡
0
)

= 0 +

∞

∑

𝑘=0

𝜆
𝑘+1

ℎ̂
(𝑘+1)𝛼−𝑗

(𝑡, 𝑡
0
)

= 𝜆

∞

∑

𝑘=0

𝜆
𝑘

ℎ̂
𝑘𝛼+𝛼−𝑗

(𝑡, 𝑡
0
)

= 𝜆
∇
𝐹
𝛼,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
) .

(185)

Moreover,

𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑗
(𝑡) = 𝐷

𝛼−𝑘

∇,𝑡0

[

∞

∑

𝑠=0

𝜆
𝑠

ℎ̂
𝑠𝛼+𝛼−𝑗

(𝑡, 𝑡
0
)]

=

∞

∑

𝑠=0

𝜆
𝑠

ℎ̂
𝑠𝛼+𝑘−𝑗

(𝑡, 𝑡
0
) .

(186)

It follows from (186) that

𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 0 (𝑘, 𝑗 = 1, . . . , 𝑙; 𝑘 > 𝑗) ,

𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑘
(𝑡
0
) = 1 (𝑘 = 1, . . . , 𝑙) .

(187)

If 𝑘 < 𝑗, then

𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑗
(𝑡)

= 𝐷
𝛼−𝑘

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) +

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠𝛼+𝑘−𝑗

(𝑡, 𝑡
0
)

= 𝐷
𝑚−𝑘

∇,𝑡0

𝐼
𝑚−𝛼

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
) +

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠𝛼+𝑘−𝑗

(𝑡, 𝑡
0
)

= 𝐷
𝑚−𝑘

∇,𝑡0

ℎ̂
𝑚−𝑗

(𝑡, 𝑡
0
) +

∞

∑

𝑠=0

𝜆
𝑠+1

ℎ̂
𝑠𝛼+𝛼+𝑘−𝑗

(𝑡, 𝑡
0
)

=

∞

∑

𝑠=0

𝜆
𝑠+1

ℎ̂
𝑠𝛼+𝛼+𝑘−𝑗

(𝑡, 𝑡
0
) ,

(188)

and since 𝛼 + 𝑘 − 𝑗 ≥ 𝛼 + 1 − 𝑙 > 0 for any 𝑘, 𝑗 = 1, . . . , 𝑙, the
following relations hold:

𝐷
𝛼−𝑘

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 0 (𝑘, 𝑗 = 1, . . . , 𝑙; 𝑘 < 𝑗) . (189)

By (187) and (189),𝑊
𝛼
(𝑡
0
) = 1. Then, 𝑦

𝑗
(𝑡), 𝑗 = 1, . . . , 𝑙 which

are linearly independent yield the fundamental system of
solutions to (172).

Corollary 55. The following equation:

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡
0
; 0 < 𝛼 ≤ 1; 𝜆 ∈ R) (190)

has its solution given by

𝑦 (𝑡) =
∇
𝐹
𝛼,𝛼

(𝜆; 𝑡, 𝑡
0
) , (191)

while the equation

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡
0
; 1 < 𝛼 ≤ 2; 𝜆 ∈ R) (192)

has the fundamental system of solutions given by

𝑦
1
(𝑡) =

∇
𝐹
𝛼,𝛼

(𝜆; 𝑡, 𝑡
0
) , 𝑦

2
(𝑡) =

∇
𝐹
𝛼,𝛼−1

(𝜆; 𝑡, 𝑡
0
) .

(193)

Next, we derive the explicit solutions to (169) with𝑚 = 2

of the following form:

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝐷
𝛽

∇,𝑡0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 0 < 𝛽 < 𝛼) ,

(194)

with 𝜆, 𝜇 ∈ R.
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Theorem56. Let 𝑙−1 < 𝛼 ≤ 𝑙(𝑙 ∈ N), 0 < 𝛽 < 𝛼 and 𝜆, 𝜇 ∈ R.
Then, the following functions:

𝑦
𝑗
(𝑡) =

∞

∑

𝑘=0

𝜇
𝑘

𝑘!
{

𝜕
𝑘

𝜕𝜆𝑘
∇
𝐹
𝛼−𝛽,𝛼+𝑘𝛽+1−𝑗

(𝜆; 𝑡, 𝑡
0
)}

(𝑗 = 1, . . . , 𝑙)

(195)

yield the fundamental system of solutions to (194), provided
that the series in (195) is convergent. Moreover, if 𝛼 + 1 − 𝑙 >

𝛽 > 𝑙 − 1, then, 𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙, in (195) satisfy (180).

Proof. Let 𝑚 − 1 < 𝛽 ≤ 𝑚 (𝑚 ≤ 𝑙;𝑚 ∈ N). Applying the
Laplace transform to (194) and using (170) as in (181), we
obtain

L
∇,𝑡0

{𝑦 (𝑡)} (𝑧) =

𝑙

∑

𝑗=1

𝑑
𝑗

𝑧
𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
, (196)

where 𝑑
𝑗

= 𝐷
𝛼−𝑗

∇,𝑡0

𝑦(𝑡
0
) − 𝜆𝐷

𝛽−𝑗

∇,𝑡0

𝑦(𝑡
0
) (𝑗 = 1, . . . , 𝑚), 𝑑

𝑗
=

𝐷
𝛼−𝑗

∇,𝑡0

𝑦(𝑡
0
) (𝑗 = 𝑚 + 1, . . . , 𝑙).

For 𝑧 ∈ C and |𝜇𝑧
−𝛽

/(𝑧
𝛼−𝛽

− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
=

𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

1 − (𝜇𝑧−𝛽/ (𝑧𝛼−𝛽 − 𝜆))

=

∞

∑

𝑘=0

𝜇
𝑘

𝑧
−𝛽−𝑘𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑘+1

,

(197)

and hence (196) has the following representation:

L
∇,𝑡0

{𝑦 (𝑡)} (𝑧) =

𝑙

∑

𝑗=1

𝑑
𝑗

∞

∑

𝑘=0

𝜇
𝑘

𝑧
𝑗−1−𝛽−𝑘𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑘+1

. (198)

By (81), for 𝑧 ∈ C and |𝜆𝑧
𝛽−𝛼

| < 1, we have

𝑧
𝑗−1−𝛽−𝑘𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑘+1

=
𝑧
(𝛼−𝛽)−(𝛼+𝑘𝛽+1−𝑗)

(𝑧𝛼−𝛽 − 𝜆)
𝑘+1

=
1

𝑘!
L
∇,𝑡0

{
𝜕
𝑘

𝜕𝜆𝑘
∇
𝐹
𝛼−𝛽,𝛼+𝑘𝛽+1−𝑗

(𝜆; 𝑡, 𝑡
0
)} (𝑧) .

(199)

From (198) and (199), we derive the solution to (194) as
follows

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑑
𝑗
𝑦
𝑗
(𝑡) , (200)

which shows that an arbitrary solution 𝑦(𝑡) can be repre-
sented by 𝑦

𝑗
(𝑡), 𝑗 = 1, . . . , 𝑙, where 𝑦

𝑗
(𝑡) (𝑗 = 1, . . . , 𝑙) are

given by (195). For 𝑞, 𝑗 = 1, . . . , 𝑙, the direct evaluation yields

𝐷
𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡)

= 𝐷
𝛼−𝑞

∇,𝑡0

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘
∇
𝐹
𝛼−𝛽,𝛼+𝑘𝛽+1−𝑗

(𝜆; 𝑡, 𝑡
0
)

=

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘
𝐷
𝛼−𝑞

∇,𝑡0

[

∞

∑

𝑠=0

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+𝛼+𝑘𝛽−𝑗

(𝑡, 𝑡
0
)]

=

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘

∞

∑

𝑠=0

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
) .

(201)

For 𝑞 > 𝑗, 𝐷𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 0, and for 𝑞 = 𝑗, 𝐷𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 1.

Thus, we have𝑊
𝛼
(𝑡
0
) = 1. It follows from Lemma 53 that the

functions 𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙 in (195) are linearly indepen-

dent solutions, and then they yield the fundamental system
of solutions to (194). Furthermore, if 𝑞 < 𝑗, then we rewrite
(201) as follows:

𝐷
𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡) = 𝐷

𝛼−𝑞

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑘=1

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘
ℎ̂
𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑘=1

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
)

=

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑘=1

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘
ℎ̂
𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑘=1

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+𝑘𝛽+𝑞−𝑗

(𝑡, 𝑡
0
) .

(202)

If 𝛼+1−𝑙 > 𝛽 > 𝑙−1, then 𝑠(𝛼−𝛽)+𝑞−𝑗 ≥ (𝛼−𝛽)+1−𝑙 > 0

for 𝑘 = 0, 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑠 ∈ N+, and 𝑘𝛽 + 𝑞 − 𝑗 ≥ 𝛽 + 1 − 𝑙 >

0 for 𝑠 = 0, 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑘 ∈ N+. Besides, we also have
𝑠(𝛼 − 𝛽) + 𝑘𝛽 + 𝑞 − 𝑗 ≥ (𝛼 − 𝛽) + 𝛽 + 1 − 𝑙 = 𝛼 + 1 − 𝑙 > 0

for 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑠, 𝑘 ∈ N+. These imply that𝐷𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 0.

Thus, the relations in (180) are valid.Theproof is finished.

Corollary 57. The following equation form:

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝐷
𝛽

∇,𝑡0

𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 0 < 𝛽 < 𝛼)

(203)

has its fundamental system of solution given by

𝑦
𝑗
(𝑡) =

∇
𝐹
𝛼−𝛽,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
) (𝑗 = 1, . . . , 𝑙) . (204)
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Finally, we find the fundamental system of solutions to
(169) with any𝑚 ∈ N \ {1, 2}. It is convenient to rewrite (169)
in the form

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝐷
𝛽

∇,𝑡0

𝑦 (𝑡) −

𝑚−2

∑

𝑘=0

𝐴
𝑘
𝐷
𝛼𝑘

∇,𝑡0

𝑦 (𝑡) = 0

(𝑡 > 𝑡
0
; 𝑚 ∈ N \ {1, 2} ;

0 = 𝛼
0
< 𝛼

1
< ⋅ ⋅ ⋅ < 𝛼

𝑚−2
< 𝛽 < 𝛼;

𝜆, 𝐴
0
, . . . , 𝐴

𝑚−2
∈ R) .

(205)

Theorem 58. Let𝑚 ∈ N\{1, 2}, 𝑙−1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N) and let 𝛽
and 𝛼

1
, . . . , 𝛼

𝑚−2
be such that 𝛼 > 𝛽 > 𝛼

𝑚−2
> ⋅ ⋅ ⋅ > 𝛼

1
> 𝛼

0
=

0, and let 𝜆, 𝐴
0
, . . . , 𝐴

𝑚−2
∈ R. Then, the following functions:

𝑦
𝑗
(𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!
[

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

⋅
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆, 𝑡, 𝑡

0
) (𝑗 = 1, . . . , 𝑙)

(206)

yield the fundamental system of solutions to (205), provided
that the series in (206) are convergent. The inner sum is taken
over all 𝑘

0
, . . . , 𝑘

𝑚−2
∈ N

0
such that 𝑘

0
+ ⋅ ⋅ ⋅ + 𝑘

𝑚−2
= 𝑛. More-

over, if 𝛼 + 1 − 𝑙 > 𝛽 > 𝛼
𝑚−2

+ 𝑙 − 1, then 𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙,

in (206) satisfy (180).

Proof. Let 𝑙
𝑚−1

−1 < 𝛽 ≤ 𝑙
𝑚−1

, 𝑙
𝑘
−1 < 𝛼

𝑘
≤ 𝑙

𝑘
(𝑘 = 1, . . . , 𝑚−2;

0 ≤ 𝑙
1
≤ ⋅ ⋅ ⋅ ≤ 𝑙

𝑚−1
≤ 𝑙). Applying the Laplace transform to

(205) and using (170) as in (196), we obtain

L
∇,𝑡0

{𝑦 (𝑡)} (𝑧) =

𝑙

∑

𝑗=1

𝑑
𝑗

𝑧
𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴
𝑘
𝑧𝛼𝑘

, (207)

where

𝑑
𝑗
= 𝐷

𝛼−𝑗

∇,𝑡0

𝑦 (𝑡
0
) − 𝜆𝐷

𝛽−𝑗

∇,𝑡0

𝑦 (𝑡
0
)

−

𝑚−2

∑

𝑘=1

𝐴
𝑘
𝐷
𝛼𝑘−𝑗

∇,𝑡0

𝑦 (𝑡
0
) (𝑗 = 1, . . . , 𝑙

1
) ,

𝑑
𝑗
= 𝐷

𝛼−𝑗

∇,𝑡0

𝑦 (𝑡
0
) − 𝜆𝐷

𝛽−𝑗

∇,𝑡0

𝑦 (𝑡
0
)

−

𝑚−2

∑

𝑘=2

𝐴
𝑘
𝐷
𝛼𝑘−𝑗

∇,𝑡0

𝑦 (𝑡
0
) (𝑗 = 𝑙

1
+ 1, . . . , 𝑙

2
) ,

⋅ ⋅ ⋅

𝑑
𝑗
= 𝐷

𝛼−𝑗

∇,𝑡0

𝑦 (𝑡
0
) − 𝜆𝐷

𝛽−𝑗

∇,𝑡0

𝑦 (𝑡
0
) (𝑗 = 𝑙

𝑚−2
+ 1, . . . , 𝑙

𝑚−1
) ,

𝑑
𝑗
= 𝐷

𝛼−𝑗

∇,𝑡0

𝑦 (𝑡
0
) (𝑗 = 𝑙

𝑚−1
+ 1, . . . , 𝑙) .

(208)

Here, ∑
𝑛

𝑘=𝑚
𝐴
𝑘

:= 0(𝑚 > 𝑛). For 𝑧 ∈ C and
| ∑

𝑚−2

𝑘=0
𝐴
𝑘
𝑧
𝛼𝑘−𝛽/(𝑧

𝛼−𝛽

− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2

𝑘=0
𝐴
𝑘
𝑧𝛼𝑘

=
𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

(1 − (∑
𝑚−2

𝑘=0
𝐴
𝑘
𝑧𝛼𝑘−𝛽/ (𝑧𝛼−𝛽 − 𝜆)))

=

∞

∑

𝑛=0

𝑧
−𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

(

𝑚−2

∑

𝑘=0

𝐴
𝑘
𝑧
𝛼𝑘−𝛽)

𝑛

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
𝑛!

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

,

(209)

if we also take into account the following relation:

(𝑥
0
+ ⋅ ⋅ ⋅ + 𝑥

𝑚−2
)
𝑛

= ( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
𝑛!

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

𝑚−2

∏

]=0

𝑥
𝑘]
] ,

(210)

where the summation is taken over all 𝑘
0
, . . . , 𝑘

𝑚−2
∈ N

0
such

that 𝑘
0
+ ⋅ ⋅ ⋅ + 𝑘

𝑚−2
= 𝑛.

In addition, for 𝑧 ∈ C and |𝜆𝑧
𝛽−𝛼

| < 1, we have

𝑧
𝑗−1−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘])

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L
∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡

0
)} (𝑧) .

(211)

From (207), (209), and (211), we derive the solution to (205),

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑑
𝑗
𝑦
𝑗
(𝑡) , (212)



20 Abstract and Applied Analysis

which shows that arbitrary solution 𝑦(𝑡) can be expressed by
𝑦
𝑗
(𝑡), 𝑗 = 1, . . . , 𝑙, where 𝑦

𝑗
(𝑡) (𝑗 = 1, . . . , 𝑙) are given by

(206). For 𝑞, 𝑗 = 1, . . . , 𝑙, the direct evaluation yields

𝐷
𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡)

= 𝐷
𝛼−𝑞

∇,𝑡0

{

{

{

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡

0
)
}

}

}

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

× {
𝜕
𝑛

𝜕𝜆𝑛
𝐷
𝛼−𝑞

∇,𝑡0

[

∞

∑

𝑠=0

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+𝛼−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝑡, 𝑡

0
)]}

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

× {
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)} .

(213)

For 𝑞 > 𝑗, 𝐷𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 0, and for 𝑞 = 𝑗, 𝐷𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 1.

Thus, we have𝑊
𝛼
(𝑡
0
) = 1. It follows from Lemma 53 that the

functions 𝑦
𝑗
(𝑡), 𝑗 = 1, 2, . . . , 𝑙 in (206) are linearly indepen-

dent solutions and then they yield the fundamental system
of solutions to (205). Furthermore, if 𝑞 < 𝑗, then we rewrite
(213) as follows:

𝐷
𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡)

= 𝐷
𝛼−𝑞

∇,𝑡0

ℎ̂
𝛼−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽) +∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)

+

∞

∑

𝑛=1

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛
ℎ̂
∑
𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)

+

∞

∑

𝑛=1

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

× {
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)}

=

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+𝑞−𝑗

(𝑡, 𝑡
0
)

+

∞

∑

𝑛=1

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛
ℎ̂
∑
𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)

+

∞

∑

𝑛=1

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)

×
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!
[

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

× {
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=1

𝜆
𝑠

ℎ̂
𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑞−𝑗
(𝑡, 𝑡

0
)} .

(214)

If 𝛼 + 1 − 𝑙 > 𝛽 > 𝛼
𝑚−2

+ 𝑙 − 1, then 𝑠(𝛼 − 𝛽) + 𝑞 − 𝑗 ≥

(𝛼 − 𝛽) + 1 − 𝑙 > 0 for 𝑛 = 0, 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑠 ∈ N+, and
∑
𝑚−2

]=0 (𝛽 − 𝛼])𝑘] + 𝑞 − 𝑗 ≥ 𝛽 − 𝛼
𝑖
+ 1 − 𝑙 ≥ 𝛽 − 𝛼

𝑚−2
+ 1 − 𝑙 > 0

for 𝑠 = 0, 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑛 ∈ N+. Besides, we also have 𝑠(𝛼 −

𝛽) + ∑
𝑚−2

]=0 (𝛽 − 𝛼])𝑘] + 𝑞 − 𝑗 ≥ (𝛼 − 𝛽) + 𝛽 − 𝛼
𝑖
+ 1 − 𝑙 ≥

(𝛼 − 𝛽) + 𝛽 − 𝛼
𝑚−2

+ 1 − 𝑙 > 0 for 𝑞, 𝑗 = 1, . . . , 𝑙, 𝑠, 𝑛 ∈ N+.
These imply that 𝐷𝛼−𝑞

∇,𝑡0

𝑦
𝑗
(𝑡
0
) = 0. Thus the relations in (180)

are valid. The result follows.

8. Nonhomogeneous Equations with
Constant Coefficients

In above section, we applied the Laplace transformmethod to
derive explicit solutions to the homogeneous equations (169)
with the Riemann-Liouville fractional derivatives. Here, we
use this approach to find particular solutions to the corre-
sponding nonhomogeneous equations as follows:

𝑚

∑

𝑘=1

𝐴
𝑘
𝐷
𝛼𝑘

∇,𝑡0

𝑦 (𝑡) + 𝐴
0
𝑦 (𝑡) = 𝑓 (𝑡)

(𝑡 > 𝑡
0
; 0 < 𝛼

1
< ⋅ ⋅ ⋅ < 𝛼

𝑚
; 𝑚 ∈ N) ,

(215)

with real 𝐴
𝑘
∈ R (𝑘 = 0, . . . , 𝑚).

By (170) and (171), for suitable functions 𝑦, the Laplace
transform of𝐷𝛼

∇,𝑡0

𝑦 is given by

L
∇,𝑡0

{𝐷
𝛼

∇,𝑡0

𝑦 (𝑡)} (𝑧) = 𝑧
𝛼

L
∇,𝑡0

{𝑦 (𝑡)} (𝑧) . (216)
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Applying the Laplace transform to (215) and taking (216) into
account, we have

[𝐴
0
+

𝑚

∑

𝑘=1

𝐴
𝑘
𝑧
𝛼𝑘]L

∇,𝑡0
{𝑦 (𝑡)} (𝑧) = L

∇,𝑡0
{𝑓 (𝑡)} (𝑧) .

(217)

Using the inverse Laplace transform L−1

∇,𝑡0

from here we
obtain a particular solution to (215) in the following form:

𝑦 (𝑡) = L
−1

∇,𝑡0

[

L
∇,𝑡0

{𝑓 (𝑡)} (𝑧)

𝐴
0
+ ∑

𝑚

𝑘=1
𝐴
𝑘
𝑧𝛼𝑘

] (𝑡) . (218)

Using the Laplace convolution formula

L
∇,𝑡0

{𝑓 ∗ 𝑔} (𝑧) = L
∇,𝑡0

{𝑓} (𝑧)L
∇,𝑡0

{𝑔} (𝑧) , (219)

we can introduce the Laplace fractional analog of the Green
function as follows:

𝐺
𝛼1 ,...,𝛼𝑚

(𝑡) = L
−1

∇,𝑡0

{
1

𝑃
𝛼1,...,𝛼𝑚

(𝑧)
} (𝑡) ,

𝑃
𝛼1,...,𝛼𝑚

(𝑧) = 𝐴
0
+

𝑚

∑

𝑘=1

𝐴
𝑘
𝑧
𝛼𝑘 ,

(220)

and express a particular solution of (181) in the form of the
Laplace convolution 𝐺

𝛼1 ,...,𝛼𝑚
(𝑡) and 𝑓(𝑡) as follows:

𝑦 (𝑡) = 𝐺
𝛼1 ,...,𝛼𝑚

(𝑡) ∗ 𝑓 (𝑡) . (221)

Generally speaking, we can consider (215) with𝐴
𝑚

= 1. First,
we derive a particular solution to (215) with𝑚 = 1 in the fol-
lowing form:

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) (𝑡 > 𝑡
0
; 𝛼 > 0) . (222)

Theorem 59. Let 𝛼 > 0, 𝜆 ∈ R. Then, (222) is solvable, and its
particular solution has the following form:

𝑦 (𝑡) =
∇
𝐹
𝛼,𝛼

(𝜆; 𝑡, 𝑡
0
) ∗ 𝑓 (𝑡) . (223)

Proof. Equation (222) is (215) with 𝑚 = 1, 𝛼
1
= 𝛼 , 𝐴

1
= 1,

𝐴
0
= −𝜆 and (220) takes the following form:

𝐺
𝛼
(𝑡) = L

−1

∇,𝑡0

{
1

𝑧𝛼 − 𝜆
} (𝑡) =

∇
𝐹
𝛼,𝛼

(𝜆; 𝑡, 𝑡
0
) . (224)

Thus, (221), with𝐺
𝛼1,...,𝛼𝑚

(𝑡) = 𝐺
𝛼
(𝑡), yields (223).The result is

proved.

Next, we derive a particular solution to (215) with 𝑚 = 2

of the following form:

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝐷
𝛽

∇,𝑡0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 𝑓 (𝑡)

(𝑡 > 𝑡
0
; 𝛼 > 𝛽 > 0) .

(225)

Theorem60. Let 𝛼 > 𝛽 > 0, 𝜆, 𝜇 ∈ R.Then, (225) is solvable,
and its particular solution has the following form:

𝑦 (𝑡) = 𝐺
𝛼,𝛽;𝜆,𝜇

(𝑡) ∗ 𝑓 (𝑡) , (226)

𝐺
𝛼,𝛽;𝜆,𝜇

(𝑡) =

∞

∑

𝑘=0

𝜇
𝑘

𝑘!

𝜕
𝑘

𝜕𝜆𝑘
∇
𝐹
𝛼−𝛽,𝛼+𝑘𝛽

(𝜆; 𝑡, 𝑡
0
) , (227)

provided that the series in (227) is convergent.

Proof. Equation (225) is the same as (215) with𝑚 = 2, 𝛼
2
= 𝛼,

𝛼
1
= 𝛽, 𝐴

2
= 1, 𝐴

1
= −𝜆, 𝐴

0
= −𝜇, and (220) is given by

𝐺
𝛼,𝛽;𝜆,𝜇

(𝑡) = L
−1

∇,𝑡0

{
1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
} (𝑡) . (228)

According to (197) for 𝑧 ∈ C and |𝜇𝑧
−𝛽

/(𝑧
𝛼−𝛽

− 𝜆)| < 1,we
have

𝐺
𝛼,𝛽;𝜆,𝜇

(𝑡) = L
−1

∇,𝑡0

{

∞

∑

𝑛=0

𝜇
𝑛

𝑧
−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

} (𝑡) . (229)

In addition, for 𝑧 ∈ C and |𝜆𝑧
𝛽−𝛼

| < 1, we have

z−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L
∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+𝑛𝛽

(𝜆; 𝑡, 𝑡
0
)} (𝑧) ,

(230)

and hence (229) takes the following form:

𝐺
𝛼,𝛽;𝜆,𝜇

(𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+𝑛𝛽

(𝜆; 𝑡, 𝑡
0
) . (231)

Thus, the result in (226) follows from (221) with 𝐺
𝛼1 ,...,𝛼𝑚

(𝑡) =

𝐺
𝛼,𝛽;𝜆,𝜇

(𝑡).

Finally, we find a particular solution to (215) with any𝑚 ∈

N \ {1, 2}. It is convenient to rewrite (215), just as (205) in the
following form:

𝐷
𝛼

∇,𝑡0

𝑦 (𝑡) − 𝜆𝐷
𝛽

∇,𝑡0

𝑦 (𝑡) −

𝑚−2

∑

𝑘=1

𝐴
𝑘
𝐷
𝛼𝑘

∇,𝑡0

𝑦 (𝑡) − 𝐴
0
𝑦 (𝑡) = 𝑓 (𝑡)

(𝑡 > 𝑡
0
)

(232)

with 𝑚 ∈ N \ {1, 2}, 0 < 𝛼
1

< ⋅ ⋅ ⋅ < 𝛼
𝑚−2

< 𝛽 < 𝛼, and
𝜆, 𝐴

0
, . . . , 𝐴

𝑚−2
∈ R.

Theorem 61. Let 𝑚 ∈ N \ {1, 2}, 0 = 𝛼
0
< 𝛼

1
< ⋅ ⋅ ⋅ < 𝛼

𝑚−2
<

𝛽 < 𝛼, and let 𝜆, 𝐴
0
, . . . , 𝐴

𝑚−2
∈ R. Then, (232) is solvable,

and its particular solution has the following form:

𝑦 (𝑡) = 𝐺
𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆

(𝑡) ∗ 𝑓 (𝑡) , (233)

𝐺
𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆

(𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!
[

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡

0
) ,

(234)
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provided that the series (234) is convergent. The inner sum is
taken over all 𝑘

0
, . . . , 𝑘

𝑚−2
such that 𝑘

0
+ ⋅ ⋅ ⋅ + 𝑘

𝑚−2
= 𝑛.

Proof. Equation (232) is the same equation as (215) with 𝛼
𝑚

=

𝛼, 𝛼
𝑚−1

= 𝛽, 𝐴
𝑚

= 1, . . . , 𝐴
𝑚−1

= −𝜆, and with −𝐴
𝑘
instead

of 𝐴
𝑘
for 𝑘 = 0, . . . , 𝑚 − 2. Since 𝛼

0
= 0, (220) takes the fol-

lowing form:

𝐺
𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆

(𝑡) = L
−1

∇,𝑡0

{
1

𝑧𝛼 − 𝜆𝛼𝛽 − ∑
𝑚−2

𝑘=0
𝐴
𝑘
𝑧𝛼𝑘

} (𝑡) .

(235)

For 𝑧 ∈ C and | ∑
𝑚−2

𝑘=0
𝐴
𝑘
𝑧
𝛼𝑘−𝛽/(𝑧

𝛼−𝛽

− 𝜆)| < 1, in accordance
with (209), we have

𝐺
𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆

(𝑡)

= L
−1

∇,𝑡0

{

{

{

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
𝑛!

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

}

}

}

(𝑡) .

(236)

For 𝑧 ∈ C and |𝜆𝑧
𝛽−𝛼

| < 1, we have

𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L
∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡

0
)} (𝑧) .

(237)

The proof is finished.

As in the case of ordinary differential equations, a general
solution to the nonhomogeneous equation (215) is a sum of
a particular solution to this equation and of the general solu-
tion to the corresponding homogeneous equation (169).
Therefore, the results established in this section and in the
previous section can be used to derive general solutions to the
nonhomogeneous equation (222), (225), and (232). The fol-
lowing statements can thus be derived fromTheorems 54, 59,
56, 60, 58, and 61, respectively.

Theorem 62. Let 𝑙 − 1 < 𝛼 ≤ 𝑙(𝑙 ∈ N), 𝜆 ∈ R. Then, (225) is
solvable, and its general solution is given by

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑐
𝑗 ∇

𝐹
𝛼,𝛼+1−𝑗

(𝜆; 𝑡, 𝑡
0
) +

∇
𝐹
𝛼,𝛼

(𝜆; 𝑡, 𝑡
0
) ∗ 𝑓 (𝑡) ,

(238)

where 𝑐
𝑗
(𝑗 = 1, . . . , 𝑙) are arbitrary real constants.

Theorem 63. Let 𝑙 − 1 < 𝛼 ≤ 𝑙(𝑙 ∈ N), 0 < 𝛽 < 𝛼, 𝜆, 𝜇 ∈

R. Then, (225) is solvable, and its general solution has the
following form:

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑐
𝑗

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+𝑛𝛽+1−𝑗

(𝜆; 𝑡, 𝑡
0
)

+ 𝐺
𝛼,𝛽;𝜆,𝜇

(𝑡) ∗ 𝑓 (𝑡) ,

(239)

where 𝐺
𝛼,𝛽,𝜆,𝜇

(𝑡) is given by (227) and 𝑐
𝑗
(𝑗 = 1, . . . , 𝑙) are

arbitrary real constants.

Theorem 64. Let 𝑚 ∈ N \ {1, 2}, 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N) and let
𝛽 and 𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑚−2
be such that 𝛼 > 𝛽 > 𝛼

𝑚−2
> ⋅ ⋅ ⋅ > 𝛼

1
>

𝛼
0
= 0 and 𝛼 − 𝑙 + 1 ≥ 𝛽 and let 𝜆, 𝐴

0
, . . . , 𝐴

𝑚−2
∈ R. Then,

(232) is solvable, and its general solution is given by

𝑦 (𝑡) =

𝑙

∑

𝑗=1

𝑐
𝑗

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘
0
! ⋅ ⋅ ⋅ 𝑘

𝑚−2
!

× [

𝑚−2

∏

]=0

(𝐴])
𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹
𝛼−𝛽,𝛼+1−𝑗+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡

0
)

+ 𝐺
𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆

(𝑡) ∗ 𝑓 (𝑡) ,

(240)

where 𝐺
𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆

(𝑡) is given by (234) and 𝑐
𝑗
(𝑗 = 1, . . . , 𝑙)

are arbitrary real constants.

Acknowledgments

First, the authors are very grateful to the referees for their
careful reading of the paper, and a lot of valuable comments,
which greatly improved this manuscript. Next,This work was
supported by the National Natural Science Foundation of
China (11171286), and by the Jiangsu Province Colleges and
Universities Graduate Scientific Research Innovative Pro-
gram (CXZZ12-0974).

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,Theory and Ap-
plications of Fractional Differential Equations, vol. 204 ofNorth-
Holland Mathematics Studies, Elsevier, London, UK, 2006.

[2] M. Bohner and A. Peterson, Advances in Dynamic Equations on
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